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Abstract Apache Cassandra is an highly scalable and avail-

able NoSql datastore, largely used by enterprises of each size

and for application areas that range from entertainment to

big data analytics. Managed Cassandra service providers are

emerging to hide the complexity of the installation, fine tun-

ing and operation of Cassandra virtual data centers (VDCs).

This paper address the problem of energy efficient auto-

scaling of Cassandra VDC in managed Cassandra data cen-

ters. We propose three energy-aware autoscaling algorithms:

Opt, LocalOpt and LocalOpt-H. The first provides the

optimal scaling decision orchestrating horizontal and vertical

scaling and optimal placement. The other two are heuristics

and provide sub-optimal solutions. Both orchestrate hori-

zontal scaling and optimal placement. LocalOpt consider

also vertical scaling. In this paper: we provide an analysis

of the computational complexity of the optimal and of the

heuristic auto-scaling algorithms; we discuss the issues in

auto-scaling Cassandra VDC and we provide best practice

for using auto-scaling algorithms; we evaluate the perfor-

mance of the proposed algorithms under programmed SLA

variation, surge of throughput (unexpected) and failures of

physical nodes. We also compare the performance of energy-

aware auto-scaling algorithms with the performance of two

energy-blind auto-scaling algorithms, namelyBestFit and

BestFit-H. The main findings are: VDC allocation aiming
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at reducing the energy consumption or resource usage in

general can heavily reduce the reliability of Cassandra in

term of the consistency level offered. Horizontal scaling of

Cassandra is very slow and make hard to manage surge of

throughput. Vertical scaling is a valid alternative, but it is not

supported by all the cloud infrastructures.
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1 Introduction

Today, data storage or serving systems such as Apache Cas-

sandra and Hbase, Amazon SimpleDB and Dynamo, Google

BigTable are playing an important role in the cloud and

big data industry because the unprecedented high scalability

and availability they achieve by means of data replication.

Resource management for those data storage platforms is a

challenging task and the complexity increase when multi-

tenancy is considered. Human assisted control for such

platforms is unrealistic and there is a growing demand for

autonomic solutions. In this paper we consider the auto-

scaling problem for providers of a managed Cassandra

service (cf. Fig. 1). The goal of the service providers is always

to minimise operational costs under the constraints imposed

by service level agreements (SLAs) contracted with the cus-

tomers. Minimisation of energy consumption is one of the

strategies adopted to reduce costs, particularly when the ser-

vice providers run their own data centers. To address this

problem we propose three energy-aware auto-scaling algo-

rithms (Opt, LocalOpt and LocalOpt-H) specifically

designed for Cassandra virtual data centers (VDC) running

on a cloud infrastructure and we compare their performance
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Fig. 1 The multi-tenant Cassandra-based scenario and the auto-scaler (Color figure online)

with two energy-blind auto-scaling algorithms (BestFit

and BestFit-H).

Auto-scaling does not only mean to automatically

increase/decrease the amount of resources. Auto-scaling

implies to adapt, over time, the configuration of the Cassandra

VDC and of the cloud infrastructure. To realize an optimal

auto-scaling, the service provider could adopt three strate-

gies: Vertical scaling, which means to change the Cassandra

virtual nodes (vnodes) capacity at runtime, e.g. adding com-

puting power (e.g. virtual cpu) and/or memory; Horizontal

scaling, which means to add/remove, at runtime, Cassan-

dra vnodes to/from the Cassandra VDC; Optimal placement,

which means to instantiate the vnodes on the physical nodes

in a way such that the usage of resources is optimised with

respect to some objective function. In our specific case the

objective function is the energy consumed by the datacenter

and should be minimized.

TheOpt andLocalOpt auto-scaling algorithms orches-

trate those three adaptation strategies, while the

LocalOpt-H does only horizontal scaling and optimal

placement. The BestFit is based on the classical Best Fit

decreasing algorithm to approximate the solution of the bin

packing problem. The algorithm is capable to do both hori-

zontal and vertical scaling. The BestFit-H is a variant that

does only horizontal scaling. All the algorithms are designed

to be integrated in the planning phase of a MAPE-K con-

troller (cf. Fig. 1). The scaling decisions are based on three

parameters that can be easily collected: the vnodes through-

put, the CPU usage, and the memory usage.

The optimal energy-aware autoscaling is an algorithm that

does an overall system reconfiguration at each scaling action

needed to accommodate the resources for a specific tenant.

That allow to have always a system configuration that mini-

mize the energy consumed by the datacenter. The rational to

introduce energy-aware heuristics is twofold: first, the heuris-

tics are applied locally, for the specific tenant the need to

scale, and that reduces the perturbation of the performance

for the tenants that do not need to scale. Second, the Opt has

a complexity of the order O((N × H)3/2) for N tenants

and H physical nodes, while the heuristics have a com-

plexity of the order O(H3/2) and O(H2) for (localOpt)

and (BestFit) respectively (more details are provided in

Sect. 6). The not optimised Matlab code implementing the

heuristics finds the suboptimal solution in a range 10−1, 10 s

(when running on an Intel Core i5). The average time to find

the optimum using the Matlab MILP solver is about 50 s with

a maximum of about 2 × 103 s.

1.1 Research contribution

With respect to the literature on QoS and energy-aware

adaptation (e.g. [2,3,10,17,19,24,26]) and data center con-

solidation (e.g. [1,5,13,14,16]) and with respect to our

previous results [4] we introduce the following novelties:

– we compare the optimal energy aware allocation pro-

posed in [4] with two new auto-scaling heuristics

BestFit-H and LocalOpt-H
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– we provide a discussion on the issues related to auto-

scaling in Cassandra virtual data centers and we give

guidelines on how to best use the proposed algorithms,

i.e. for medium/long term capacity planning and at run-

time

– we provide a detailed evaluation of the computational

cost of the optimal autoscaling algorithms and of all the

heuristic algorithms.

– we provide a simple model to asses how the consistency

level of a Cassandra VDC is impacted by the auto-scaling

and specifically by the placement of vnodes on physical

machines.

– we analyse the performance of the proposed algorithms

in case of surge of requests and failure of physical nodes

Our main findings are here summarized: First, the penalty

in using an heuristic adaptation that does not hurt the system

stability is between +25% and +50% for highly loaded sys-

tems. Second, energy efficient VDC allocations can heavily

reduce the reliability of Cassandra in term of the consistency

level offered. Third, horizontal scaling of Cassandra is very

slow and make hard to manage surge of throughput. Vertical

scaling is a valid alternative, but it is not supported by all the

cloud infrastructures.

1.2 Paper organization

The paper is organised in the following way. The next section

discusses related work. The reference scenario we consider is

presented in Sect. 3. Section 4 introduces the system model

and the optimal adaptation problem formulation. The auto-

scaling algorithms are presented and discussed in Sect. 5. In

Sect. 6 we provide the computational cost analysis. Issues

on Cassandra auto-scaling and recommendations on the use

of the algorithms are discussed in Sect. 7. The experimen-

tal methodology (analysis cases, metrics and experimental

setup) is described in Sect. 8, while the experimental results

are described in Sect. 9. Finally, Sect. 10 provides concluding

remarks.

2 Related works

The problem we are addressing has been partially cov-

ered in literature by research paper in different fields: QoS

and energy-aware datacenter management; VM placement;

autonomic adaptation of cloud infrastructures; performance

evaluation, management and adaptation of cassandra-based

systems.

