

Energy-Aware Coarse Grained
Reconfigurable Architectures
Using Dynamically Reconfigurable
Isolation Cells

 ROYAL INSTITUTE

 OF TECHNOLOGY

OZAN ZEKİ BAĞ

Master's Degree Project
Stockholm, Sweden 2012

TRITA-ICT-EX-2012-249

Page 2 of 51

Acknowledgements

I would like to thank my family, all of my friends and to Bella for the great support through

not only for my thesis, but also for the whole time I spent in Sweden.

I appreciate Professor Ahmed Hemani to give this opportunity to work in such a novel

project. Special thanks to my supervisor PhD candidate Syed Mohammad Asad Hassan Jafri

for his patient guidance and valuable information that he shared with me and I will remember

for the rest of my career. Moreover, thanks to PhD candidate Nasim Farahini for great advice.

Page 3 of 51

Abstract
This thesis presents a self adaptive power management system to improve energy efficiency

of coarse-grained reconfigurable architectures (CGRAs). CGRAs can host multiple

applications on a single platform. Moreover, a single application may have multiple versions

which have different degree of parallelism (fully serial, partially serial, fully parallel etc.).

Selection of the optimum application version depends on runtime conditions such as resource

availability on the platform. A traditional worst case design to satisfy its specifications results

in undesirable power efficiency. Existing solutions to this problem offer costly hardware to

mainly employ dynamic voltage and frequency scaling (DVFS). We propose exploiting

reconfiguration of available resources on CGRA. Our solution makes use of dynamically

reconfigurable isolation cells (DRICs) instead of dedicated hardware. We also introduce

autonomous parallelism, voltage and frequency selection (APVFS) to realize DVFS

functionality and to select the optimum version. Three applications are used for simulations,

namely; matrix multiplication, finite impulse response filter (FIR) and fast Fourier transform

(FFT). Results show that up to 72 % and 55 % power and energy can be saved respectively.

Synthesis of the fabric shows considerable reduction in area overheads compared to existing

designs employing DVFS.

Page 4 of 51

Contents

1 Introduction...9

 1.1 Related work..11

 1.2. Contributions..13

2 Globally Ratio synchronous Locally Synchronous Design...14

 2.1. GALS vs. mesochronous (Two branches of GnS)...14

3 Dynamically Reconfigurable Resource Array...16

 3.1. mDPU..18

 3.2. Registerfile...18

 3.3. Switchbox..18

 3.4. Sequencer...20

 3.5. DRRA Design Flow and Application Setup..20

 3.6. The MANAS tool...21

 3.7. Design Folder Tree Structure...22

 3.8. Design Process Steps..22

 3.8.1. DRRA Resource Allocation..23

 3.8.2. DRRA DVFS Implementation..23

 3.8.3. Synthesis..23

 3.8.4. Power Results Extraction...24

4 Design and Implementation...25

 4.1. Clock Generation Unit..26

 4.2. Voltage Control Unit..26

 4.3. Power Management Intelligence..27

 4.3.1. Dynamically Reconfigurable Isolation Cells (DRICs).......................................28

 4.3.2. Registerfile Instruction Generation...28

 4.3.3. Multicasting Support...30

 4.3.4. Autonomous Parallelism Voltage and Frequency Selection (APVFS)..............31

Page 5 of 51

5 Results..33

 6.1. Formal Evaluations...33

 6.2. Simulations...34

 6.2.1. Overhead Analysis..38

6 Conclusions and Future Work...40

Appendix..41

 A. mDPU Instruction...41

 B. Register File Instruction..42

 C. Switchbox Connect Instruction...43

 D. Delay Instruction...44

 E. DVFS RTL Source Code...45

 F. Matrix Multiplication Configware...47

 H. Synthesis and Power Analysis Script..48

References..50

Page 6 of 51

List of Figures

2.1 GRLS design

3.1 DRRA fabric

3.2 Switchbox connectivity area

3.3 DRRA design flow

3.4 Design folder tree structure

4.1 DVFS infrastructure in DRRA

4.2 Clock generation unit (CGU)

4.3 Voltage control unit (VCU)

4.4 Per-core DVFS for best effort power management

4.5 Generation of sequencer code from regulation algorithm

4.6 Multicast configuration

4.7 APVFS algorithm

5.1 Energy reduction graphical representation

5.2 Power reduction graphical representation

5.3 Area overhead comparison

5.4 Power overhead comparison

Page 7 of 51

List of Tables

5.1 Voltage frequency pairs

5.2 Power and energy simulation results

5.3 Reduction in power and energy

Page 8 of 51

List of Abbreviations

FPGA Field Programmable Gate Array

CGRA Coarse Grained Reconfigurable Architecture

DRRA Dynamically Reconfigurable Resource Array

DVFS Dynamic Voltage and Frequency Scaling

DRIC Dynamically Reconfigurable Isolation Cell

RTM Run Time Resource Manager

CGIR Compact Generic Intermediate Representation

GRLS Globally Ratio Synchronous Locally Synchronous

GnS Globally-non-Synchronous

GALS Globally Asynchronous Locally Synchronous

PMU Power Management Unit

VCU Voltage Control Unit

CGU Clock Generation Unit

mDPU morphable DataPath Unit

MAC Multiply and ACcumulate

AGU Address Generation Unit

RTL Register Transfer Level

MANAS MANuel ASsembly

PCB Printed Circuit Board

Page 9 of 51

Chapter 1

Introduction

The complexity of electronic systems has increase continuously since the introduction of first

integrated circuits. Since 1965, Moore's law accurately formulated the increase in complexity.

Moore's law states that; the number of transistors which can be placed on the same size of

logic die doubles approximately every two years [1]. This concept is known as technology

scaling. Today, few billions of transistors can be placed on a die and in the future it will

be even more [2]. When electronic circuits were first proposed by mid-20th-century, power

consumption of the integrated circuits was lower and heat dissipation was easier to handle.

The reason is, although a single transistor was larger and consuming more power compared to

today's transistors, speed of the circuits was lower due to physical constraints on transistor

size, lowering the switching activity and the total power consumption.

Power consumption and heat dissipation have become today's fundamental challenges to

further increase the performance and computational power. This force is driving the industry

to figure out new ways of power management. Some applications such as multimedia

processing and telecommunication consume more power than the others due to handling vast

amounts of data in a repetitive fashion. Reconfigurable hardware architectures provide the

flexibility of adapting different applications on the same device and also possibilities of

parallelization for both data handling and power consumption techniques. That is why,

exploration of new power management methods in reconfigurable hardware architecture is of

great interest.

Reconfigurable hardware devices allow data manipulation in different levels. Granularity is

defined as the level of manipulation in terms of the number of bits that can be manipulated by

the programmer. The most widely used reconfigurable architectures are Field Programmable

Gate Arrays (FPGAs), enabling one single bit manipulation of data. Coarse Grained

Reconfigurable Architectures (CGRAs) provide operator level manipulation of functional

blocks, word level datapaths, and yet they are very area efficient compared to FPGAs.

