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Energy-aware Adaptive Attitude Estimation Under

External Acceleration for Pedestrian Navigation
Aida Makni, Hassen Fourati and Alain Y. Kibangou

Abstract—In this paper, we consider the problem of rigid body
attitude estimation under external acceleration using a small
inertial/magnetic sensors module containing a triad of gyroscope,
accelerometer, and magnetometer. The paper is focused on two
main challenges. The first one concerns the attitude estimation
during dynamic cases, in which external acceleration occurs. In
order to compensate for such external acceleration, we design
a quaternion-based adaptive Kalman filter q-AKF. Precisely, a
smart detector is designed to decide whether the body is in
static or dynamic case. Then, the covariance matrix of the
external acceleration is estimated to tune the filter gain. The
second challenge is related to the energy consumption issue
of gyroscope. In order to ensure a longer battery life for the
Inertial Measurement Units, we study the way to reduce the gyro
measurements acquisition by switching on/off the sensor while
maintaining an acceptable attitude estimation. The switching
policy is based on the designed detector. The efficiency of the
proposed scheme is evaluated by means of numerical simulations
and experimental tests.

Index Terms—Attitude estimation, quaternion, adaptive
Kalman filter, detection, dynamic and static cases, Energy man-
agement.

I. INTRODUCTION

Accurate tracking of rigid body attitude, i.e. the determina-

tion of the three-dimensional orientation from non-ideal strap-

down sensors, is a requirement for ambulatory applications

such as detection of unconstrained walking [1], pedestrian lo-

calization [2], [3], indoor navigation [4], [5], and human body

trackers [6], [7]. Since several decades, it is usual to resort

to Inertial Measurements Units (IMUs) composed of a triaxial

gyroscope to measure angular velocity, a triaxial accelerometer

to measure the sum of external acceleration and gravity, and

a triaxial magnetic sensor to measure Earth’s magnetic field

[8]. Although these sensors can be used separately to infer the

attitude, one rather tries to carry out an optimal fusion of their

measurements in order to improve the estimation accuracy.

Using these sensors, several attitude estimation methods

have been proposed in the literature. They are based on clas-

sical filtering methods such as Kalman filters (KFs) [9], [10],

extended Kalman filters (EKFs) [11], or nonlinear observers

[12], [13]. For instance, a quaternion Kalman filter (QKF)

using an original linear observation model was introduced by

Choukroun et al. [14]. Although these methods perform well

enough during static cases, severe performance degradations

are noticed during dynamic cases. Indeed, external accelera-

tions occuring during dynamic cases are not taken into account

when these methods are derived.

The authors are with Univ. Grenoble Alpes, CNRS, Gipsa-Lab,
F-38000 and with Inria, Grenoble, France. (e-mails: aida.makni,
hassen.fourati, alain.kibangou@gipsa-lab.fr).

To deal with this issue, some works considered explicitely

the impact of external acceleration [15], [16], [17]. For in-

stance, an adaptive EKF has been proposed in [15], where a

diagonal matrix is added to the observation noise covariance

matrix. However, it could not reflect accurately the influence

of accelerations on the observation covariance matrix. Authors

in [17] introduced a switching architecture to separate the

two modes (low and high external acceleration). The effect

of external acceleration is compensated for by setting the

covariance matrix of accelerometer measurements to infinity.

The approaches in [15], [16], [17] require the setting of

thresholds according to the system dynamics which is very

tricky in practice. The authors of [18] addressed the same

problem by using an external acceleration model. The pro-

posed algorithm behaves well for low to medium level external

acceleration during short periods. Contrariwise, when high

external acceleration occurs for long duration, this method

is impaired by increasing errors. Definitely, efficient methods

for attitude estimation, whatever the level and the duration of

external acceleration, are still to be devised.

It is now well known that using gyroscope measurements

seems to be crucial to overcome the limitation of accelerom-

eters. However, gyroscopes are much more power consuming

than accelerometers. As an example, the triaxial gyroscope

L3GD20 consumes 6.1 mA [19] while the consumption of

the triaxial accelerometer LIS3DH is around 11 µA [20].

For battery-operated applications using IMUs in attitude

estimation, such as Pedestrian Navigation Systems (PNS),

Smartphones, and monitoring systems for elderly or visually

impaired persons, the energy consumption of gyroscope is

clearly a crucial issue. To the best to the authors knowledge,

there is no work dealing with this issue in connection with the

attitude estimation performance. Nowadays, a new generation

of gyroscopes can be switched to operate in a low power mode

(sleep mode) providing significant reduction of operating

current (consumption around 1.5 mA) [19]. It is therefore

interesting to study how to decrease the use of gyroscope

measurements by switching as often as possible to a sleep

mode without a significant loss of performance during the

attitude estimation process.

The main contributions of the paper can be stated as follows:

• A smart way for detecting dynamic case. A detection law

is proposed to decide whether the body is in dynamic

or static cases. As a consequence, the gyroscope can be

switched to sleep mode (during static case) and a specific

tuning of the process covariance matrix is proposed (see

Fig. 1).