Examples of research works on measuring and manag-

ing the performance of NoSql distributed data stores such as

Cassandra are [9,23]. Chalkiadaki and Magoutis [6], Dede

et al. [11], Kuhlenkamp et al. [18], Rabl et al. [25], Shankara-

narayanan et al. [28], Shi et al. [30] are studies focusing on the

horizontal scalability feature offered by such databases. Few

studies consider vertical scaling, e.g. [6,18], and configura-

tion tuning [6,12,22,28]. While Horizontal scaling, vertical

scaling and configutation tuning approaches are somentime

mixed, optimal placement (e.g. [1,5,13,14,16]) is never con-

sidered in combination with the other adaptation strategies.

In [9] and [23] the authors presented YCSB and YCSB++,

the reference benchmarking frameworks for facilitating the

comparison of cloud based data-serving systems. YCSB

allows to simulate five different workloads and is compliant

with BigTable, HBase, Cassandra, MongoDB, DynamoDB

and more. In our work we decided to not to use YCSB because

we are mainly interested in working with Ericssonn datasets

and applications. However, our solution is based on a heuris-

tic throughput model that is independent from the specific

type of query and application.

In [30] has been evaluated the horizontal scalability of

Cassandra and Hbase for a mix of sequential and random read

and write operations, scan operations and structured queries.

No report and consideration are provided on how and if the

Cassandra and Hbase configuration impact the performance.

In [25] the authors evaluate the performance of six SQL

and no-SQL databases under the pressure of 5 different work-

loads. These benchmarking experiments has been extended

in [18] with a performance evaluation of Cassandra on

different Amazon EC2 infrastructure configurations. In com-

parison with those researches we consider only read, write

and read and write requests because of interest for our indus-

trial case. However, our model is independent from the

specific type of query. In [18] the authors explore both hor-

izontal and vertical scalability. Their results confirms the

experience we had with Cassandra performance on a vir-

tualized environment. That is, a reduction of the Cassandra

throughput up to 50% compared with Cassandra performance

in non virtualized clusters.

Concerning self adaptation, few work has been presented.

In [6] the authors propose a QoS controller for a Cassan-

dra cluster that aims to guarantee system performance by

means of coordinating horizontal scalability (bootstrap of

new nodes) and cache size (i.e. configuration tuning). The

proposed solution has been evaluated by means of YCSB

benchmark. In [28] the authors consider the problem of

optimizing geographically distributed cloud data stores with

respect to latency under failure scenarios. The authors adapt

the system tuning three main factors: R and W quorum,

location of replicas and number of replicas. On the basis

of experimental results the authors concludes that quorum-

based data store could benefit from an adaptable and fine

grain replica configuration. Indeed not only different appli-

cations could need different replication strategies, but also

for the same application different group of object could

need different replication strategies. This work motivates
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our assumption on the need for application specific Cassan-

dra configurations. However, while [28] is mainly interested

in the optimal configuration of the quorum mechanism and

of the replication strategies, we are focused on the applica-

tion specific scaling actions (Vertical and Horizontal) and on

energy-aware optimal placement. Like [28], CADRE [31]

shows that carefully distinguishing R + W queries in geo-

graphically distributed setting affects response time and

carbon footprint. They propose an online algorithm to reduce

carbon footprint while keeping response time low. The online

algorithm is similar to our BestFit approach. Katsak et

al. modify Cassandra for time varying resources by send-

ing writes to vNodes and carefully maintaining a “working”

set of available nodes. The choice of working set site and

placement policies affects performance.

In [22] the authors propose AutoPlacer a mechanisms to

self-tune the placement of replicas in distributed key-value

stores. Their goal is to minimize the cost of replicas in term

of overall latency. In [12] the authors propose a multidimen-

sional indexing techniques for supporting complex queries

using multiple object attributes. Such technique requires a

complex system configuration and the authors propose a

model and techniques to automatically and dynamically re-

configure the system in dynamic workload environments.

A model for provisioning multi-tier applications in a

cloud environment has been proposed by [29]. The authors

proposed a simple and effective approach for resource pro-

visioning to achieve a percentile bound on the end to end

response time of a multi-tier application. The authors find

that fewer high-capacity servers are preferable for high per-

centile provisioning. We leverage and verified this finding,

but the solution can not be applied as it is for a Cassandra-

based systems.

In [8] that authors consider the placement problem of vir-

tual machines (VMs) of applications with intense bandwidth

requirements. The proposed model fit in centralized storage

scenarios like storage area networks and not in distributed

storage scenarios like Cassandra.

The agility issue in scaling distributed storage systems

as been addressed in [7]. The authors propose an elastic

storage system, called JackRabbit, that can quickly change

its number of active servers. JackRabbit is based on HDFS.

Out paper confirm the agility issue.

3 Reference scenario

We consider a provider of a managed Apache Cassandra

service offered to support enterprise applications. There

are many examples of Cassandra-as-a-Service providers:

Rackspace (http://rackspace.com), Instaclustr

(http://instaclustr.com/) and Seastar (http://seastar.io/), just

to mention a few.

The tenants of the service are independent applications

each using its own Cassandra VDC (in what follow we will

interchangeably use the terms application and tenant). A Cas-

sandra VDC is a set of Cassandra virtual nodes (vnodes),

i.e. an instance of Cassandra software running on a virtual

machine (VM). All the Cassandra VDCs are tenants in a

cloud infrastructure (no matter if on a public or private cloud),

or data center in what follows.

Applications submit NoSql queries (called operations in

what follows) at a specific rate. Each application requires a

minimum throughput, a certain level of data replication to

cope with node failures, and has a dataset of a specific size.

To satisfy these customer’s requirements the service provider

has to properly plan the capacity and the configuration of

each Cassandra VDC. On the other side, the service provider

wants to minimise its power consumption. The Cassandra-

as-a-service provider has a typical scalability issue when:

a new tenant subscribes to a service; and/or when existing

tenants variate their requirements by modifying the target

throughput, the data replication factor, and/or the dataset size;

and/or there is a surge in the throughput.

The scenario is schematised in Fig. 1. The figure shows

three applications, each with a data replication factor of three,

that means each application has three copies of each data

item. Applications could be served by Cassandra vnodes with

diverse capacity in term of supported throughput. This can be

achieved, for example, by running the Cassandra vnodes on

VMs with different CPU power and memory size and allo-

cating the proper number of Cassandra vnodes. To maximise

the utilization, the provider decided to compact the Cassan-

dra vnodes only on three out of four servers. The auto-scaler

module is as a MAPE-K controller. The auto-scaling actions

are based on data collected from the cluster infrastructure

(the physical nodes and the hypervisor), from the Cassandra

VDCs and from the applications. The executor controls the

VMs and the Cassandra configuration parameters, as well as

start and stop VMs and add/remove to/from Cassandra VDC

the Cassandra vnodes.

4 Adaptation model

In this section we present the adaptation model that is behind

the auto-scaling algorithms. In this respect, we first define

models for: the workload and SLA; the system architecture;

the throughput and the utility function. Those models are

used to define the constraints and the objective function of

an optimization problem. The solution of the optimisation

problem provides the optimal (or suboptimal) auto-scaling

decisions that, for each tenant, specify:

– the number of vnodes of the Cassandra VDC (horizontal

scaling)
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– the configuration of vnodes, e.g. in terms of CPU capacity

and memory (vertical scaling)

– the placement of vnodes (of the VDCs) on the physical

infrastructure (optimal placement)

The periodic or event based evaluation of the optimisation

problem provides an auto-scaling policy for the Cassandra

service provider.

4.1 Workload and SLA model

The workload of a Cassandra VDC can be characterised by

the following features: the type of requests, e.g. read only,

write only, read & write, scan, or a combination of those;

the rate of the operation requests; the size of the dataset;

and the data replication_factor. Depending on the

size of the dataset managed, a Cassandra VDC is classified

as disk-bound if the dataset does not fit the memory offered

by all the vnodes in the VDC. Otherwise, CPU-bound (see

Eq. 1). Disk-bound installations have a performance degra-

dation of two order of magnitude compared to CPU bound

configurations [25].