Also, compared to fine-grained architectures, CGRAs enjoy massive reduction of

configuration memory and configuration time, as well as considerable reduction in routing

and placement allocation. All of these aspects also result in a potential reduction of the total

Page 10 of 51

energy consumed per computation at the cost of a loss in flexibility compared to bit-level

operations. To present the benefits that CGRAs enjoy over fine grained reconfigurable

architectures, a lot of work has been done on improving the architecture, mapping

applications, increasing reliability and optimizing power consumption [3] in CGRAs, which

will be discussed in related work section.

CGRAs are composed of many computational resources such as algorithmic logic units

(ALUs), multipliers, dividers etc. These resources result in excessive power consumption in

CGRAs. With such resources available, modern CGRAs can accommodate multiple

applications running simultaneously on a single platform. Potentially, different applications

require different workloads and performance. Besides that, same outputs can be achieved with

different versions of the same application (serial, parallel, partially-parallel designs etc.). The

optimum version of the application at a given time instance is highly dependent on runtime

conditions, such as available resources. Yet, this information cannot be predicted during

compile time. A traditional worst case approach would result in lower performance and

increased power consumption. Because, the platform would be to configured handle the

biggest deviations.

This thesis work addresses power management challenges in CGRAs. Proposed methods

achieve Dynamic Voltage and Frequency Scaling (DVFS) with late-binding. This concept

will be referred as late-binded dynamic voltage and frequency scaling with support for

multiple versions (LDV) from here on, which can be interpreted as a power intelligence as

well. Proposed LDV methods make use of a compile time generated profile to select optimum

voltage, frequency and the available version of the application and dynamically adjust these

parameters during run- time. To realize LDV concept, there are challenging factors such as

voltage switching overheads, synchronization overheads between the partitions working with

different frequencies and etc.

 In this thesis work, main focus will be reducing the synchronization overhead, originating

from power hungry buffers, used to ensure safe communication between blocks running at

different frequencies [4].

Proposed method makes use of dynamically reconfigurable isolation cells (DRICs) to ensure

safe communication between different frequency islands on the chip, rather than using

Page 11 of 51

dedicated buffers. DRICs reduce the synchronization overhead by reconfiguring one of the

existing resources to act as an isolation cell, eliminating the need for additional buffers

(implemented in ASIC). To overcome memory requirements, we present an autonomous

parallelism, version and frequency selection algorithm (APVFS). APVFS has the role of run-

time behavior observation over the system and share this information with the mapper.

 Depending on the available resources, potential parallelization options and specified

deadlines, mapper can chose the optimum voltage-frequency-application version triplet. This

method requires only a single profile to be stored.

To host the applications and proposed LDV method, CGRA architecture called Dynamically

Reconfigurable Resource Array (DRRA) that was developed in KTH is used. Please refer to

Chapter 3 for the detailed explanation of this fabric. We have synthesized the architecture

using 65 nm multi Vdd technology. Running many practical applications (FFT, FIR, Matrix

multiplication) shows a significant reduction in power and energy consumption ,72%, 55%

reduction respectively.

1.1 Related work

Both optimum configuration selection and DVFS overhead handling (using reconfiguration)

are of interest for this thesis work, therefore, recent work from both areas are reviewed. DVFS

has been an area of extensive research in recent years for system on chip design[6]. Existing

research focuses on improving DVFS algorithms to reduce the energy consumption (mostly

software based) and minimizing the overheads of DVFS architecture itself. Due to scope of

this thesis, only the most prominent works focusing on minimizing DVFS overheads using

reconfiguration are reviewed. Liang et al [7] proposed the use of reconfigurable links to

reduce the overheads imposed by the FIFOs in the synchronizers for NoCs. Amir et al [6]

presented a similar structure for the network on chips. The reconfigurable links are able to

bypass the FIFOs if two cells are operating at same frequency. Both of these two methods

require dedicated reconfigurable buffers and the reconfiguration is only used to minimize the

timing overhead. Yang et al [7] proposed a method to apply dynamic voltage scaling for

reconfiguration in reconfigurable hardware. Wrap processor [8] monitors the program at

runtime and creates appropriate hardware structure for computation intensive parts. The fast

execution of certain parts creates idle slacks. The voltage is later scaled to take advantage of

these idle slacks. We use dynamic mapping of the isolation cells inspired from this method.

Page 12 of 51

The difference is that we focus on reconfiguration to reduce synchronization overheads. We

rely on a faster (parallel) implementation for generation of time.

 A technique capable of taking advantage of the reconfiguration features of modern

reconfigurable architectures is missing. In CGRA domain, only software based solutions

have been presented [9], [10] without any reference to the underlying architecture involved.

Nollet [11] presented a good review of runtime resource managers (RTMs). Traditionally, the

RTMs were provided with only one implementation per application considering the worst

case [12]. Abbas [13] explored the possibility of dynamically shifting between 2 versions of

an application, at runtime. Couvreur [14] presented a two phase method for optimal

application mapping, in terms of energy. The work was later improved in [15] by providing

multiple criteria for selection of optimal versions. However, this method incurs prohibitive

memory requirements and therefore limit the versions that can be stored. Moreover, this

method relies on profiling all versions with all frequencies causing excessive memory

requirements and slowing the runtime mapping selection of mapping. Asad et al [16]

presented a method to significantly reduce the storage overheads of two phase method by

storing multiple configurations as a compact customizable representation. In this paper we use

the Compact Generic Intermediate Representation (CGIR) inspired from this work and

present criteria for runtime unraveling of the code.

1.2. Contributions

This thesis work has three major contributions;

 The proposed method significantly reduces the memory requirements and the

performance of runtime resource managers,

 Implementation of low latency DVFS using rationally related frequencies,

 APVFS algorithm to autonomously select the application version with high energy

efficieny,

 An enabling control and management layer which serves to realize the above concepts.

Page 13 of 51

Chapter 2

Globally Ratio Synchronous Locally

Synchronous Design (GRLS)

Fully synchronous design style has advantages such as simplicity in the design flow, time to

market, availability of reliable design and test tools. However, with technology scaling, the

need for alternative solutions has increased. Despite this need, asynchronous design tools did

not develop as much as synchronous design tools [17]. Globally-non- Synchronous (GnS)

design style offers the transition in the industry between fully synchronous and full

asynchronous designs. In GnS scheme, sub modules of the a design stay synchronous working

at the same clock frequency. However, different modules can work in different clock

frequencies. The communication between the cells with different operating frequencies is

usually handled using custom built synchronizers, if there is data transfer needed. This thesis

work offers a reconfigurable solution for the communication rather than a custom built

solution.

2.1. GALS vs. mesochronous (Two branches of GnS)

Globally Asynchronous Locally Synchronous (GALS) and mesochronous design styles

constitute two main branches of GnS design with mesochronous design being a subset of

GALS design [21-23]. In mesochronous design, all the modules in a particular design, work at

the same frequency, whereas the phase difference between the modules is unknown. In GALS

systems, all the modules can run at different frequencies, also no assumption is made on phase

alignment. Mesochronous designs may take the advantage of relatively simpler synchronizers

for phase alignment, however they cannot perform DVFS functionality due to modules

working at the same frequency. GALS systems can achieve high efficiency of DVFS

functionality where more complex communication interfaces are needed. This comparison is a

tradeoff between the two systems. It is really hard to claim that one design style is superior

over the other one because the choice depends on parameters such as low area, low cost,

higher power efficiency, physical layer characteristics of the underlying hardware etc. which

may well differ from each other.