• A quaternion-based adaptive Kalman Filter (q-AKF) com-
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pensating the external acceleration effect. The main ad-

vantage of the proposed method is that the observation

covariance matrix is adaptively tuned according to the

filter residual when dynamic cases are detected (Fig. 1).

Fig. 1. Block diagram of the q-AKF employed for attitude estimation.

• A validation of the proposed approach in pedestrian

navigation where the angular variations range is around

+/- 180◦ for yaw angle and +/- 90◦ for roll and pitch

angles, the angular velocity variations range is around

+/- 600◦/s and the acceleration norm range is around +/-

8g. The expected estimation errors should be less than

10◦ for the estimated Euler angles.

This paper is organized as follows: In Section II the problem

of attitude estimation under external acceleration and energy

consumption constraints is formulated. In Section III, the

detection approach to separate static and dynamic cases is

explained. In Section IV, the q-AKF is devised and then

evaluated by means of numerical simulations (section V) and

experimental tests (section VI). Section VII provides some

conclusions.

Notations: The skew matrix associated with a vector x =
[x1 x2 x3]

T ∈ R
3 is defined as:

[x×] =





0 −x3 x2

x3 0 −x1

−x2 x1 0



 . (1)

A unit norm quaternion q is defined by q = [q0 ~qT ]T =
[q0 q1 q2 q3]

T ∈R
4. For two unit-norm quaternions qa =

[qa0 ~qa
T ]T and qb = [qb0 ~qb

T ]T , the quaternion product can

be defined as:

qa ⊗qb =

[

qa0 −~qa
T

~qa qa0I3 +[~qa
×]

][

qb0

~qb

]

, (2)

where I3 ∈ R
3×3 stands for the identity matrix.

The complementary quaternion is defined as:

q−1 = [q0 −q1 −q2 −q3]
T and we have the property :

q−1 ⊗q = [1 0 0 0]T . More details about quaternion can

be found in [21].

C(q) stands for the rotation matrix from the Earth-fixed

frame N(XN ,YN ,ZN)
1 (navigation frame) to the body-fixed

frame B(XB,YB,ZB). It is defined as:

C(q) =





2q2
0 +2q2

1 −1 2q1q2 +2q0q3 2q1q3 −2q0q2

2q1q2 −2q0q3 2q2
0 +2q2

2 −1 2q2q3 +2q0q1

2q1q3 +2q0q2 2q2q3 −2q0q1 2q2
0 +2q2

3 −1



 . (3)

1XB, YB, and ZB axes point along each of the triad of sensors. The XN -
axis points to the true North. The ZN -axis points towards the interior of the
Earth, perpendicularly to the reference ellipsoid. The YN -axis completes the
right-handed coordinate system, pointing East (NED: North, East, Down).

II. PROBLEM FORMULATION

Let us consider a rigid body with attitude represented by

a quaternion q and characterized by the kinematic equation

[22]:

q̇ =
1

2
q⊗ ω̄, (4)

where ω̄ = [0 ωT ]T is the quaternion representation of an-

gular velocity ω = [ωx ωy ωz]
T expressed in B. Since there

is no way to directly sense the attitude, it is usual to resort

to data fusion approaches from a triad of sensors consisting

of a triaxial gyroscope, a triaxial accelerometer, and a triaxial

magnetometer [9], [11], [12], [13]. As commonly adopted in

[23], [24], their outputs yg, ya, and ym ∈ R
3 are given by:

yg = ω +δg, (5)

ya = C(q)G+ap +δa, (6)

ym = C(q)m+δm, (7)

where ap ∈ R
3 denotes the external acceleration vector of

the body (non-gravitational acceleration), G = [0 0 g]T is

the gravity vector (g = 9.81m/s2), m = [mx my mz]
T =

[||m||cosθ 0 ||m||sinθ ]T represents the Earth’s magnetic

field vector measured in the Earth-fixed frame N and θ is the

inclinaison angle of the magnetic field. Actually, the theoret-

ical model of the geomagnetic field m may vary according

to the location on Earth. However,||m|| and θ can be found

by using the World Magnetic Model which takes the location

on the earth into account [25]. Sensor noises δg, δa, and δm

are assumed to be zero-mean white Gaussian noises mutually

uncorrelated with the following covariance matrices RgI3, RaI3,

and RmI3, respectively.

From Eq. (6), one can note that the accelerometer measure-

ments are sensitive to the gravity vector G and to ap, the

body external acceleration, that is usually unknown. Separating

these two vectors is a tough task, in particular when the

external acceleration increases. During high external accelera-

tion, since the accelerometer output is affected by the motion,

the attitude derived from such measurements is also affected,

inducing a decrease of attitude estimation quality.