Our workload model is based on the following assump-

tions.

Assumption 1 The system workload consist of a set L

of read (R), write (W) and read & write (RW) operation

requests:L = {R, W, RW }. Such operation requests are gen-

erated by the N independent applications and we assume that

application i generates only requests of type li ∈ L. If li = R

or li = W we have 100% R or W requests. In case li = RW

we have α% read requests and (100 − α) write requests (for

example in our experiments α = 75%).

Assumption 2 Requests of type li are generated at a given

rate measured in operations per second.

Assumption 3 The dataset size for application i is ri GByte

and the data are replicated with a factor Di

Assumption 4 The workload is only CPU bound, hence the

memory requirements are met.

Assumption 5 The internal/external network latency does

not impact the auto-scaling decisions. Hence it is not consid-

ered in the SLA.

According with Assumptions 1–5, the SLA for the tenant

i is modelled by the tuple:

〈

li , T min
i , Di , ri

〉

that includes information on the agreed workload (li and ri )

and on the service level objectives (T min
i and Di ). T min

i is the

minimum throughput the service provider must guarantee to

Table 1 t0
li , j as function of c j (virtual CPU), m j (GByte), heapSize j

and li

VM type and configuration Throughput for different workloads

(ops/s)

j c j m j heapSize j R W RW

1 8 32 8 16.6 ×103 8.3 ×103 13.3 ×103

2 4 16 4 8.3 ×103 8.3 ×103 8.3 ×103

3 2 16 4 3.3 ×103 3.3 ×103 3.3 ×103

The throughput is measured in operations/second (ops/s)

Table 2 Memory available for the dataset in a Cassandra vnode (JVM

Heap) as function of the VM memory size

m j (RAM size in GB) 1 2 4 8 16 ≥32

heapSize j (max Heap size in GB) 0.5 1 1 2 4 8

process the requests from application i . The SLA parameters

Di and ri are used to determine the number of vnodes to be

instantiated, as discussed in the next section.

Concerning Assumption 1, we limit the study to the set

L = {R, W, RW }. However, the model we propose can

deal with any type of operation requests, as clarified later

in Sect. 4.3. Assumption 4 implies that the service provider

has to set up, during the application on-boarding phase, and

to maintain, at runtime, the right number of vnodes for tenant

i . Dealing only with CPU bound workloads exempt us from

considering the workload consolidation problem (e.g. [32]).

Besides, it is of interest for the customer to have CPU bound

VDC in order to achieve the desired performance.

4.2 Architecture model

We consider a data center consisting of H homogeneous

physical machines (PMs), installed at the same geographi-

cal location, and a set of V VM configurations. For example,

Table 1 describes the characteristics of three different VM

types (V = 3). Each Cassandra vnode runs on a VM of type

j and a Cassandra VDC is composed of ni homogeneous

Cassandra virtual nodes where ni ≥ Di and at least Di out

of ni vnodes must run on different physical machines (as

suggested by Cassandra management best practices).

The configuration of the data center running N indepen-

dent applications is defined by the vector x =
[

xi, j,h

]

, where

xi, j,h is the number of Cassandra vnodes serving application

i and running on VMs with configuration j allocated on PM

h, ∀i ∈ I = [1, N ], j ∈ J = [1, V ], k ∈ H = [1, H ] and

I,J ,H ⊂ N.

We assume that each PM h has a nominal CPU capacity

Ch , measured in number of available cores, and a RAM of

Mh GByte. A VM of type j is configured with c j virtual

cores, m j GB of memory and a maximum JVM heap size
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heapSize j (GB). The heap size is an important parameter in

our case because it determines the size of the data a Cassan-

dra vnode can store in the main memory for fast retrieval and

processing. The relationship between the size of the RAM of

the heap size is described in [15] and summarised in Table 2.

Hence, to make the VDC instantiated for application i CPU

bound we need a number ni, j of nodes defined by the fol-

lowing empirical rule:

ni, j ≥ Di ·
ri

heapSize j

. (1)

In case ri > heapSize j Eq. 1 holds, otherwise, the constraint

ni, j ≥ Di holds. Considering that the number ni, j of vnodes

can be defined as

ni, j =
∑

j∈J ,h∈H

xi, j,h ∀i ∈ I. (2)

and considering that in our industrial case is always ri ≥

heapSize j for all configurations j , the above introduced

constraints are modelled by the following equations:

∑

j∈J ,h∈H

xi, j,h ≥ Di ·
ri

heapSize j

∀i ∈ I (3)

∑

j∈J

yi, j = 1 ∀i ∈ I (4)

∑

h∈H

si,h ≥ Di ∀i ∈ I (5)

where: yi, j is equal to 1 if application i uses a VM configu-

ration j to run Cassandra vnodes, otherwise yi, j = 0; si,h is

equal to 1 if a Cassandra vnode serving application i run of

PM h. Otherwise si,h = 0.

To model vertical scaling actions, that is a change from

configuration j1 to j2, we replace a VM of type j1 with a

VM of type j2. However, in a real setting, hypervisors (e.g.

VMWare) make it possible to resize, at runtime, the number

of cores associated to a VM and the size of memory used

without the need to shut down the VM. We do not consider

the case of over-allocation, that is the maximum number of

virtual cores allocated on PM h is equal to Ch .

Finally we assume that the local network latency do not

impact the performance of the VDC and the system recon-

figuration (Assumption 5).

4.3 Throughput model

We model the actual throughput Ti offered by the provider

to application i as a function of xi, j,h

From the analysis of the experimental data and of the lit-

erature we conclude that, for CPU bound workloads, the

throughput for a Cassandra VDC serving requests of type

li and running on a VM of type j (on top of a PM h) can be

approximated with a set of linear segment with slope δk
li , j .

δk
li , j is the slope of the kth segment and it is valid for a num-

ber of Cassandra vnodes ni between nk−1 and nk . Therefore,

for nk−1 ≤ ni ≤ nk , we can write the following expression:

t (ni ) = t (nk−1) + t (nk−1) · δk
li , j · (ni − nk−1) (6)

where k ≥ 1, n0 = 1 and t (1) = t0
li , j is the value of the

throughput supported by a specific Cassandra vnode config-

uration. An example of values for t0
li , j is reported in Table 1.

Finally, for a configuration x of a VDC, and considering

Eq. 2 we define the overall throughput Ti as:

Ti (x) = t (ni ) , ∀i ∈ I (7)

4.4 Power consumption model

As service provider utility we chose the power consumption

which is directly related with the provider revenue (and with

IT sustainability).

Many ways of reducing the power consumption in cloud

systems have been proposed the literature; two interesting

survey are [24] and [19]. Different approaches can be used

for the sustainable operation of data centers. If we focus on

cloud management systems the techniques typically used

are: scheduling, placement, migration, and reconfiguration

of virtual machines. The ultimate goal is to optimise the

use of resources to reduce power consumption. Optimi-

sation depends on the context, it could mean minimising

PM utilisation or to balance the utilisation level of physi-

cal machine with the use of network devices for data transfer

and storage. Independently from the configuration or adapta-

tion policy adopted all these techniques are based on power

and/or energy consumption models (in [24] a detailed sur-

veys). Power consumption models usually define a linear

relationship between the amount of power used by a system

as function of the CPU utilisation (e.g. [2,3,10]), or processor

frequency (e.g. [17]) or number of core used (e.g. [26]).