Page 14 of 51

Globally Ratio Synchronous Locally Synchronous (GRLS) design was recently introduced to

build high performance multiclock systems [24-25]. This concept requires the sub modules of

the design to have rationally related clock frequencies and no phase alignment assumption is

taken. Since different communicating applications are mapped close to each other, for this

work, we assume the clocks to be phase aligned. Having rationally related operating

frequencies for different modules provides low latency while taking the advantage of DVFS

functionality. Therefore, GRLS design offers an intermediate solution between GALS and

mesochronous systems within GnS approach.

In our energy aware power management system solution for CGRA systems, synchronizers

for data communication are realized by dynamically reconfiguring available resources and

DVFS is realized by inserting power management units (PMUs) implemented in ASIC. In that

sense, this thesis work is a good representation of hardware software co-design style. Observe

figure 2.1 for GRLS design below.

Figure 2.1: GRLS design

In the example design, crystal oscillator feeds the chip with , central VCGU unit sets the

desired frequency and local VGCU units further divide or multiplying the frequency of the

sub modules. and have a common multiple so that the frequency is rationally related

for the different partitions on the chip.

Page 15 of 51

Chapter 3

Dynamically Reconfigurable Resource Array

(DRRA)

DRRA is a Coarse Grained Reconfigurable Architecture designed in KTH for multiple, radio

and multimedia applications with the focus of digital signal processing. There are three main

concepts of DRRA, namely;

 Minimized data travel via sliding window concept,

 Reconfigurable and programmable architecture for reuse and different applications,

 Tolerance for manufacturing variations.

DRRA has the key principle that it deploys small, simple, agile pools of resources for

computation, storage and interconnection. These pools can be customized during runtime

depending on the application needs.

 The pools are logically and physically a cluster of resources. Once the data in fed into the

fabric, it stays in the memory the logic is moved. This "move the logic, not the data"

approach eliminates the infrastructure overheads and performance inefficiencies which are

caused by shared resources such as storage elements and interconnects.

DRRA fabric has a function library employing several useful functions and templates.

Programmer can use the pre-defined instruction set to create a readable configware.

Automatic code generator converts this configware into corresponding sequencer program.

Manufacturing variations in deep sub-micron geometries might create a yield problem and

also might have the probability of hardware failure. If a process variations compensation

system is implemented, DRRA with its regular topology and its principle of pool of resources,

may avoid this problem by isolating failed and out-of-range performance resources.

Furthermore, with its reconfigurable and programmable architecture, DRRA can easily cope

with changes of specifications by modifying higher level software programmes.

Page 16 of 51

In physical layer, the resource pools offered by DRRA translates into morphable datapath

units (mDPUs), register files, switchboxes and sequencers. All the resources are integrated as

a regular and seamlessly connected fabric on the logic die, as demonstrated in figure 3.1. The

fundamental resource in the DRRA is DRRA cell. DRRA cells can be allocated as many as

needed, under the restriction of the specifications. The physical positioning of the DRRA cells

are realized as rows and columns. Figure 3.1 depicts a 2x7 fabric. One single DRRA cell is

consists of one mDPU, one registerfile, one sequencer and two switchboxes. Top right square

in the figure illustrates a single DRRA cell and components within. Different DRRA cells are

connected by a seamless, sliding window, circuit-switched interconnect fabric. Please refer to

switchbox component part for further information on this concept in section 3.3.

Page 17 of 51

3.1. mDPU

The computational unit in a DRRA cell is the mDPU. This unit has four 16-bits signed inputs

and two 16-bits signed outputs. mDPU inputs may take complex values. Two input pairs can

be used to represent two complex numbers, and the output pair can present the complex

output. The mode of operation of the mDPU is set via configware, such as complex addition,

multiplication, multiply and accumulate (MAC operation) etc. The programmer may choose

one of the modes, please refer to Appendix A for mDPU instruction details. Once the mode of

the mDPU instruction is loaded into the sequencer and executed, the mDPU will work in the

same mode until it is changed later in the application dynamically or until it is configured for

some other application.

3.2. Registerfile

The register file in a DRRA cell has 64 words depth and 16 bits word length. Two read and

two write ports are implemented. The address generation unit (AGU) in register file is

capable of performing circular buffered, vectorised and bit reversed addressing which are

common practices in digital signal processing. This feature has a great advantage while

handling applications such as Fast Fourier Transform (FFT). Read and write operations in

register file can be increasing or decreasing from the starting address. Loops can be formed in

configware for read and write operations. The read and write operations can be set with an

initial delay and can be executed at a specific time during the application. Any combination of

the two read and two write ports might be used simultaneously providing parallelism

opportunities. Register file operations are specified via configware produced by the

programmer. Parameters such as start address, end address, linear addressing, initial delay etc.

can be set. Please see Appendix B for the details.

3.3. Switchbox

Switchbox is the component providing connections in DRRA c. Switchboxes are located in

the intersections of the horizontal and vertical busses in the DRRA fabric as depicted in figure

3.1, where vertical busses represent the input lines, vlanes, and horizontal busses represent the

output busses, hb-mDPU and hb-reg.

The input and outputs of the switchboxes are connected to vertical and horizontal busses, so

that switchbox can connect different components. To see available instructions and

parameters, please refer to Appendix C switchbox connect instruction details.

Page 18 of 51

Figure 3.2: Switchbox connectivity area

As depicted in figure 3.2., DRRA fabric offers a seamless sliding window, for inter-cell

communication. Components in a single DRRA cell may be connected to other DRRA cells'

components 3 hops away columnwise and rowwise. This architecutre enables a 7x7 grid of

cells communication without any extra interface rather than switchboxes. The advantage of

this system is reduced communication overhead delay and reduced power consumption for

communication within the local connectivity area.

3.4. Sequencer

Each DRRA cell as depicted in figure 3.1 has a sequencer block controlling the mDPU,

register file and switch boxes in the cell. Sequencer can provide conditional or counter based

looping and branching options, with the availability of 256 words program memory. All the

instructions decoded from configware are executed in the sequencer. Therefore, programming

the DRRA actually means programming the functionalities in the sequencer. The configware

includes the instructions for mDPU, register file and the switch boxes.

Page 19 of 51

After the execution, sequencer will send the corresponding instructions to the specific

components. The programmer may only manipulate components within a specific DRRA cell.

Therefore, different configware is needed for different DRRA cells.

However, hierarchical control signals are implemented in sequencer instructions, providing

communication between different sequencers so that more complex tasks might be

accomplished.

3.5. DRRA Design Flow and Application Setup

Designing a project on DRRA can be represented as a two step process. Firstly, the physical

design step and secondly application mapping. According to physical specifications such as

area, speed, power consumption, the physical designer may allocate any number of DRRA

cells. According to the functional specifications, software designer can design the algorithms

for the applications with the available instructions and DRRA library to produce a

configware. This configware is an assembly like sequence providing instructions the

sequencers. After the configware is produced by the programmer, a hardware compiler

configures the DRRA according to this configware. At this point, the design is at register

transfer level (RTL) and if there are any violations on the design specifications, the

programmer or the physical designer may modify the configware or physical allocation.

Figure 3.3: DRRA design flow

Page 20 of 51

After the adjustment, the design is simulated again to verify to the specifications as well as

functionality. If RTL level verification is successful, then gate level synthesis takes place.