To overcome the limitations of accelerometer, the use of

gyroscope seems to be crucial although it is much more power

consuming than accelerometer. To reduce energy consumption,

the authors proposed in [26] an arbitrary periodical switching

between active and sleep modes of the sensor. In static case,

(||ap|| is negligible compared to ||G||), accelerometer and

magnetometer are sufficient to achieve an accurate enough

attitude estimation. Then, the gyroscope can be switched to

sleep mode. In dynamic case (in presence of high external

acceleration, i.e. non negligible values of ||ap|| compared to

||G||), gyroscope should be used to compensate for the effects

of the external acceleration. The main goal of this paper is

to propose a smart way to detect dynamic cases and then to

compensate for the effects of external acceleration in order

to improve the attitude estimation while saving energy by

reducing the use of gyroscope.
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III. DETECTION OF MOTION

The objective of this section is to define a detection law

to decide whether, the body is in dynamic or static case,

given a discrete sequence of accelerometer measurements
{

ya,k,ya,k+1, ...,ya,W+k+1

}

. Mathematically, we can formalize

the detection problem as a binary hypothesis testing problem,

where the detector can choose between two hypotheses H0 and

H1 defined as follows:

• H0 : The body is in static case,

• H1 : The body is in dynamic case.

In what follows, we give three ways to design the detector.

A. Acceleration-based deterministic detector

As stated in the previous section, during static cases, the

external acceleration ||ap,k|| is negligible compared to ||G||.
Then, the norm of accelerometer measurements ||ya,k|| is

almost equal to ||G||. During dynamic cases, ||ya,k|| becomes

much more higher or lower than ||G||. Therefore, the detector

can act by following the decision test below:

Test 1: Given s1 and s2 determined experimentally during a

calibration step:

• if s1 ≤ ||ya,k|| ≤ s2 ⇒ H0: static case,

• else ⇒ H1: dynamic case.

B. Acceleration-based stochastic detector

The previous detector acts instantaneously and can be

prone to false detection due to outliers. In what follows, we

design the detector such that the probability of detecting the

dynamic events can be maximized given a certain false-alarm

probability, i.e., given the probability to decide that the body

is in dynamic case while it is not the case.

From Eqs. (3) and (6), and according to the detection

hypotheses, we can note that the accelerometer output in

discrete time, can be rewritten as:

• ya,k = guk +δa,k under H0 ,

• ya,k = guk +ap,k +δa,k under H1.

where uk ∈ R
3 is the unit norm vector (||uk||= 1), given by:

uk =





2q1,kq3,k −2q0,kq2,k

2q2,kq3,k +2q0,kq1,k

2q2
0,k +2q2

3,k −1



 . (8)

The idea is to define a detection function fk, given ya,k, and

to compare it with a predefined threshold value s, such as:

• if fk(ya,k)< s ⇒ H0 : static case,

• if fk(ya,k)> s ⇒ H1 : dynamic case.

The hypothesis testing problem can be expressed by using

the squared norm of ya,k, which is defined as:

||ya,k||
2 = g2 + ||δa,k||

2 +2guT
k δa,k under H0, (9)

||ya,k||
2 = g2 + ||ap,k||

2 + ||δa,k||
2 +2guT

k δa,k

+2guT
k ap,k +2δ T

a,kap,k under H1.
(10)

Note that, under H0, since δa,k is assumed to be zero mean

and independent of uk, we get:

E[||ya,k||
2 −g2] = 3σ2

a , (11)

where E[•] denotes the expectation operation. In what follows,

we approximate the mathematical expectation by:

E[||ya,k||
2 −g2]−3σ2

a ≈ fk =
1

W

k

∑
i=k−W+1

(||ya,i||
2 −g2 −3σ2

a ).

(12)

We can note that (see Appendix. A):

E[ fk] = 0, (13)

σ2
f = var[ fk] =

1

W
(6σ4

a +4g2σ2
a ). (14)

For a given scalar n, we know from the Chebyshev inequality

that no more than 1/n2 of the distribution values of the random

variable fk can be more than n standard deviations away from

the mean, i.e. P(| fk| ≥ nσ f ) ≤ 1/n2 [27]. In other hand, the

probability of false-alarm is defined as:

PFA = P( fk ≥ s/ the system is in static case). (15)

Therefore, by setting n equal to s/σ f , we can deduce that:

PFA =
1

2
P(| fk| ≥ s)≤ σ2

f /s2. (16)

To ensure that the PFA is lower than a pre-specified value

α/2, we should select the threshold value as:

s =

√

σ2
f

α
. (17)

Test 2: Given a probability of the false-alarm α:

• if fk(ya,k)<

√

σ2
f

α ⇒ H0: static case,

• if fk(ya,k)>

√

σ2
f

α ⇒ H1: dynamic case.

C. Acceleration-based hybrid detector

The detection function fk can be too smooth and then induce

a latency on the detection of some events. Indeed, in the

construction of the function fk all measurements have the same

weights. In order to give more weight to the current value, we

suggest to combine the two detectors previously proposed:

Test 3: Given s1, s2, and α:

• if fk(ya,k)<

√

σ2
f

α and s1 ≤ ||ya,k|| ≤ s2 ⇒ H0: static case,

• else ⇒ H1: dynamic case.