In this work we chose a linear model [3] where the power

Ph consumed by a physical machine h is a function of the

CPU utilization and hence of the system configuration x:

Ph(x) = kh · Pmax
h + (1 − kh) · Pmax

h · Uh(x) (8)

where Pmax
h is the maximum power consumed when the PM

h is fully utilised (e.g. 500W), kh is the fraction of power con-

sumed by the idle PM h (e.g. 70%), and the CPU utilisation

for PM h is defined by

Uh(x) =
1

Ch

·
∑

I,J

xi, j,h · c j (9)
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The overall energy consumption P(x) is defined by

P(x) =
∑

h∈H

Ph(x)

=
∑

h∈H

Pmax
h

⎛

⎝kh · rh +
(1 − kh)

Ch

∑

I,J

xi, j,h · c j

⎞

⎠

(10)

where rh = 1 if xi, j,h > 0 for some i ∈ I and j ∈ J .

Otherwise rh = 0

5 Auto-scaling algorithms

5.1 The optimal auto-scaling

The optimal auto-scaling algorithm is based on the solution

of the optimization problem defined in Fig. 2 and based on

the models presented in Sect. 4.

The pseudo code is listed in Algorithm 1. Opt simply

invokes the solver for the optimization problem and returns:

the optimal configuration of the system xopt , that inform

about the scaling actions; the remaining CPU and mem-

Fig. 2 The optimization problem

Algorithm 1 Opt auto-scaling algorithm

Require: I; J ; H; C ; M ; sla =
〈

li , T min
i , Di , ri

〉

;

1: [xopt , Ca , Ma , j∗, e] ← optSol(I, J , H, C , M , sla)

2: if e = false then

3: xopt ← ∅ // No feasible solution. The request is rejected

4: end if

5: return [xopt , Ca , Ma , j∗,e]

ory capacity (Ca and Ma) available after the adaptation; the

type j∗ of VM selected by the algorithm. The parameter

e is an exit code flag that is true if a solution exist and

false otherwise. The optimal configuration xopt indicates

the necessary actions to perform (c.f. beginning of Sect. 4):

horizontal scaling, vertical scaling and optimal placement.

xopt is the solution x to the optimization problem defined in

Fig. 2, where: the set of constraints defined by Eq. 11 guaran-

tee that the SLA is satisfied in terms of minimum throughput

for all the tenants. For the sake of clarity we keep these

constraints non linear, but they can be linearised using stan-

dard techniques from operational research if the throughput

is modelled using Eq. 6. Eq. 12 introduces a set of constraints

to guarantee that the number of vnodes allocated is enough

to guarantee that the portion of the dataset handled by each

node fits in the main memory and that the replication factor

Di specified in the SLAs is implemented. Equations 13 and

14 model the assumption that homogeneous VMs must be

allocated for each tenant. Ŵ is an extremely large positive

number. Equation 15 controls that the maximum capacity

of the physical machine is not exceeded. A relaxation of this

constraint would make it possible to model over-allocation.

In the same way, 16 controls that the memory allocated for the

vnodes do not exceed the main memory capacity of the phys-

ical nodes. Equation 17 guarantee that the Cassandra vnodes

are instantiated on at least Di different physical machines.

Equations 18 and 19 force si,h to be equal to 1 if the physical

machine h is used by application i and to be zero otherwise.

In the same way, the set of constraints 20 and 21 force rh to be

equal to 1 if the physical machine is used and zero otherwise.

Finally, expressions 22 and 23 are structural constraints of

the problem.

5.2 Heuristics

In a real scenario it is reasonable that new tenants subscribe

to a service and/or that existing tenants change their SLAs

(for example requesting the support for an higher throughput,

for a different replication factor or for a different dataset

size). In such dynamic scenarios, in order to satisfy the SLAs,

the auto-scaler should perform adaptation actions without

perturbing the performance of the other tenants, that is for

example avoiding vnodes migration.

A limitation of the Opt algorithm is that the scaling of a

virtual data center or the instantiation of a new one can lead
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Algorithm 2 LocalOpt auto-scaling algorithm

Require: I = {i}; J ; Ha ; Ca = {Ca
h ∀h ∈ Ha}; Ma = {Ma

h ∀h ∈ Ha};

sla =
〈

li , T min
i , Di , ri

〉

;

1:

2: [xsub, Ca , Ma , e] ← optSol(Ha , Ca , Ma , sla)

3: if e = false then

4: xsub ← ∅ // No feasible solution. The request must be rejected

5: end if

6: return [xsub, Ca , Ma , j∗,e]

to an uncontrolled number of adaptation actions that involve

all the tenants’ VDC and that could hurt the performance

of the whole data center [4]. To solve that issue we pro-

pose four heuristic autoscaling algorithms that work locally

allocating/deallocating resources only for the specified Cas-

sandra VDC without re-configuring VDCs of other tenants.

The first heuristic is called LocalOpt and is energy-aware.

It applies locally the optimisation problem listed in Fig. 2,

that is solve the optimization problem for only the one tenant.

This implies that the configurations of the other Cassandra

VDCs are not changed.

The second heuristic, BestFit, is a bin packing best-

fit descending algorithm, widely used in practice, and it is

applied locally. BestFit is energy-blind. The third and

forth heuristics are modified versions of the first two and

take only horizontal scaling and optimal placement deci-

sions. They are called LocalOpt-H (energy-aware) and

BestFit-H (energy-blind) respectivelly.

LocalOpt (the code is listed in Algorithm 2) receives

as input the subset Ha ⊂ H of available physical resources,

the available CPU and memory capacity for each PM in Ha ,

{Ca
h , Ma

h |h ∈ Ha}, the SLA sla =
〈

li , T min
i , Di , ri

〉

for a

current or new tenant i (I = {i}) and J . The set Ha is deter-

mined by observing the health state of the physical servers

in the data center, and it accounts for hardware and software

failure at infrastructure level. The output produced is the sub-

optimal allocation xsub, the new values for Ca and Ma , and

the error status e. At line 2 the algorithm evaluates the sub-

optimal solution solving the optimisation problem optSol

for the subset of available resources. If no optimal or sub-

optimal solution exist (e =false) the request is rejected

(line 3).

The pseudocode for the BestFit heuristic is reported in

Algorithm 3. As for LocalOpt it requires as input Ha , Ca

Ma , the SLA sla for a current or new tenant i (I = {i}) and

J . The code on lines 2-8 evaluates the number of vnodes

required to satisfy throughput, dataset size, and data repli-

cation constraints, for each VM type. Line 9 selects the VM

type that maximises the ratio between the requested through-

put and the throughput achievable with the number of vnodes

instantiated. That is, we try to minimise the over provision-

ing effect due to dataset constraints and, as result, the energy

consumption is minimised. Lines 10-15 check if the selected

Algorithm 3 BestFit auto-scaling algorithm

Require: I = {i}; J ; Ha ; Ca = {Ca
h ∀h ∈ Ha}; Ma = {Ma

h ∀h ∈ Ha};

sla =
〈

li , T min
i , Di , ri

〉

;

1:

2: n∗
i = ∅

3: for all j ∈ J do

4: nm
i, j = ⌈Di · ri /heapSize j ⌉;

5: nt
i, j = {nt

i, j s.t. T (nt
i, j ) ≥ T min

i };

6: n∗
i, j = max{nm

i, j , nt
i, j };

7: n∗
i = n∗

i ∪ {n∗
i, j }

8: end for

9: ( j∗, n∗
i, j∗ ) ← arg max j∈J {T min

i /T (n∗
i, j )};

10:

11: J ′ ← J ;

12: while ((c j ·n∗
i, j∗ >

∑

H
Ca

h )or(m j ·n∗
i, j∗ >

∑

H
Ma

h ))and(J ′ �=

∅) do

13: J ′ ← J ′ − { j∗};

14: ( j∗, n∗
i, j∗ ) ← arg max j∈J ′ {T min

i /T (n∗
i, j )};

15: end while

16: if J ′ = ∅ then return xsub ← ∅;

17: end if

18:

19: Ha ←sortDescendent(Ha);

20: while n∗
i, j∗ > 0 and any(c j∗ ≤ Ca) and any(m j∗ ≤ Ma) do

21: h ←popRR(Ha, Di );

22: if (c j∗ ≤ Ca
h ) ∩ (m j∗ ≤ Ma

h ) then

23: Ca
h ← Ca

h − c j∗ ;

24: Ma
h ← Ma

h − m j∗ ;

25: n∗
i, j∗ ← n∗

i, j∗ − 1;

26: xi, j∗,h ← xi, j∗,h + 1;

27: else

28: Ha ← Ha − {h};

29: end if

30: end while

31:

32: if n∗
i, j∗ > 0 then xsub ← ∅;

33: end if

34: return [xsub, Ca , Ma j∗, e]

VM type satisfies available CPU and memory constraints.