Gate level simulation is done afterwards for further verification and if there are any violations,

modifications takes place again. Please see the design flow chart above.

3.6. The MANAS Tool

MANual ASsembly (MANAS) is a software tool developed in KTH for translating

configware produced by the programmer into VHDL testbenches. In this section, details of

the folders involved in MANAS tool will be revealed. Please refer to project folder tree

structure in section 3.6. to see the folders involved in MANAS tool under configware.

 bin, the executable bin file;

 cfg, includes global constants needed to generate final test benches;

 seq, includes sequencer configwares in the form of seqN.txt files where N denotes the

DRRA cell number ;

 output, contains the final test benches in 4 versions, namely;

o tb_test_non_mem RTL.vhd;

o tb_test_mem_RTL.vhd;

o tb_test_non_mem gatelevel.vhd;

o tb_test_mem_gatelevel.vhd.

 Four testbenches cover the cases of RTL or gate level and with or without SRAM.

 RTL level testbenches are used before the synthesis of the fabric. Gate level versions

 are used to test the design after the synthesis. Versions with SRAM support provide

 testing of the memory block if implemented. All four testbenches essentially the same

 functionality by inserting the instructions into the sequencers;

 instructions, includes the templates of the sequencer instructions;

 vhdl_sections, contains the templates of the four possible output test benches.

After providing seqN.txt files in seq folder, bin file is executed to automatically generate the

testbenches. No argument is needed for the executable file but root authentication may be

required. Depending on the memory requirements of the system, sample_data.vhd containing

initial information on SRAM content can be provided as well. In this thesis, no SRAM is used

for the applications, instead register files within DRRA cells are used as memory elements

which will be explained in applications section in detail.

Page 21 of 51

3.7. Design Folder Tree Structure

Figure 3.4: Design folder tree structure

The folder structure above contains all the files used and generated throughout the project.

Library file contains TSMC 65nm multi Vdd library for the synthesis. Configware contains

the MANAS tool and applications within the project. Power scripts contains Synopsys Design

Vision scripts for both logic synthesis and power reporting. Value change dump (.vcd) and

switching activity interchange format (.saif) contains the switching activity for the generated

logic level netlists after Modelsim simulation of the different applications used for power

analysis in this thesis work. For details, please refer to applications section. Power reports

contains the final results.

3.8. Design Process Steps

This section of the thesis explains the process steps to reach the power results which are

mentioned in the results section. This section includes DRRA resource allocation, DRRA

DVFS implementation, synthesis and power results extraction respectively.

Page 22 of 51

3.8.1. DRRA resource allocation

 Source code for the DRRA fabric is included within Fabric folder, please observe

folder tree structure in figure 3.4 for this section.

 A new project is created under Modelsim,

 Within the RTL source code, drra_types_n_constants_std_logic.vhd file contains the

constant used for the whole project. Among those constants, COLUMS and ROWS

integer parameters represent how many rows and columns will be formed. To have the

appropriate number of DRRA cells, these parameters are adjusted. 2x7 for example

would results in a 14 cells architecture.

 Once the cell number is determined, the fabric becomes ready to be programmed in

RTL level.

3.8.2. DRRA DVFS Implementation

 Under RTL folder, cgu_ozan.vhd file contains RTL code DVFS implementation.

 To implement DVFS circuitry, top level DRRA fabric needs to be modified as well.

 Extra signals introduced to implement DVFS functionality can be found under signal

declaration in the top level commented as power signals.

3.8.3. Synthesis

 Synthesis script for Synopsys Design Compiler is included in Appendix G, important

steps will be mentioned here.

 Firstly the paths for the synthesis libraries are included in the script.

 The paths are for the RTL codes involved in the design are set for analysis.

 Then the design is elaborated.

 Clock is created and frequency is set.

 False path rst_n is set because, critical path does not depend on reset signal.

 Power domain is created and supply voltage set.

 The synthesis takes place with compile command.

 After synthesis is completed, logic level netlist is stored for power analysis and

standard delay format (.sdf) file is stored containing delay information of the standard

cells.

Page 23 of 51

 Please note that, for the design to be successfully tested, the inputs and outputs ports

of the RTL modules in the design should be in std_logic type. Otherwise generated

netlist and .sdf file will have unexpected information.

3.8.4. Power Results Extraction

 Once .sdf file and logic level netlist are generated with design compiler, they are

added to the project under Modelsim. .sdf file can be added under Simulate tab in

Modelsim. Once start simulate is hit, SDF tab can be seen. It is important that Disable

SDF Warnings and Reduce SDF Errors to Warning checkboxes are checked.

 Testbenches produced by MANAS tool are added to the project to test the

applications. All the files are compiled and simulated without optimization.

Simulation time scale is adjusted to picoseconds under simulation options in

modelsim.

 Value chain dump (.vcd) file contains the information on the switching activity of the

design under test for a specified time period. This file is essential for accurate power

estimation. A sample set of commands under Modelsim console can be used to store

.vcd files:

o run xxx ns

o vcd file PATH/filename.vcd

o vcd add -r tb_name/*

o run xxx ns

o quit –f

 After .vcd files are stored for the applications with different levels of parallelism for

different operating voltages and frequencies, Design Compiler is used again to extract

power results. To achieve that, .vcd files must be converted to switching activity

interchange format (.saif) file for Design Compiler. Refer to Appendix G.

 Finally the netlist and .saif files are read in power is reported with report_power

command.

Page 24 of 51

Chapter 4

Design and Implementation

A power management system has been built on top of DRRA by introducing a globally ratio

synchronous locally synchronous (GRLS) wrapper around every cell. Please see figure 4.1.

below. The wrapper is used to ensure safe communication between nodes and to enable

dynamic frequency and voltage scaling (DVFS) Please see Appendix E for DVFS

functionality source code. The access point to provide the power services is given by the

Power Management Unit (PMU), which uses Voltage Control Unit (VCU) and Clock

Generation Unit (CGU) to control the voltage and the clock frequency, respectively, in each

node. To support such fine-grained power islands, the NoC infrastructure adopts globally

ratiochronous locally synchronous (GRLS) clocking (Chabloz and Hemani, 2010). In

particular, all clocks on the chip run at frequencies which are submultiples of a certain fH.

This restriction achieves a significant simplification in the implementation of synchronizes

with low latency and overhead. Synchronizing registers (4 flip-flops per data line) are used

between two different clock regions to reduce metastability, as suggested in (Chabloz and

Hemani, 2010). Note that Vs and fs in the figure selected voltage and selected operating

frequency respectively.

Figure 4.1: DVFS infrastructure in DRRA

Page 25 of 51

4.1. Clock Generation Unit

For frequency scaling, we have used GRLS Frequency Regulation System (FRS) inspired

from [20]. GRLS requires the frequencies of all local clocks to be rationally-related. Two or

more frequencies are said to be rationally related if they are all submultiples of a common

number, Nc. The hardware used for the frequency regulation system is shown in Figure 4.2

below. Once CGU receives selected clock from voltage control unit, it sets the output

frequency with components counter, comparator and toggle FF. Note that comparator includes

additional logic for duty cycle management which is not included in the simplified block

diagram and it supports 1 to 15 division values of the input clock.