IV. ADAPTIVE KALMAN FILTER FOR ATTITUDE

ESTIMATION

In this section we propose a filtering approach for rigid body

attitude estimation in two cases :

• standard energy consumption mode: the gyroscope is used

at each instant (it is on active mode during the observation

window);

• low energy consumption mode: the gyrospcope is used

only if needed. In this case, the gyroscope switches

between the active and sleep modes.

The necessary process and observation models for the filter

design are defined in the following.
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A. The process model

In discrete-time, the differential equation describing the

kinematics of the attitude in terms of quaternion (4), can be

written as [14]:

qk+1 = Φkqk +wk, (18)

where qk is the quaternion representing the attitude, Φk is the

matrix containing the angular velocity vector yg,k:

Φk = exp(Ωk∆t), (19)

Ωk =
1

2

[

0 −yT
g,k

yg,k −[y×g,k]

]

, (20)

where ∆t is the sampling period and wk:N (0,Qk) is the

process noise defined as:

wk =−
∆t

2
Ξ(qk)δg,k, (21)

with

Ξ(qk) =

[

−~qk
T

[~qk
×]+q0,kI3×3

]

. (22)

We can note that the process model is mainly fed by gyroscope

measurements. However, during static cases, it is reasonable to

adopt a simple random walk model driven by a white Gaussian

noise w
′

k with a covariance matrix Q
′

k. In such case, we get:

qk+1 = qk +w
′

k. (23)

Let define the binary variables β and γk as:

• β = 0 when the standard energy consumption mode is

activated;

• β = 1 when the low energy consumption mode is acti-

vated;

• γk = 0 when the rigid body is in static case at time k;

• γk = 1 when the rigid body is in dynamic case at time k.

The models (18) and (23) give rise to the generic model:

qk+1 = A(γk,β )qk +b(γk,β ), (24)

where A(γk,β ) and b(γk,β ) represent respectively the transi-

tion matrix and the process noise vector, defined as:

A(γk,β ) = (1−β (1− γk))Φk +β (1− γk)I4, (25)

b(γk,β ) = (1−β (1− γk))wk +β (1− γk)w
′

k. (26)

The covariance matrix of the process noise b(γk,β ) is defined

as:

Q̄k(γk,β ,qk) = (1−β (1− γk))Qk +β (1− γk)Q
′

k. (27)

We can note that in the low energy consumption mode (β = 1),

the process model switches according to the static or dynamic

case of the rigid body. Since gyroscope measurements seem

to be mandatory only during dynamic cases, we can save

energy by switching-off the gyroscope during static cases.

The estimation process is then only fed by the accelerometer

and the magnetometer [28], [29]. The switching process is

governed by the decision test derived in the previous section.

B. Observation model

Let us consider the quaternion vectors Ya,k = [0 yT
a,k]

T , Ḡ=

[0 GT ]T , Ym,k = [0 yT
m,k]

T and m̄ = [0 mT ]T related to ya,k,

G, ym,k, and m, respectively.

Ya,k and Ym,k depend on the quaternion qk as follows [30]:

Ya,k = q−1
k ⊗ Ḡ⊗qk, (28)

Ym,k = q−1
k ⊗ m̄⊗qk. (29)

Let left multiply both sides of Eqs. (28) and (29) by qk. Then,

the difference between the two sides in each obtained equation

leads to the following quaternion pseudo-observation model

[14], [31]:

08×1 = Hkqk + vk, (30)

where

Hk =

(

H1,k

H2,k

)

, (31)

with

H1,k =
1

2

(

0 −(ya,k −G)T

(ya,k −G) −[(ya,k +G)×]

)

, (32)

H2,k =
1

2

(

0 −(ym,k −m)T

(ym,k −m) −[(ym,k +m)×]

)

, (33)

and

vk =

(

w
q
acc,k

w
q
mg,k

)

=−
1

2
Ξ(qk)

(

ap,k +δa,k

δm,k

)

. (34)

One can note that the statistical characteristics of the

quaternion-dependent noise, related to the magnetometer

w
q
mg,k:N (0,Rmg,k), are known. However, those of the noise

w
q
acc,k:N (rk,Racc,k), related to the accelerometer are un-

known when external acceleration ap,k is contained in the

accelerometer measurements ya,k. Therefore, rk and Racc,k will

be adaptively estimated in the filter. Then, in the following,

we considered R̂acc,k and r̂k instead of Racc,k and rk.