Otherwise, the second VM type that minimises the over pro-

visioning of resources is selected and so on, until all the

VM types are analysed. Line 16 returns xsub = ∅ because

no feasible solutions were found. Lines 19 - 30 place the

vnodes on the PMs minimising the number of PMs used,

packing as many vnodes as possible in a PM, of course con-

sidering the Di constraint. That also minimise the energy

consumption. The function any(c j∗ ≤ Ca) compares c j∗

with all the element of Ca and it returns true if at least

one element of Ca is greater than or equal to c j∗ . Other-

wise, if no PMs satisfy the constraint it returns false. The

same behaviour is valid for any(m j∗ ≤ Ma). The function

sortDescendent(Ha) sorts the Ha in descending order.

The function popRR(Ha ,Di ) extracts, in round-robin order,

a PM from the first Di in Ha . At Line 28, if there is no more

room in the selected PMs h the set Ha is updated removing

the PMs h. At line 32, if not all the n∗
i, j∗ vnodes could be allo-

cated the empty set is returned because no feasible solutions
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Algorithm 4LocalOpt-H autoscaling algorithm. It returns

the new sub optimal system configuration xsub.

Require: Ha ; Ca = {Ca
h ∀h ∈ Ha}; Ma = {Ma

h ∀h ∈ Ha}; sla =
〈

li , T min
i , Di , ri

〉

; J = { j∗}; I = {i}

1:

2: [xsub, Ca , Ma , j∗, e] ← optSolver(Ha , Ca , Ma , sla, I, J )

3: if e = false then

4: xsub ← ∅ // No feasible solution. The request must be rejected

5: end if

6: return [xsub, Ha , Ca , Ma , e]

Algorithm 5 BestFit-H autoscaling algorithm. It returns

the new sub optimal system configuration xsub.

Require: Ha ; Ca = {Ca
h ∀h ∈ Ha}; Ma = {Ma

h ∀h ∈ Ha}; sla =
〈

li , T min
i , Di , ri

〉

; J = { j∗}; I = {i}

1:

2: n∗
i = ∅

3: nm
i, j = ⌈Di · ri /heapSize j ⌉;

4: nt
i, j = {nt

i, j s.t. T (nt
i, j ) ≥ T min

i };

5: n∗
i, j = max{nm

i, j , nt
i, j };

6: n∗
i = n∗

i ∪ {n∗
i, j };

7: J ′ ← J ;

8:

9: if ((c j ·n
∗
i, j∗ >

∑

H
Ca

h )or(m j ·n
∗
i, j∗ >

∑

H
Ma

h )) then xsub ← ∅;

e = false; [xsub , Ca , Ma , e];

10: end if

11:

12: Ha ←sortDescendent(Ha);

13: while n∗
i, j > 0 and any(c j∗ ≤ Ca) and any(m j∗ ≤ Ma) do

14: h ←popRR(Ha, Di );

15: if (c j∗ ≤ Ca
h )and(m j∗ ≤ Ma

h ) then

16: Ca
h ← Ca

h − c j∗ ;

17: Ma
h ← Ma

h − m j∗ ;

18: n∗
i, j∗ ← n∗

i, j∗ − 1;

19: xi, j∗,h ← xi, j∗,h + 1;

20: else

21: Ha ← Ha − {h};

22: end if

23: end while

24:

25: if n∗
i, j∗ > 0 then xsub ← ∅;

26: end if

27: return [xsub , Ca , Ma , j∗]

for the allocation could be found. Otherwise, the suboptimal

solution xsub is returned.

LocalOpt-H and BestFit-H are modified versions

of the LocalOpt and BestFit algorithms that restrict

the adaptation actions to horizontal scaling and optimal

placement. The pseudo code is listed in Algorithm 4 and

Algorithm 5 respectively. We omit the description of these

algorithms, which is straightforward. We point out that

LocalOpt-H and BestFit-H receive as input a specific

VM type j∗ rather then receiving the whole set J . In the

Sect. 7 we give directions on how and when it is appropriate

to use these algorithms.

6 Computational cost

There are several algorithms to solve LP problems, including

the well-known simplex and interior points algorithms [20].

Widely used software packages (CPLEX®, MATLAB®)

adopt variants of the well-known interior point Mehrothra’s

predictor-corrector primal-dual algorithm [21], which has

O(n
3
2 log (x0)T s0

ǫ
) worst case iterations, where ǫ is the

accuracy and (x0)T s0 the starting point for the Mehrothra

algorithm, and such that ǫ ≥ xT s, where xT s is the final

point in the algorithm. Hence, for a fixed ǫ the Mehrothra

algorithm has a complexity of O(n
3
2 ), where n is the num-

ber of variables of the LP problem [27]. The complexity in

our problem arises from the potentially large value of n, cor-

responding to the number of variables that is given by the

following expression: n = N ×V × H +N ×V +3×N + H .

This means that the worst-case complexity of our LP problem

using Mehrothra’s predictor-corrector primal-dual algorithm

is O((N × V × H)
3
2 ).

TheLocalOpt call of theoptSol, which is solved with

the Mehrothra algorithm. Because optSol is executed only

for one tenant, the complexity of LocalOpt is O((V ×

H)
3
2 ).

The complexity of the BestFit adaptation algorithm

(Algorithm 3) can be determined in the following way. The

first loop (lines 3-8) and the second loop (lines 12-15) run at

most V iterations each. This means that the computational

complexity of lines 1-18 is O(V ). We then need to sort the

list of available PMs, which has complexity O(H log H).

The third loop (lines 19-30) may run for at most H itera-

tions. In each iteration the two functionsany(c j∗ ≤ Ca) and

any(m j∗ ≤ Ma) are called; these functions both have com-

plexity O(H). As a consequence, the worst-case complexity

of the third loop is O(H2). The complexity of Algorithm 2

is thus O(V )+ O(H2). In real scenarios V is much less then

H , therefore the complexity is O(H2).

The variants BestFit-H and LocalOpt-H have the

same complexity of the BestFit-H and LocalOpt-H

respectively.

Figure 3 compares the number of iterations for the five

autoscaling algorithms and for different values of N , V and

H .

7 Recommendations on the use of the auto-scaling

algorithms

Although all the proposed auto-scaling algorithms can be

used at run-time, it is crucial to discuss their limitations and

to give guidelines on how and when is appropriate to use

them. Table 3 shows four typical use cases and what policy

is best for each of them.
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Fig. 3 Number of Iterations for different values of N , V and H (Color

figure online)

As mentioned before the Opt algorithm produces too

many reconfigurations of the whole data center. Moreover,

for large-scale systems, the polynomial complexity of the

Opt is a limitation, especially if the workload changes at

high frequency. Hence, the optimal auto-scaling algorithm is

more suitable to support capacity planning decisions and for

periodical mid term consolidation actions.

All the heuristic auto-scaling algorithms proposed are suit-

able for run-time adaptation decisions. Although, there are

two cases that should be carefully considered: the algorithm

recommend horizontal scaling actions and the algorithms

recommend vertical scaling actions.