4.2. Voltage Control Unit

The limitations of fixed supply voltage systems are recognized in literature and per-module

voltage scaling has been proposed as an efficient alternative to address these limitations [25].

GRLS employs quantized supply voltage levels, i.e. multiple global supply voltages are

generated on-chip or off-chip in a Central Voltage Control Unit (CVCU) and distributed

throughout the chip using parallel supply voltage distribution grids.

Figure 4.2: Clock generation unit (CGU)

Page 26 of 51

 In every module, a Local Voltage Control Unit (LVCU) is inserted containing PMOS power

switches and the logic necessary to drive them. The power switches select one of the global

supply voltages as the local supply voltage for the module. This allows quantized voltage

regulation. In the figure, central VCU, which can be placed off-chip as well, powers the

distribution grid with quantized voltage levels. Depending on the system requirements, n rails

can be formed and distributed. For this work, 2 operating voltages were set as 1.32V and

1.1V. As depicted in the figure, local VCUs select V1 and V2 as their local operating voltages.

In physical layer, this grid is realized as parallel multiple voltage rails with PMOS power

switches beneath.

Figure 4.3: Voltage control unit (VCU)

4.3. Power Management Intelligence

Figure 4.4 demonstrates the power intelligence system. The control unit for the system resides

in Leon3 processor as a high level software control layer for DRRA fabric. The loader in the

figure has the role of interfacing AHB bus and DVFS circuit within each DRRA cell. DVFS

circuit itself is a passive element in the design. Meaning that it waits inputs from the processor

to change the frequency and voltage levels for particular DRRA cells.

Page 27 of 51

Power intelligence scheme has four main functions, namely;

 Loading the configware from the configuration memory;

 Adjusting the configware to generate DRICs;

 Forming different frequency regions;

 Performing per cell DVFS algorithm.

Figure 4.4: Per-cell DVFS for best effort power management with run-time
performance monitoring

4.3.1. Dynamically Reconfigurable Isolation Cells (DRICs)

Dynamically reconfigurable isolation cells can be formed during runtime. Rather than

implementing power hungry buffers to interface different frequency and voltage islands, a

single DRRA cells can be programmed with an automatically generated configware

depending on the initial application. At runtime, a soft binary of DRIC is stored. A DRIC can

be placed anywhere on the fabric. DRICs are formed before the formation of different voltage

regions. When it is detected that some regions have different operating frequencies, DRIC

command is executed by the Leon3 processor.

4.3.2. Registerfile Instruction Generation

Once the DRICs are generated according to islands on the fabric with different operating

frequencies, they need to be programmed for GRLS communication interface. Algorithm 1

below represents the regulation algorithm to determine the instructions.

Page 28 of 51

A quick observation on algorithm 1 below will reveal that, depending on the different

rationally related frequencies, send and wait sequence for data transfer will repeat itself,

please see the example below. Function 1 finds the minimum period that send and wait

statements will repeat as a sequence.

In a sense, the control code on Leaon3 processor translates into a data flow control after these

the function 1 and algorithm 1are run, therefore, the translation to data flow control is a two

step process. Calculating the minimum number of instruction with function 1 is particularly

important as a first step because, number of instructions to be loaded into the DRICs

determines how much the device will stay in idle state for programming.

 In the generated sequence, a zero translate into a wait statement and one determines when the

transmitter should send data. Zeros and ones are stored as "seq" and configware is generated

according to this sequence using a look up table. If the sequence code is zero, a delay

instruction generated and placed in the DRIC, if the sequence code is one then a refi (register

file read write) instruction is generated and placed. For refi and delay instruction details

please see Appendix D and E respectively. Each of these instructions are executed once and

the sequence continues. (1)

1. Data:
2. Result: Array containing minimum sequence that needs to be stored

3. initialization;
4. ;
5. if then
6. send = 1;
7. else

8. for i from 0 to P do

9. if then
10. send = 1;

11. ;
12. else

13. send = 0;
14. ;
15. end

16. sendseq[i] = send;
17. end;

18. end;

Algorithm 1: Regulation algorithm

Page 29 of 51

Example sequence: To illustrate the algorithm, consider for example that Nr = 20 and Nt = 8

as frequency division values and hence their highest common factor, HCF = 4. The minimum

sequence length calculated by the algorithm 1 will be 5. Now the algorithm 2 will fill the

sequence data structure with 1010010100.... As a result, as shown in Figure 4.5, the net

configware will contain 2 refi instructions and 3 delay instruction.

Figure 4.5: Generation of sequencer code from regulation algorithm

Forming DRICs according to frequency division values of different frequency islands and

generating the sequence is not enough to form the GRLS interface. Interconnections between

transmitter cell and DRIC and also between DRIC and receiver cell should be placed as well

using switchbox instructions. In DDRA fabric, the interconnection code is placed in the

destination sequencer. Therefore, to connect the transmitter side island to DRIC, the

switchbox instruction is placed in DRIC cell itself. This is done automatically by Leon3

processor control after the DRICs are formed. To connect the DRIC to receiver side island,

the switchbox instruction is placed in the receiver side sequencer. DRRA fabric does not have

a word addressable sequencer, for that reason, whenever a DRIC is generated between islands

working with different operating frequencies, the configware needs to be rewritten.

4.3.3. Multicasting Support

It is likely that DRRA cells executing a common application will be forced to reduce their

frequency and operating voltage simultaneously. Therefore, multicasting is performed in our

design to configure multiple cells in a single cycle. RowMultiC proposed by [27] is used to

realize this scheme, please observe Figure 4.6.

Page 30 of 51

The biggest advantage of this scheme is that the number of wires is significantly reduced. To

realize this scheme, address decoder of the components need to be adjusted. In multicasting,

each sequencer is assigned a unique ID depending on its row and column position in the

fabric. Incoming address is compared with this unique ID to program the sequencers. To

address a sequencer, 1 is placed for row and column indexes

Figure 4.6: Multicast configuration

Multiple row and column indexes can be set to 1 realizing the multicasting scheme by

addressing multiple sequencers at the same time. Overall overhead for implementing this

scheme would be (r + c)n bits where r represents the number of rows and c represents number

of columns. Note that in the figure above, RB stands for row bus and CB stands for column

bus.

4.3.4. Autonomous Parallelism Voltage and Frequency Selection (APVFS)

Best effort per-cell DVFS concept is applied on existing DRRA fabric. Depending on the

runtime conditions, APVFS algorithm selects the best voltage/frequency/version triplet for the

specific DRRA cells to reduce power.

Page 31 of 51

Figure 4.7: APVFS algorithm

This adaptive power management using distributed DVFS with runtime performance

monitoring is depicted in figure 4.7. This process consists of 3 steps. Firstly initialization of

voltage and frequency is applied and the latency constraint is set. Secondly runtime

information is gathered in terms of workload and latency. Finally, if the latency is lower than

the constraint, DVFS is applied to the switch as well as available parallel version selection.

s

Page 32 of 51

Chapter 5

Results

In this section on the thesis, potential reduction in power and energy consumption is

formalized. After that results are presented.