C. Online estimation of R̂acc,k

The external acceleration ap,k is unknown in the observation

noise (34). Since the sensor noise δa,k is assumed to be a zero-

mean white Gaussian noise, the expectation value of w
q
acc,k in

(34), is given by:

E[wq
acc,k] =−

1

2
Ξ(qk)ap,k. (35)

Assuming that Ξ(qk) is full column rank, an estimate of the

external acceleration can be obtained as:

âp,k =−2Ξ†(qk)E[w
q
acc,k]. (36)

Knowing that 04×1 =H1,kqk+w
q
acc,k, under ergodicity assump-

tion we can approximate the expectation E[wq
acc,k] by the

arithmetical mean 1
N

k

∑
j=k−N+1

r j, with r j =−H1, jq j. Since the

actual state is unknown we substitute it by its a priori estimate

q̂k/k−1 giving rise to the residuals r j =−H1, jq̂ j/ j−1. Therefore:

âp,k =−2Ξ†(q̂k/k−1)r̂k. (37)
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with

r̂k =
1

N

k

∑
j=k−N+1

r j =−
1

N

k

∑
j=k−N+1

H1, jq̂ j/ j−1. (38)

The covariance matrix of external acceleration is then approx-

imated by:

R̂p,k = ||âp,k||
2I3. (39)

We can then deduce that:

R̂acc,k =
1

4
Ξ(q̂k/k−1)(Ra + R̂p,k)Ξ(q̂k/k−1)

T . (40)

In the case of standard consumption mode (β=0), we can

assume that during static case the process model is robust

enough to restrict the adaptation of the covariance matrix to

dynamic case, i.e.:

R̂acc,k =
1

4
Ξ(q̂k/k−1)(Ra + γkR̂p,k)Ξ(q̂k/k−1)

T . (41)

Moreover, from (40) and (41), R̂acc,k can be expressed as:

R̂acc,k =
1

4
Ξ(q̂k/k−1)[Ra +(γk +β (1− γk))R̂p,k]Ξ(q̂k/k−1)

T .

(42)

D. Filter design

Based on the process and the observation models derived

in the previous subsections, the following quaternion-based

adaptive Kalman filter (q-AKF) is devised. We assume here

that every unknown variable in the model can be replaced by

its best available estimate. Then, the steps of the proposed

q-AKF can be summarized as follows:

1) Initialize the state estimate q̂0/0, the error covariance

matrix P0/0, γ0, and choose β .

For k ≥ 1:

2) Compute the a priori state estimate

q̂k/k−1 = A(γk,β )q̂k−1/k−1. (43)

3) Compute the a priori error covariance estimate

Pk/k−1 = A(γk,β )Pk−1/k−1A(γk,β )
T + Q̄k(γk,β ,qk),

(44)

where Q̄k(γk,β ,qk) is defined in (27) and in which Qk

is computed such as [14]:

Qk =
∆t2

4
Ξ(q̂k−1/k−1)RgΞ(q̂k−1/k−1)

T , (45)

where ∆t stands for the sampling period and Q
′

k is fixed

a priori.

4) Compute the Kalman gain

Kk = Pk/k−1Hk(HkPk/k−1HT
k +Rk)

−1, (46)

where

Rk =

(

R̂acc,k

Rmg,k

)

, (47)

where R̂acc,k is given by (42) and

Rmg,k =
1

4
Ξ(q̂k/k−1)RmΞ(q̂k/k−1)

T . (48)

Hk is defined in (31) and Rm is the covariance matrice

of magnetometer noise.

5) Compute the a posteriori state estimate:

q̂k/k = q̂k/k−1 −Kk(Hkq̂k/k−1 +

(

r̂k

0

)

). (49)

6) Compute the a posteriori error covariance estimate

Pk/k = (I −KkHk)Pk/k−1. (50)

V. SIMULATION RESULTS

This section aims to illustrate the performance of the

designed q-AKF. Some numerical simulations were carried out

under MATLAB to estimate a rigid body attitude.

A. Simulation setup

In the first step, the following angular rate values issued

from the gyroscope are simulated:

ωk = [2cos(1,5k) − 2sin(0.9k) 1.5cos(1.2k)]T . Then, the

discrete-time kinematic equation (18) and the angular velocity

ωk were used to generate the sequence of quaternion qk

over 10 s, which will be considered later as a reference

to compare it with the estimated quaternion from the q-

AKF. In the second step, the accelerometer and magnetometer

outputs were generated using (6), (7), respectively. The ro-

tation matrix in (3) computed using the quaternion qk. The

sampling rate was chosen as 100 Hz for all measurements. To

represent the sensor imperfections, a random zero-mean white

Gaussian noise was added for each sensor measurements,

with a standard deviation given in Table I. A sequence of

external acceleration ap,k (see the top of Fig. 2(a)) is added

to the accelerometer output according to (6). Two different

TABLE I
CHARACTERISTICS OF THE VARIOUS NOISES FOR SENSOR

MEASUREMENTS

Sensors Parameters Standard
deviations

Units

Accelerometer δa 0.01 m/s2

Magnetometer δm 0.05 Gauss

Gyroscope δg 0.05 rad/s

quaternions are considered to initialize the reference model

(q(0) = [0.3 −0.6 0.75 0.1]T ) as well as the q-AKF

(q̂(0) = [1 0 0 0]T ) in this simulation. Notice that this

choice allows us to illustrate the convergence of the q-AKF

even though it was initialized far enough from the reference

states. The initial estimation error covariance matrix was

chosen such as:

P0/0 = 0.1I4×4. (51)

We evaluate the performance of the proposed method by

computing Euler angles (roll, pitch, yaw)2. Then the quality

of attitude estimation is evaluated according to the Root Mean

2The definitions of Euler angles are assumed to be the same as those of
the airplane/ship convention estimation errors. Recall that Euler angles are
obtained using the mathematical transformation of estimated quaternion [32]
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Square Error (RMSE) values of Euler angles. Thus, the RMSE

is given by:

RMSE =

√

1

T

T

∑
t=0

x2
angle(t), (52)

where T stands for the time interval and xangle,

angle ∈ {pitch,roll,yaw} is the computed error between

the estimated angle and the reference one, which can be

expressed by:

xroll = φ − φ̂ , xpitch = θ − θ̂ or xyaw = ψ − ψ̂, (53)

where φ , θ , ψ are respectively the reference roll, pitch and

yaw angles and φ̂ , θ̂ and ψ̂ are the estimated angles. Monte-

Carlo simulations of 100 independent runs were realized in all

simulation cases. For online estimation of R̂acc,k, as described

in (42), N was set equal to 100.

B. Filter performance in standard energy consumption mode

(β = 0)

To show the improvements of the q-AKF, this latter is

compared to the QKF (Quaternion Kalman Filter) developed

in [14]. Both designed filters have a standard linear Kalman

filter structure with a state dependent covariance matrix of

process noise. The difference lies in the adaptive algorithm

and the detection law proposed in this work. Fig. 2 depicts the

evolution of absolute value of Euler angles estimation errors as

in Eq. (53). For more clarity, two different scales are used, one

for the full simulation period (see Fig. 2(a)) and a second for

the first 50 ms in order to illustrate the convergence behavior

(see Fig. 2(b)). Our aim is to illustrate the high convergence

behavior in the time. We can see that both algorithms converge

similarly but the q-AKF provides the best performance during

the simulation period. The RMSE values of Euler angles is

TABLE II
RMSE OF EULER ANGLES ESTIMATION (Q-AKF VS QKF)

Roll (◦) Pitch (◦) Yaw (◦)

q-AKF 0.3346 0.5524 0.8562

QKF 2.3174 2.5649 1.7616

even two to seven times better than with QKF (see Table

II). The QKF losses performance during dynamic cases. This

result was expected since the QKF doesn’t take into account

the effect of external acceleration in its design. The q-AKF

is more efficient since the external acceleration is taken into

account due to the adaptive algorithm part. The detector of the

motion seems to be also efficient enough. For this purpose,

Fig. 3 (top) depicts the evolution of the detection function fk

used in Test 2 and 3 (here we restrict the study to Test 2)

with the detection threshold s. A zoomed part of this figure is

also shown in the middle. We can see that the evolution of fk

follows the chosen profile of external acceleration depicted in

the top of Fig. 2(a). According to this function, the detected

mode is depicted in Fig. 3 (bottom) where the considered

binary function is equal to 1 during dynamic cases and

zero else. To show the detector performance, we plotted the

Detection Probability PD versus the threshold value α of the
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Fig. 2. Euler angles estimation errors: (a) full simulation period (b) zoomed
period (between 0 and 0.05 s)
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Fig. 3. External acceleration detection

false-alarm Probability PFA for various values of the sliding

window W . It can be seen in Fig. 4 that the PD is monotonic

with increasing α and it is high even if the PFA increases.

We conclude that the developed detector is robust enough and

presents a good performance. Moreover, it is clear that the

detection law is more efficient when the size of the window W

increases but from 20 the improvement is no longer significant.

In other side, to study the q-AKF performance under various

dynamic cases, a simulation test different from the first one in

terms of the magnitude and duration of external accelerations

was performed. Fig. 5 shows Euler angles estimation errors of

the q-AKF and QKF. We note that the estimation errors with

the q-AKF are kept low even when external accelerations take
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Fig. 4. Detection performance via detection probability

place for a long duration (between 30 and 50 s for example)

and with a constant magnitude (5g).