Horizontal scaling is seamlessly supported by the whole

cloud stack, from application level, Cassandra in our case, to

the hypervisor. The only limitation is the responsiveness of

the scaling actions, that is bounded by the time needed to start

a VM (about 2min) and by the time needed to add a Cassandra

vnode to an existing VDC, scaling delay hereafter. Best prac-

tices for Cassandra cluster management suggest that, to pre-

serve data consistency, vnodes should be added sequentially

(one at time) and that the scaling delay is at least 2 min. While

the VMs activation delay can be eliminated using a pool of

warm VMs, the second could not be eliminated. In Fig. 4 we

show an example of horizontal scaling for Cassandra.

The serialization of the horizontal scaling actions is a hot

spot in case of throughput surges: the throughput increase

(�T min
i /�t) that can be supported is bounded by the capac-

ity of the vnodes (ti, j,h), by the scaling delay and by the

configuration of the Cassandra VDC before the surge. Ver-

tical scaling can help in managing surges of throughput (cf.

Sect. 9.2).

Vertical scaling is partially supported by the cloud stack.

For example, Open Stack supports live instance resizing, but

not all the hypervisors do: VMWare support seamless vertical

scaling, but with Xen and KVM the vertical scaling implies

to shutdown and to restart the VMs. As before mentioned and

as practically shown in Sect. 9.2 vertical scaling can help in

managing surges of throughput. Let us consider the example

in Fig. 4: if at time t1, rather than starting the horizontal

scaling sequence, we operate a vertical scaling of the running

nodes, we can manage a throughput surge by the deadline of

t = 5.

Hence, we give the following recommendations for the

use of the algorithms:

1. The workload must be carefully characterized to properly

size the vnodes capacity, that is ti, j,h

2. Workload prediction and proactive auto-scaling should

be combined. The forecasting windows should be at least

scaling delay time units ahead

3. For horizontal scaling, the activation of the Cassandra

vnodes should be pipelined (cf. Fig. 4) and maintaining

a pool of warm VMs helps in reducing the scaling delay

4. Vertical scaling can help in managing throughput surges,

reducing the time to scale the capacity of the cluster (ver-

sus the horizontal scaling).

In case the vertical scaling is not seamlessly supported, what

we recommend is:

1. To use Opt, LocalOpt or BestFit algorithms for the

first VDC configuration

2. To run, at run time, LocalOpt-H or BestFit-H

3. To run, periodically, LocalOpt or BestFit for VDC

consolidation.

8 Performance evaluation methodology

In this section we describe the performance evaluation sce-

narios, the performance evaluation metrics and the setup of

the experiments.

Table 3 Use of the auto-scaling

algorithms
Use case Opt LocalOpt BestFit LocalOpt-H BestFit-H

Capacity planning X

Data center consolidation X

VDC consolidation X X

Run-time adaptation X X X X
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Fig. 4 Temporal sequence of horizontal scaling actions. At time t0 = 4

the throughput demanded from application i increase to T min
i = 16.

The increase takes place in 1 min. The autoscaling algorithm decision

is to add three nodes. Let us suppose the SLA variation is forecasted

at t1 ≤ t0 − 2 min, e.g. t1 = 2. If immediately a new Cassandra vnode

is added to the VDC (relying on an VM in the warm pool) and 3 new

VM are started, the 1st Cassandra vnode is in the VDC approximately

at t0. At the same time the new VMs are ready to be used, and the 2nd

Cassandra vnode can be started. At time t = 6 two new Cassandra

nodes are in the VDC and the 3rd can be started. At time t = 8 all

the required Cassandra vnodes are in the VDC. Between t = 4.45 and

t = 8 the supposed amount of requests to be served is 2.886 × 103

and the amount of requests served is 2.705 × 103. Hence, the number

of request that are delayed is about 182 that is the 6.31% (Color figure

online)

8.1 Scenarios

We selected three cases that are representative of real scenar-

ios:

– Increase of the throughput (SLA variation). Customer

needs and service level objectives can change over time.

This scenario considers a planned increase of the through-

put demand.

– Surge in the throughput. This scenario considers an

unpredicted increase in the throughput demand of a spe-

cific tenant i .

– Physical node failures. This scenario contemplate the

failure of physical machines, that implies the loss of a

given number of Cassandra vnodes. In this context, we

analyze how the placement of the vnodes (operated by

the auto-scaling algorithms) impact the consistency level

reliability.

8.2 Performance metrics

Performance will be quantified using the following metrics:

– P(x) the overall power consumption defined by equa-

tion 10;

– The Scaling Index for application i S I (t1, t2)i, j is defined

as the variation in the number and type of Cassandra

vnodes when the system change its configuration at time

t1 (x(t1)) into a new configuration at time t2 (x(t2)).

SI (t1, t2)i, j =
∑

H

(

x(t2)i jh − x(t1)i jh

)

.

SI represents a gap and not an absolute value of the num-

ber of VMs used. Positive values for SI means that new

VMs are allocated. Negative value represent the number

of VMs deallocated. SI allows to quantify both vertical

and horizontal scaling actions.

– The Migration Index for application i . M I (t1, t2)i is

defined as the number of Cassandra vnodes migrations

that application i experienced when the system change

its configuration at time t1 into a new configuration at

time t2.

M I (t1, t2)i =
∑

H

�i,h

where �i,h = 1 if (s(t2)i,h − s(t1)i,h) > 0 and �i,h = 0

otherwise. s(t)i,h is the value of si,h at time t .

– Number of delayed requests Qi (τ ) for tenant i in a time

interval τ = tend−tstart . Assuming that Ti (t) is the actual
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throughput observed and that T min
i (t) ≥ Ti (t) ∀t ∈ τ we

define

Qi (τ ) =

∫ tend

tstart

(

T min
i (t) − Ti (t)

)

dt.

– Consistency level reliability R defined as the probability

that the number of healthy replicas in the Cassandra VDC

is enough to guarantee a specific level of consistency over

a fixed time interval (c.f. Sect. 9.3 for details). We recall

that, assuming independence of failures in the compo-

nents, the reliability of K nodes working in parallel is

defined as R = 1 − (1 − ρ)K , where ρ is the reliability

of a single node and (1 − ρ)K is the probability that K

nodes fail.

8.3 Setup of the experiments

To measure the maximum Cassandra throughput achievable

(t0
li , j ) for each type of workload and VM type and to compute

also the values for δk
li , j we use a real cluster and a workload

generator provided by Ericsson to reproduce their application

behaviour. The cluster is composed of nodes with 16 cores

and 128 GB of memory (RAM). The nodes are connected

with a high speed LAN. We run VMware ESXi 5.5.0 on top

of Red Hat Enterprise Linux 6 (64-bit) and we use Cassandra

2.1.5. We use VMs with three different configurations, as

reported in Table 1. The values obtained for t0
li , j are reported

in Table 1, while the values for δk
li , j are reported in Table 4.

The performance of the proposed adaptation algorithms

are assessed using Monte Carlo simulation for the Physical

node failure scenario, while numerical evaluation is used for

the SLA variation and Throughput surge scenarios. Exper-

iments have been carried out using Matlab R2015b 64-bit

for OSX running on a single Intel Core i5 processor with

16GB of main memory. The model parameters we used for

simulation are reported in Table 4.

9 Experimental results

9.1 Increase of the throughput (SLA variation)

In this scenario we investigate how the adaptation policies

react to an increase of the throughput specified in the SLA.

We consider three tenants running a R, W and RW workload

respectively and we increase, once at a time, the throughput

for each tenant: the increment range from T min
i = 10.000

ops/s to 70.000 ops/s. The replication factor and the dataset

size is the same for all the applications: Di = 3 and ri = 8

GB. We assume that such SLA variations are planned, which

means that the provider has time to allocate the right amount

of resources and therefore there are no SLA violations.