5.1. Formal Evaluations

Equation 1 below denoted the total energy of a system, running A number of applications

simultaneously, (i) being the energy consumed by application. (1)

Total energy for a system employing DVFS functionality, total energy would be given by; (2)

Initially, if we assume that all the applications are running at the same frequency, the relation

between and would be; (3)

Where denotes data transmission, data reception and synchronization energy

respectively. in this equation is a major components due to power hungry buffers. But yet,

this thesis offers reconfigurable isolation cells and regions are formed whenever only they are

needed. Therefore, the outcome of equation number is 2 is expected to be less than equation

number one as a results of small overheads.

Dynamic power consumption is of an application is given by the commonly used equation

number 4.

Page 33 of 51

 (4)

Where denotes effective charged capacitance, operating frequency and

operating voltage respectively. then would be the dynamic power of each

application as a function of frequency and voltage. Therefore, it is feasible to lower the

frequency and voltage whenever it is possible for less dynamic power.

5.2. Simulations

First of all, 1.1V and 1.32V are selected as quantized voltage levels for this thesis to apply

dynamic voltage scaling. Then, Sysnopsys Design Compiler is used to synthesize the DRRA

fabric using 65 nm multi-Vdd technology library. Please see Appendix G for sample synthesis

and power analysis script. Table 5.1 below reveals that, DRRA fabric can run up to 1.4 GHz

frequency at 1.32V operating voltage and up to 1 GHz frequency at 1.1V operating voltage

without any timing violation. Allowable selected frequencies for GRLS communication

scheme are 1400, 1000, 500, 333, 250 and 125 MHz to employ per-cell DVFS with runtime

performance monitoring in Figure 4.6.

Voltage

(V)

Frequency

(MHz)

Timing Constraint

1.32 1400 violated

1.32 1200 met

1.1 1200 violated

1.1 1100 violated

1.1 2400 violated

1.1 1000 met

1.1 500 met

1.1 333 met

1.1 250 met

1.1 125 met

Table 5.1: Voltage frequency pairs

To reveal energy and power savings of our proposed system, three common digital signal

processing application algorithms are mapped on DRRA fabric, namely; matrix multiplication

(MM), Fast Fourier Transform (FFT), and Finite Impulse Response (FIR).

Page 34 of 51

Three versions of matrix multiplications are available (fully serial, partially parallel and fully

parallel). Please refer to Appendix F for example fully serial matrix multiplication

configware. To reveal the power and energy consumption measurements, switching activity

files were recorded and analysis was performed using Synopsys Design Compiler. Below

Table 5.2 illustrates the power and energy results of applied APVFS algorithm. Note that

parpar application version stands for partially parallel.

Voltage Frequency

(MHz)

Application Time

(picoseconds)

Power

W

Energy

Matrix multiplication enters to platform

V1 1200 MM serial 48480 13.56 657388.8

V2 1000 MM serial 49980 10.55 527289.0

V2 500 MM serial 122500 4.85 594125.0

V2 500 MM parpar 69650 4.13 287654.5

V2 333 MM parpar 102660 2.92 299767.2

V2 333 MM parallel 78450 3.7 290265.0

V2 250 MM parallel 103940 2.37 246337.8

V2 333 MM parallel 7850 3.7 290265.0

FIR enters to platform

V1 1200 FIR serial 104690 13.8 1444722.0

V2 1000 FIR serial 128930 11.05 1424676.5

V2 500 FIR serial 258840 5.59 1446915.5

V2 1000 FIR serial 128930 11.05 1424676.5

FFT enters to platform

V1 1200 FFT serial 61400 13.5 828900.0

V2 1000 FFT serial 74970 11.13 834416.1

V2 500 FFT serial 178730 5.58 997313.4

V2 1000 FFT serial 74970 11.13 834416.1

Table 5.2: Power and energy simulation results

Initially 1.4 GHz and 1.32V were assigned to the chip knowing that this pair is not meeting

the deadline from Table 5.1. Then APVFS algorithm was applied to iterate for the best

voltage/frequency/version triplet.

Page 35 of 51

 Third column in the table represents the application and available versions. After an

application is run, the time execution time was monitored to see if the timing deadline is

violated or not. If the deadline was not violated, next frequency/voltage pair was applied to

system according to Table 5.1. After that, if the deadline is not met with the adjusted

frequency/voltage pair, available parallel version of the application was applied. This iteration

continues until the most parallel operating with the smallest possible frequency/voltage pair is

selected. Below Table 5.3 represents the reductions in net power and energy in terms of

percentages.

Iteration Operation Power Reduction Energy reduction

Matrix multiplication enters to platform

1 reduce V&F 0.00 0.00

2 reduce F 22.20 19.79

3 reduce F 64.23 9.62

4 change version 69.54 56.24

5 reduce F 78.47 54.40

6 change version 72.71 55.85

7 reduce F 82.52 62.53

8 increase F 72.71 55.85

FIR enters to platform

9 reduce V&F 36.04 17.46

10 reduce F 46.09 18.42

11 reduce F 66.05 17.36

12 increase F 46.09 18.42

FFT enters to platform

13 reduce V&F 30.86 13.21

14 reduce F 36.66 13.02

15 reduce F 50.24 7.46

16 increase F 36.66 13.02

Table 5.3: Reduction in power and energy

Page 36 of 51

Rows depicted bold style in Table 5.3 represent the points where the deadlines for the specific

application were violated. As a results, in the next iteration previous frequency value is set. It

can be also be observed in the table during the iteration just before the deadline is violated,

upto 72% power reduction and upto 55% energy reduction is achieved with the proposed

method. Below Figures 5.2.1 and 5.2.2 depict the reduction energy and power for MM, FIR

and FFT applications. Please observe that after applying APVFS algorithm to DRRA fabric,

energy and power values iterates towards the minimum possible value.

Figure 5.1: Energy reduction graphical representation

Figure 5.2.2. Power reduction graphical representation

Page 37 of 51

5.2.1. Overhead analysis

In this section of the thesis, area and power values of traditional DVFS (TDVFS) approach

and DVFS with reconfigurable isolations cells (ISDVFS) are compared according to varying

number of cells and regions.

Figure 5.3: Area overhead comparison

Figure 5.4: Power overhead comparison

It can be observed in above Figures 5.2.3 and 5.2.4 that the area and power overhead

increases for TDVFS with the addition of cells.

Page 38 of 51

 However, increasing the number of cells has a negligible affect on the ISDVFS overheads.

Number of regions is the more determining factor for the ISDVFS overheads. Number of cells

compared to number of regions to employ a particular application is considered to be much

smaller. In other words, many cells can be used within a few number of regions depending on

the application specification. This reveals that, our reconfigurable isolation cells approach

offers significant reduction in terms of area and power overheads over the TDVFS approach.

Page 39 of 51

Chapter 6

Conclusion and Future Work

In this thesis work, a power management architecture and its implementation for Coarse

Grained Reconfigurable Architectures (CGRAs) was presented. Firstly, background and

related work analysis was performed followed by GRLS communication scheme. Secondly,

DRRA fabric details were presented as a host for proposed solution and applications. Finally

design and implementation details were presented followed by the results.

 It was revealed that power and area overheads compared to conventional DVFS methods

were considerably decreased by Dynamically Reconfigurable Isolation Cells (DRICs).

Autonomous parallelism, voltage and frequency selection (APVFS) algorithm was proposed

to test the benefits of our proposed solution, recalling that APVFS algorithm will dynamically

check for applications deadlines and will adjust the voltage/frequency/version triplet selection

accordingly. To employ APVFS algorithm, matrix multiplication, FIR and FFT applications

were used, with matrix multiplication having three available versions in different levels of

parallelism.