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

 

 Acceleration Norm (g)

0 10 20 30 40 50 60 70 80 90 100
0

100

200

R
o

ll
 e

rr
o

r 
(°

)

 

 
q−AKF

QKF

0 10 20 30 40 50 60 70 80 90 100
0

50

100

P
it

c
h

 e
rr

o
r 

(°
)

 

 

0 10 20 30 40 50 60 70 80 90 100
0

100
200
300

Time(s)

Y
a

w
 e

rr
o

r 
(°

)

 

 

Fig. 5. Euler angles estimation errors for QKF and q-AKF under long external
accelerations duration

C. Filter performance in low energy consumption mode (β =
1)

In this subsection, we consider the case of low energy

consumption mode by reducing the use of gyroscope in

attitude estimation (see Section III and IV). The switches

between the gyroscope functioning modes are driven by the

decision tests derived in the previous sections. The parameters

W and α , used for computing the detection function fk and

the threshold value s, are respectively chosen equal to 20 and

0.09 in Tests 2 and 3 while s1 = 0.996 and s2 = 1.004 in Tests

1 and 3. Fig. 6 and Table III show the estimation errors of

Euler angles and their RMSE values in each test case (Test 1,

2 and 3 proposed in Section III). It is clear, from Fig. 6 and

the RMSE values, that using the q-AKF with Test 3 provides

the best attitude determination. This Test allows the q-AKF to

be more robust to external acceleration. Moreover, the non-

detections inherent to Test 1 and Test 2 are compensated.
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Fig. 6. Euler angles estimation errors in the case of low energy consumption
mode

TABLE III
RMSE OF EULER ANGLES ESTIMATION (COMPARAISON OF THREE

TESTS)

Roll (◦) Pitch (◦) Yaw (◦)

Test 1 1.0558 1.4156 6.0135

Test 2 4.138 5.9742 3.4429

Test 3 0.3886 0.4689 3.5086

Full gyros 0.5385 0.4513 1.5847

D. Filter performance in terms of energy consumption

Now, let us evaluate the filter performance based on energy

consumption criterion. For this purpose, we compute the

current consumption of gyroscope during the same simulation

period in each Test. For that, we define A and B as the current

consumption when gyroscope is in active mode, sleep mode,

and switching between the two previous modes, respectively.

Then, the total energy consumption during the simulation

period can be given by:

E = n1A+n2B+n3C, (54)

where n1, n2, n3 stand for the number of samples when the

gyroscope is in active mode, sleep mode and during switching

between the two modes, respectively. The values of A, B and

C can be found in the datasheet of the gyroscope. The three-

axis gyroscope L3GD20 is considered, as an example, and the

values of A and B can be determined from [19] (A = 5.4 mA

and B = 2.7 mA). Sometimes, C is not given in datasheets,

however, we can easily consider that C ≪ A and C ≪ B. Table

IV shows the values of n1, n2, n3, and E in the three Tests.

We conclude that the detector using acceleration norm (Test

1) gives the best results from an energy consumption point

of view while the detector in Test 3 still have the highest

performances in terms of detection and attitude estimation

accuracy (see Table III). Moreover, the energy consumption is

the same in both Test 2 and 3 but Test 3 gives better estimation

performance since it avoids the non-detection cases (non-

detection probability= 0 due to the constraint s1 ≤ ||ya,k|| ≤ s2)

as given in Table IV.
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TABLE IV
ENERGY CONSUMPTION IN THREE DETECTION CASES

Test 1 Test 2 Test 3

n1 590 760 761
n2 410 240 239
n3 25 19 19

E(mA) 4293+ 25C 4752+ 19C 4754.7+ 19C

Non-Detection Probability
(PND) 0.0034 0.0017 0

VI. EXPERIMENTAL RESULTS

To assess the efficiency of q-AKF, several experiments were

performed in the case of pedestrian walking for different

scenarios. We used the foot-mounted MTi-IMU developed by

Xsens Technologies [33] to collect measurements. The unit

sampled sensor data for an orthogonally-oriented triaxial ac-

celerometer, a triaxial gyroscope and a triaxial magnetometer

at 100 Hz. A set of experiments was carried out at the MOCA

platform based in GIPSA-Lab at Univ. Grenoble Alpes to

collect data for different users with different weights. The

foot attitude is calculated by a Vicon motion capture system,

containing 12 cameras T40s, through Tracker software. Vicon

reconstructs the position and orientation of objects with pas-

sive markers that reflect light sent by the spotlight. The triad

composed of markers is aligned with the one of MTi’s sensors

to synchronize later the q-AKF and the Vicon system. The MTi

gyroscopes were calibrated before starting the experimental

test. We kept the MTi at rest for a period of 10 min and

we calculate the average of gyroscope measurements during

this period, which corresponds to the gyroscope bias. Then,

during the experiment, this gyroscope bias was subtracted from

the gyroscope outputs at each sample time. Fig. 7 shows the

overall experimental setup. All subjects were asked to walk

on a path marked on the room, including rectangle shaped

walking with a width of 2 m and a length of 3 m during 3

min as in Fig. 7. The collected data from the MTi are processed

offline using the q-AKF implemented under MATLAB to

estimate attitude in terms of quaternion representation and

are compared with the attitude (in terms of quaternion also)

calculated directly by the Vicon system which is considered

as the reference. Two algorithms are considered: the QKF

proposed by Choukroun et al. [14] and our approach based

on the q-AKF. Similar results are obtained with all subjects

for the same experiments. Then, we choose to represent one of

these results in Fig. 8 where Euler angles estimation errors are

plotted. We can see that the time evolution of estimation errors

is globally more important when using the QKF filter as from

the simulations test (previous Section). The dashed line curves,

corresponding to the QKF, present significant peaks whenever

external acceleration ap,k is detected. However, we note from

the figure that the yaw estimation error is higher compared

to roll and pitch estimation errors. This instantaneous error

during the considered indoor scenario is caused by the pres-

ence of external magnetic distortions (ferromagnetic elements)

between 16 and 28 sec which impair only the yaw angle. When

the magnetic distortions vanished between 28 and 40 sec, the

error became less than 5◦. In outdoor tests, these errors are

Fig. 7. Experimental setup
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Fig. 8. Euler Angles estimation errors

not observed since the magnetic distortions are low.