Table 4 Model parameters used in the experiments

Parameter Value Description

N 1–10 Number of tenants

V 3 Number of VM types

H 8 Number of PMs

Di 1–4 Replication factor for

App. i

ri 5–50 Dataset size for App. i

L {R, W, RW } Set of request types

T min
i 10,000–70,000 ops/s Minimum throughput

agreed in the SLA

Ch 16 Number of cores for PM

h

c j 2–8 Number of vcores used

by VM type j

Mh 128 GB Memory size of PM h

m j 16–32 GB Total memory used by

VM type j

heapSize j 4–8 GB Max heap size used by

VM type j

∀li : δ1
li

1 1 ≤ xi, j,h ≤ 2

δ2
li

0.8 3 ≤ xi, j,h ≤ 7

δ3
li

0.66 xi, j,h ≥ 8

Pmax
h 500 Watt Maximum power

consumed by PM h if

fully loaded

kh 0.7 Fraction of Pmax
h

consumed by PM h if

idle

Figure 5 shows the Scaling Index for the tenant generating

a RW workload. The bars represent the scaling actions. There

is one bar color for each VM type. An observation reporting

both positive and negative bars means that the adaptation

policy switches between two VM configurations (vertical

scaling). The negative bar is for the VM type dismissed and

the positive for the new VM type allocated. Observations with

only positive bars correspond to horizontal scaling adapta-

tion actions. For example, for the Optimal policy there is a

change from VM type 3 (yellow bar) to VM type 2 (green

bar) for the observation T min
i = 30.000 ops/s. The number of

new allocated VMs is smaller because each new VM offers

a higher throughput. The optimal adaptation policy always

starts allocating VMs of Type 3 (cf. Table 1) and, if needed

progressively moves to more powerful VM types. The Opt

policy performs only one vertical scaling and when the VM

type if changed from type 3 to type 2; after that it always

does horizontal scaling actions (this is a particularly lucky

case). The two heuristics LocalOpt and BestFit show

a very unstable behaviour performing both vertical and hor-

izontal scaling. Both first scale to VM type 1 from VM type

3 and then they scale back to VM type 2. When the variant
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Fig. 6 Throughput increase: the power consumed P(x) by the five

adaptation policies when increasing the throughput for Application 3

(RW workload) (Color figure online)

of the above algorithm is used, that is LocalOpt-H and

BestFit-H respectively, the VM type is fixed to type 1

and the only action taken is horizontal scaling.

The power consumption is plotted in Fig. 6. For through-

put higher than 40 × 103 ops/s, with the optimal scaling

is possible to save about 50% of the energy consumed by

the heuristic allocation. For low values of the throughput

(10−20×103 ops/s) the BestFit and BestFit-H show

a very high energy consumption compared to the LocalOpt

and LocalOpt-H. When the throughput increase, the

LocalOpt-H behave as the BestFit. For high through-

put (60 − 70 × 103 ops/s), the energy consumed by the

LocalOpt is less than all the other heuristics.

Figure 7 shows the Migration Index. Each box plot is com-

puted over the data collected for the three tenants. We can

observe that each application experiences between 0 and 3

vnode migrations depending on the infrastructure load state.

Considering the low values for the migration index for the

Opt allocation and the high saving in the energy consumed

compared with the other algorithms, it makes sense to per-

form periodic VDC consolidation using the Opt policy, as

recommended in Sect. 7.

9.2 Throughput surge

In this set of experiments we analyse how fast the scaling

is, with respect to the throughput variation rate, and what

is the number of delayed requests. We assume the through-

put requested by an application generating a RW workload

increase a shown in Fig. 8. Differently from the previous

set of experiments we assume what follow: the throughput

increase is not agreed in advance, it is a surge; the throughput

is forecasted 2 min ahead; the requested throughput, after the

increase, remains stable for a relatively long period; the hor-

izontal scaling of the Cassandra vnodes is serialized and the

activation delay is 2 min; vertical scaling is supported by the

cloud stack and can be done in parallel for all the interested

vnodes.

The first case (Case A) uses VMs with the capacity spec-

ified in Table 1). The Opt auto-scaling starts allocating four

vnodes of Type 3 (3.3 × 103 ops/s) and then five. At time

t = 8 the algorithm did a vertical scaling action allocating

five vnodes of Type 2 (8.3×103 ops/s). Than, at time t = 10,

twelve vnodes are allocated. Considering the serialization of

the horizontal scaling actions (cf. Sect. 7) the seven Cassan-

dra vnodes are added in 14 min. TheLocalOpt behaves like

the Opt in terms of scaling decisions. The BestFit auto-

scaling start allocationg 4vnodes of Type 3, than it scale-up

to seven vnodes (at time t = 8) and finally it did two vertical

scaling actions: the first from vnodes Type 3 to Type 2, and

the second from Type 2to Type 1 vnodes.

The number of delayed requests Qi and the percentage

with respect the total number of received requests (tot.req.)
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Fig. 7 Throughput increase:

Migration Index for the optimal

policy. The heuristic policies

have a MI equal to zero by

definition. For each box the

central mark indicates the

median (50th percentile), and

the bottom and top edges of the

box indicate the 25th and 75th

percentiles, respectively. The

whiskers extend to the

maximum and the minimum

value observed. Outlier are

represented by red points (Color

figure online)
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Fig. 8 Auto-scaling actions in case of a throughput surge: Case A and

Case B (Color figure online)

are reported in Table 5. Qi and tot.req. are computed over

the time interval the requested throughput T min
RW exceed the

actual throughput.

Intuitively, with Cassandra vnodes capable to handle a

higher workload it should be possible to better manage

the surge in the throughput. Hence, we have analyzed a

Case B where we configure three new types of Cassandra

vnodes capable to handle the following RW throughput:

type 4, 20 × 103 ops/s; type 5, 15 × 103 ops/s; and type

6, 7 × 103ops/s. Fig. 8 shows the behaviour of the Opt and

BestFit auto-scaling algorithms. TheLocalOptbehaves

as theOpt. From the plots, it is evident that with more power-

ful vnodes the auto-scaling algorithms are capable to satisfy

the requested throughput with a delay of only 2 min. The

Opt starts allocating 3 vnodes of type 6, at time t = 4 a new

node of type 6 is added and at time t = 6 the algorithm did

a vertical scaling allocating 4 vnodes of type 5. At t = 8

the algorithm decided to add 2 more nodes of type 5, that

are allocated in the next two time slots. The BestFit starts

allocating vnodes of type 6 and scales from 4 to 6 nodes.

After that, at t = 10 it performs a vertical scaling from type

Table 5 The number of delayed requests Qi and the percentage with

respect the total number of received requests (tot.req.)

Qi (×103) Qi

tot.req.
(%)

Case A

Opt 191.84 22.78

LocalOpt 191.84 22.78

BestFit 70.89 46.33

Case B

Opt 7.66 4

LocalOpt 7.66 4

BestFit 70.58 30.29

Qi and tot.req. are computed over the time interval the requested

throughput (T min
RW ) exceed the actual throughput

6 to type 5. The values for delayed requests are reported in

Table 5.

The take home message is that having a pool of vnodes

type capable to handle from low throughput to very high

throughput allow to manage throughput surges.

9.3 Physical node failures

Cassandra offers three main levels of consistency (both for

Read and Write): ONE, QUORUM and ALL. Consistency

level of ONE means that only one replica node is required

to reply correctly, that is it contains the replica of the por-

tion of the dataset needed to answer the query. Consistency

level QUORUM means that Q =
⌊

D
2

⌋

+ 1 replicas nodes

are available to reply correctly (where D is the replication

factor). Consistency level ALL means that all the replicas are

available.