Overall, simulations results showed that up to 72% reduction in power and up to 55%

reduction in energy can be achieved with ISDVFS scheme over completely synchronous

design style. It was also presented that ISDVFS offers negligible overheads over the

traditional DVFS approach.

As a future work, APVFS algorithm can be further investigated with other applications to

reveal the efficiency. Furthermore, DRRA fabric may also be manufactured and physical chip

can be used on a dedicated printed circuit board (PCB) as a reconfigurable platform to have

more accurate measurements. It is also worth mentioning that producing configware for

DRRA fabric requires a lot of attention of the programmer to carefully choose the parameters

involved in the instructions. A compiler might be designed to further simplify the process of

producing configware.

Page 40 of 51

Appendix

A. mDPU (MDPU) instruction

Field name Length in bits Description

instr_code 4 Value 2 indicates it is an mDPU instruction

mdpumode 4 Specifies the mode of operation

count 10 Reserved bits, set value 0 for mDPU instruction

saturation 4 It specifies which are used for saturation

outb 2 It specifies where to send data from output port A

outb 2 It specifies where to send data from output port B

acccount 8 Specifies the number of cycles after which the accumulation

counter is cleared

dpuunused 2 Reserved bit, set value 0 for mDPU instruction

Example: As a reference for analyzing configware codes given in Appendix F and G, a single

line code for mDPU instruction will be explained here.

MDPU mdpuinstr 2 0 0 3 3 11 0;

Above example line of configware code uses " mdpuinstr" as reserved word to indicate that it

is an mDPU instruction. It specifies the mode of operation as 2 corresponding to;

out0 = in0 * in1

out1 = (in0 * in1) + acc

Please recall from section 3.1 that mDPU has four inputs and two outputs. In this particular

example code, in2 and in3 are not in use, which can be useful depending on the application to

be programmed. After the mode of operation, count and saturation values are set to 0 meaning

that they are not being used. Following that, outa and outb values are set to 3, realizing that

outputs will be streamed to the left and right output busses in DRRA fabric at the same time.

It could be the case that programmer wants to send the data to one direction only, then either 1

or 2 would be set for only right and only left respectively. 11 in the example code denotes to

clear "acc" (accumulator) after 11 cycles and finally unused bit is set to 0.

Page 41 of 51

B. Registerfile (REFI) instruction

Part 1

Field name Length in bits Description

instr_code 4 It specifies the type of instruction

porttype 2 It specifies (a) Which port to use in register file, as there are two
ports available (b) It specifies the RD/WR

ivalid 1 Unused

mode 1 It specifies the addressing mode to be used

startadrs 6 It specifies the starting address in register file

endadrss 6 It specifies the end address

incrdcr 1 It specifies if the address should be incremented or decremented

incr_dcr_value 5 It is the offset value.

initial delay 6 It delays the execution by N cycles

output control 2 It specifies which port should be enabled for sending the data

instruction complete 1 It specifies if the instruction has a 2nd part or not

infinite loop 1 If enabled the instruction will repeat itself infinite times

Part 2

Field name Length in bits Description

instr_code 4 It specifies the type of instruction.

i_rpt_ty 2 Set value 0 to disable repetition, set value 3 to enable repetition for
both parts

repetition delay 6 Delay between repeating the instructions

number of repetitions 6 How many times this instruction should be repeated.

rept_incr_dcr 1 It specifies if the address should be incremented or decremented

rept_incr_dcr_value 5 It is the offset value

middle delay 6 Specifies the delay between two successive address generations

range counter 6 Set the range to count in terms of cycles

Page 42 of 51

C. Switchbox connect (CONNECT) instruction

Field name Description

instr_code It specifies the type of instruction.

source The keywords could either be "REFI" for register files, or "DPU" for mDPUs.

source index Specifies the connection object address.

port selection Keyword for port type. Port type could either be "OUT" or "IN".

port index Specifies which port the object is using for connection. For "OUT", it could either be 0 or 1. For
"IN", it could be 0, 1, 2, 3.

to Keyword "TO".

destination The keywords could either be "REFI" for registerfiles, or "DPU" for mDPUs.

destination index Specifies the connection object address.

port selection Keyword for port type. Port type could either be "OUT" or "IN".

port index Specifies which port the object is using for connection. For "OUT", it could either be 0 or 1. For
"IN", it could be 0, 1, 2, 3.

Page 43 of 51

D. Delay (DELAY) instruction

Field name Length in bits Description

instr_code 4 It specifies the type of instruction.

number of cycles 7 Specifies N number of cycles.

unused bits 25 Unused, set value 0.

Page 44 of 51

E. DVFS RTL code

1. library IEEE;
2. use IEEE.STD_LOGIC_1164.all;
3. use IEEE.std_logic_unsigned.all ;
4. use work.drra_types_n_constants.all;
5. use IEEE.numeric_std.all;
6. USE IEEE.STD_LOGIC_ARITH.ALL;

7. entity vcgu is
8. generic (cell_col : integer range 0 to COLUMNS - 1 := 0;
9. cell_row : integer range 0 to ROWS - 1 := 1);
10. port (clk1, clk2: in std_logic;
11. reset: in std_logic;
12. freq_div: in std_logic_vector (3 downto 0) := "0010" ;
13. clk_select: in std_logic_vector(1 downto 0) := "01";
14. clk_out: out std_logic:= '0';
15. rowbus_pmu : in std_logic := '1' ;
16. colbus_pmu : in std_logic := '1');
17. end vcgu;
18. architecture behave of vcgu is
19. signal counter_en, clk_outs1, clk_outs2: std_logic;
20. signal counter1, counter2: std_logic_vector (3 downto 0) := "0000";
21. begin
22. process (clk1,colbus_pmu,rowbus_pmu,clk_select)
23. begin
24. if (colbus_pmu = '1' and rowbus_pmu = '1') then
25. case clk_select is
26. when "00" =>
27. counter_en <= '0';
28. when "01" =>
29. counter_en <= '1';
30. when others =>
31. counter_en <= '1';
32. end case;
33. end if;
34. end process;
35. process (clk1,reset, freq_div)
36. begin
37. if(reset= '0') then
38. counter1 <="0000";
39. clk_outs1 <= '0';
40. elsif rising_edge(clk1) and (counter_en = '0') and (freq_div /= "0000") then
41. counter1 <= counter1 + "0001";
42. if (counter1 = freq_div - "0010") then
43. clk_outs1 <= '1';
44. elsif (counter1 = freq_div - "0001") then
45. counter1 <= "0000";
46. clk_outs1 <= '0';
47. end if;
48. end if;
49. end process;