To give better interpretation of the results, we plotted in Fig.

9 the Cumulative Distribution Function of estimation errors

for Euler angles using both filters (q-AKF and QKF). We can
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Fig. 9. Error Cumulative Distribution Function

note that estimation errors above 10◦ for yaw angle are very

rare events. 90% of time the estimation error is guaranteed
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to be less than 10◦. We can also note that the q-AKF gives

better performance than the QKF. For example, the probability

to obtain an estimation error less than 5◦ for the yaw angle

is 35 % with the QKF filter while it is about 60 % with

the q-AKF. We can remark also from the same figure that

the main improvements are on roll and yaw angles estimation

since external acceleration is important along the x (roll angle)

and y (yaw angle) axis of the MTi during the pedestrian

walking scenario. This improvement on attitude estimation

would enhance the precision on 3D position determination.

VII. CONCLUSION

In this paper the design and some experimental results of

a quaternion-based adaptive Kalman filter (q-AKF) for rigid

body attitude estimation using inertial/magnetic sensors have

been presented. The q-AKF was developped with two major

goals: being able to produce accurate attitude estimates under

external acceleration and minimal use of gyroscope mea-

surements for energy consumption issue. The q-AKF doesn’t

need the setting of thresholds or the modelling of external

acceleration. Based on the filter residual in the accelerometer,

the external acceleration covariance matrix is estimated to

adaptively tune the filter gain. The q-AKF was modified to

find the best way to reduce the use of gyroscope measurements

by turning-off and activating the sensor alternatively, while

maintaining acceptable attitude estimation. The process noise

covariance is adaptively tuned for optimal compensation of

the error. A smart detection approach is proposed to decide

whether the body is in dynamic or static case. Through

numerical simulations and vicon-based experimental setup,

under external acceleration and minimal gyroscope’s use, the

efficiency of the proposed q-AKF is illustrated. The presented

approach doesn’t address the problem of attitude estimation

under magnetic disturbances which affect the yaw estimation

accuracy. This issue will be the subject of future works.

APPENDIX A

Equation (10) defines the norm of accelerometer output

under H0. Let consider xk = ||ya,k||
2 −g2. The variance of xk

can be obtained as follows:

var(xk) = E[x2
k ]− (E[xk])

2

= E[||δa,k||
4 +4g||δa,k||

2uT
k δa,k

+4g2(uT
k δa,k)

2]−9σ4

= E[||δa,k||
4]+4g2E[(uT

k δa,k)
2], (55)

with

E[||δa,k||
4] = E[(δ x

a,k)
4]+E[(δ y

a,k)
4]+E[(δ z

a,k)
4]

+2E[(δ x
a,k)

2]E[(δ y
a,k)

2]+2E[(δ x
a,k)

2]E[(δ z
a,k)

2]

+2E[(δ y
a,k)

2]E[(δ z
a,k)

2] = 15σ4,

(56)

E[(uT
k (δa,k)

T ] = E[(uT
k (δa,k)

T (uT
k δa,k)]

= E[Tr((uT
k δa,k)(u

T
k δa,k)

T )]

= E[Tr(uT
k δa,kδ T

a,kuk)]

= Tr(E[uiu
T
k ]E[δa,kδ T

a,k]

= σ2E[Tr(uiu
T
k )] = σ2. (57)

Mean value of fk :

E[ fk] = E[
1

W

k

∑
i=k−W+1

(||ya,i||
2 −g2 −3σ2

a )]

=
1

W

k

∑
i=k−W+1

(E[||ya,i||
2 −g2 −3σ2

a ])

=
1

W

k

∑
i=k−W+1

(E[||ya,i||
2]−

1

W

k

∑
i=k−W+1

(g2 +3σ2
a ) = 0.

(58)

Variance of fk :

σ2
f =

1

W 2
var(

k

∑
i=k−W+1

(||ya,i||
2 −g2 −3σ2

a )

=
1

W 2

k

∑
i=k−W+1

var(||ya,i||
2 −g2 −3σ2

a )

=
1

W 2

k

∑
i=k−W+1

var(||ya,i||
2)

=
1

W 2

k

∑
i=k−W+1

(6σ4
a +4g2σ2

a ) =
1

W
(6σ4

a +4g2σ2
a ).

(59)
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