In the following, we assess the Consistency level reliabil-

ity R for a consistency level of ONE and of QUORUM when

the replication factor is D = 3 and D = 5 for all i ∈ I and

when the different autoscaling algorithms are applied.

In case the Cassandra VDC has a number of physical nodes

H equal to the number of vnodes n, and there is a one-to-one

mapping between vnodes and physical nodes, the consis-
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Table 6 Consistency reliability

R for the consistency level of

ONE and QUORUM

One-to-one n-to-one

Opt LocalOpt LocalOpt-H BestFit BestFit-H

ρ = 0.9

RO |D=3 0.9999995 0.9995 0.9995

RQ |D=3 0.999995 0.995–0.9995 0.9995

RO |D=5 0.99999999995 0.999995 0.999995

RQ |D=5 0.999999995 0.9995–0.999995 0.99995

ρ = 0.8

RO |D=3 0.99996 0.996 0.996

RQ |D=3 0.99984 0.98–0.996 0.996

RO |D=5 0.999999948 0.99984 0.99984

RQ |D=5 0.9999987 0.996–0.99984 0.9992

The probability that a data replica is on a vnode is 0.5 for both D = 3 and D = 5. We assume the reliability

of a physical node is ρ = 0.9

tency level of ONE is guaranteed if one replica is up. Hence,

the Consistence reliability is the probability that at least one

vnode is up and a replica is on that node:

RO = 1 −
D

n
× (1 − ρ)n (24)

where: ρ is the resiliency of a physical node, and D
n

is the

probability that a replica is on a Cassandra vnode when the

data replication strategy used is the SimpleStrategy (cf.

the Datastax documentation for Cassandra). In the same way,

we can define the reliability of the Cassandra VDC to guar-

antee a consistency level of QUORUM as the probability that

at least Q vnodes are up and that Q replicas are on them:

RQ = 1 −
D

n
× (1 − ρ)n−Q+1. (25)

Table 6 shows the values of RO and RQ for D = 3 and 5

and for ρ = 0.9 and ρ = 0.8.

In a managed Cassandra data center, a Cassandra VDC

is rarely allocated using a one-to-one mapping of vnodes on

physical nodes. The resource management policies adopted

by the provider usually end-up with a many-to-one mapping,

that is h physical nodes run n Cassandra vnodes: D ≤ h < n.

In that case we can generalise Eqs. 24 and 25 to the following:

RO = 1 −
D

n
× (1 − r)KO (26)

RQ = 1 −
D

n
× (1 − r)K Q . (27)

where: KO is the number of failed physical nodes that causes

a failure of n vnodes; and K Q is the number of failed physical

nodes that causes a failure of n − Q +1 vnodes. Because the

distribution of the vnodes on the physical nodes is unknown,

we have heuristically computed the values of KO and K Q

for D = 3 and 5. While the value for KO is equal to the

number of physical nodes used, the values for K Q depend on

the specific allocation and on the nodes that fail. Observing a

VDC allocation, we could have a set of values {K 1
Q, K 2

Q, . . .}

where the max{K 1
Q, K 2

Q, . . .} represents the best case and the

min{K 1
Q, K 2

Q, . . .} represents the worst case. For example,

if 8 vnodes are distributed on 5 PMs in the following way

{1, 1, 2, 1, 3} and D = 3, we have: Q = 2, n − Q + 1 = 7,

KO = 5, K best
Q = 5, K worst

Q = 4.

Table 6 reports the values of RO and RQ for D = 3 and

D = 5, ρ = 0.9. The evaluation is done in the following way.

We consider 5 customers that request for a randomly gener-

ated SLA: li is distributed as 10% RW, 15%W and 75% R;

Tmin is uniformly distributed in the interval [10.000, 18.000]

ops/s; Di = 3 (5) and ri is constant (8GB). The number of

vnodes used by each tenant is n = 6 for the case D = 3 and

n = 10 for the case D = 5. We run 10 experiments and we

assess the best and worst case over all the allocated VDC.

In the first set of experiments we consider ρ = 0.9. The

one-to-one mapping offers a consistency level of ONE and

QUORUM with a very high reliability of six 9 s and five 9 s

respectively if D = 3 and if the replication factor increase to

5 the reliability increases to ten 9 s and eight 9 s for consis-

tency ONE and QUORUM respectively.

Unfortunately, when a n-to-one mapping is adopted the

reliability of the consistency level drops down 3–4 orders

of magnitude. In the case D = 3, we observed that all the

auto-scaling policies offer a consistency level ONE with a

reliability of three 9 s. If the replication factor increases to 5

the reliability increase to five 9 s. For the consistency level

QUORUM, we have a dependency on both the replication

factor and the auto-scaling policy. When the replication fac-

tor is three, Opt, LocalOpt and LocalOpt-H offer a

consistency level of QUORUM with a reliability that ranges

between two 9 s and three 9 s, while the BestFit and

BestFit-H offer a reliability level of three 9 s. When the
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replication factor increase to five, the reliability level offered

by Opt, LocalOpt and LocalOpt-H increase to three 9 s

in the worst case and five 9 s in the best case. The BestFit

and BestFit-H provide a reliability of four 9 s.

When we decrease the reliability of the physical machines

to ρ = 0.8 the reliability decreases of two or three order of

magnitude for the one-to-one mapping and of one or two

order of magnitude for the heuristics.

10 Concluding remarks

In this paper we explored the problem of energy-aware

autoscaling of Cassandra VDC in a multi-tenants environ-

ment. We presented an optimisation model that find the

optimal auto-scaling actions. The system model we propose

relies only on the measure or estimate of the relation-

ship between the throughput achievable and the number

of Cassandra vnodes. This information is easy to be col-

lected and maintained up to date at execution time. The

performance of the optimal auto-scaling is compared against

two energy-aware heuristics and two energy-blind heuris-

tics. The advantage of using heuristics is twofold: first, the

heuristics are applied locally, and that reduces the pertur-

bation of the performance of the tenants that do not need

to scale. Second, the Opt has a complexity of the order

O((V × N × H)3/2) for N tenants, H physical nodes and V

Cassandra vnode Types, while the heuristics have a complex-

ity of the order O((V × H)3/2) and O(H2) for (localOpt)

and (BestFit) respectively (a details analysis has been pro-

vided in Sect. 6).

The lesson learned from that study is the following.

Planned variations of the throughput (increase and/or

decrease) can be managed in an energy efficient way by the

LocalOpt. For intense workload and for high utilized data

centers the energy consumed by a LocalOpt allocation is

comparable with the allocation determined by theBestFit.

But for low throughput and/or low utilized data centers, the

BestFit produces allocations that consume between the

48% and the 100% more energy than the LocalOpt.

The agility of Cassandra in scaling up is limited by the

need to serialize the allocation of vnodes and by the scaling

delay. Our experiments show that vertical scaling of vnodes

is the only adaptation action capable to manage surges in the

throughput.

Finally, a Cassandra cluster that use a one-to-one mapping

of vnodes on physical nodes offer the consistency level of

ONE and of QUORUM with a very high level of reliability

(between five and ten 9 s) in case of physical node failures

and a node reliability of 0.9. On the contraty, when a n-to-one

mapping is implemented, the reliability for consistency level

of ONE and QUORUM drop down of three - four order of

magnitudes.

Hence, we have identified two open challenges. First,

there is the need for energy-efficient auto-scaling algorithms

that hide the structural limitation of Cassandra to scale fast.

Such algorithms should prioritize vertical scaling actions and

should take into consideration the state of the system (the

algorithm we have proposed are memoryless). Second, there

is the need for energy-efficient and consistency-aware algo-

rithms that do not impact the reliability of the consistency

level offered by Cassandra when configured using a one-to-

one mapping.
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