Page 45 of 51

50. process (clk2, reset, freq_div)
51. begin
52. if(reset= '0') then
53. counter2 <="0000";
54. clk_outs2 <= '0';
55. elsif rising_edge(clk2) and (counter_en = '1') and (freq_div /= "0000") then
56. counter2 <= counter2 + "0001";
57. if (counter2 = freq_div - "0010") then
58. clk_outs2 <= '1';
59. elsif (counter2 = freq_div - "0001") then
60. counter2 <= "0000";
61. clk_outs2 <= '0';
62. end if;
63. end if;
64. end process;
65. process (clk_outs1, clk_outs2, clk1, freq_div)
66. begin
67. if (freq_div = "0000") then
68. clk_out<=clk1;
69. else
70. if(clk_outs1 = '1') or (clk_outs2 = '1') then
71. clk_out <= '1';
72. elsif (clk_outs1 = '0') or (clk_outs2 = '0') then
73. clk_out <= '0';
74. else
75. clk_out <= clk1;
76. end if;
77. end if;
78. end process;
79. end behave;

Page 46 of 51

F. Fully serial matrix multiplication configware

Sequencer 0

1. USE SEQ 0
2. INTRP 0;
3. INTRP 0;

4. CONNECT REFI 0 OUT 0 TO LATA 0 IN 0;
5. CONNECT REFI 0 OUT 1 TO LATA 0 IN 1;

6. /* read from port A Address: [0, 0] */

7. RFILE1 rfileinstr 0 0 0 0 3 1 1 1 3 0 0;
8. RFILE2 rfileinstr 3 0 4 1 0 0 0;

9. /* read from port B Address: [0, 0] */

10. RFILE1 rfileinstr 1 0 0 4 20 1 1 0 3 1 0;

11. /*-------------------------------execution instruction--------------------------*/
12. /* (y0, y1) = [x2 + (x0 * x1), x2 - (x0 * x1)] */

13. MDPU mdpuinstr 2 0 0 3 3 0 0;

Sequencer 1

1. USE SEQ 1
2. INTRP 0;
3. INTRP 0;

4. CONNECT LATA 0 OUT 0 TO REFI 1 IN 0;
5. CONNECT LATA 1 OUT 0 TO REFI 1 IN 1;
6. CONNECT REFI 1 OUT 0 TO LATA 1 IN 0;
7. CONNECT REFI 1 OUT 1 TO LATA 1 IN 1;

8. /* write from port A Address: [0, 0] */
9. RFILE1 rfileinstr 2 0 0 0 15 1 1 3 3 1 0;

10. /* write from port A Address: [0, 0] */
11. RFILE1 rfileinstr 3 0 0 17 20 1 1 6 3 0 0;
12. RFILE2 rfileinstr 3 0 4 1 0 3 0;

13. /* read from port B Address: [0, 0] */
14. RFILE1 rfileinstr 0 0 0 0 15 1 1 0 3 0 0;
15. RFILE2 rfileinstr 3 0 0 1 0 3 0;

16. /* read from port B Address: [0, 0] */
17. RFILE1 rfileinstr 1 0 0 16 19 1 1 1 3 0 0;
18. RFILE2 rfileinstr 3 0 4 1 0 3 0;

19. /*-------------------------------execution instructions--------------------------*/
20. /* (y0, y1) = [x2 + (x0 * x1), x2 - (x0 * x1)] */

21. MDPU mdpuinstr 12 0 0 3 3 0 0;

Page 47 of 51

G. Synthesis and Power Analysis Script

Synthesis

1. set designer "Syed Mohammad Asad Hassan Jafri & Ozan Zeki Bag"
2. set company "KTH"
3. set SynopsysHome [getenv "SYNOPSYS"]
4. set search_path "../tcbn90g_110a"

5. set target_library "/home/ozan/Desktop/power_results/lowpower65nm/tcbn65lpbc.db

/home/ozan/Desktop/power_results/lowpower65nm/tcbn65lpbc1d1.db
/home/ozan/Desktop/power_results/lowpower65nm/tcbn65lpbc1d11d1.db
/home/ozan/Desktop/power_results/lowpower65nm/tcbn65lpbc1d11d32.db
/home/ozan/Desktop/power_results/lowpower65nm/tcbn65lpbc1d321d1.db
/home/ozan/Desktop/power_results/lowpower65nm/tcbn65lpbc1d321d32.db"

6. set link_path "$search_path"
7. set link_library "* $target_library "
8. remove_design -designs
9. power_preserve_rtl_hier_names
10. analyze -library WORK -format vhdl /home/ozan/Desktop/implementation/drrafabric/misc.vhd
11. analyze -library WORK -format vhdl /home/ozan/Desktop/implementation/grlib-gpl-1.1.0-

b4108/designs/leon3mp/drra_types_n_constants_std_logic.vhd
12. analyze -library WORK -format vhdl /home/ozan/Desktop/implementation/drrafabric/agu.vhd
13. analyze -library WORK -format vhdl /home/ozan/Desktop/implementation/grlib-gpl-1.1.0-

b4108/designs/leon3mp/cgu_ozan.vhd
14. analyze -library WORK -format vhdl /home/ozan/Desktop/implementation/grlib-gpl-1.1.0-

b4108/designs/leon3mp/regfile_stdlog.vhd
15. analyze -library WORK -format vhdl /home/ozan/Desktop/implementation/grlib-gpl-1.1.0-

b4108/designs/leon3mp/config_swb_stdlog.vhd
16. analyze -library WORK -format vhdl

/home/ozan/Desktop/implementation/drrafabric/TristateMux_unregistered.vhd
17. analyze -library WORK -format vhdl /home/ozan/Desktop/implementation/grlib-gpl-1.1.0-

b4108/designs/leon3mp/samplemanas/vhdl_sections/MANAS_PACKAGE.vhd
18. analyze -library WORK -format vhdl /home/ozan/Desktop/implementation/drrafabric/switchbox.vhd
19. analyze -library WORK -format vhdl /home/ozan/Desktop/implementation/drrafabric/fifo.vhd
20. analyze -library WORK -format vhdl /home/ozan/Desktop/implementation/grlib-gpl-1.1.0-

b4108/designs/leon3mp/txt_util.vhd
21. analyze -library WORK -format vhdl /home/ozan/Desktop/implementation/grlib-gpl-1.1.0-

b4108/designs/leon3mp/mDPU_new_stdlog.vhd
22. analyze -library WORK -format vhdl /home/ozan/Desktop/implementation/grlib-gpl-1.1.0-

b4108/designs/leon3mp/toplevel_regfile_stdlog.vhd
23. analyze -library WORK -format vhdl /home/ozan/Desktop/implementation/grlib-gpl-1.1.0-

b4108/designs/leon3mp/sequencer_stdlog.vhd
24. analyze -library WORK -format vhdl /home/ozan/Desktop/implementation/grlib-gpl-1.1.0-

b4108/designs/leon3mp/drra_fabric_stdlogic.vhd
25. elaborate FABRIC -architecture RTL -library DEFAULT

26. create_clock -name "clk" -period 0.41 -waveform { 0.0 0.20 } { clk }
27. set_dont_touch_network [find clock clk]
28. set_fix_hold clk
29. set_false_path -from [get_port rst_n]

Page 48 of 51

30. create_power_domain PD_SODIUM
31. create_supply_port VDD1
32. create_supply_port VSS
33. create_supply_net VN1 -domain PD_SODIUM
34. connect_supply_net VN1 -ports {VDD1}
35. create_supply_net GN -domain PD_SODIUM
36. connect_supply_net GN -ports {VSS}
37. set_domain_supply_net PD_SODIUM -primary_power_net VN1 -primary_ground_net GN
38. set_voltage 1.32 -object_list VN1
39. set_voltage 0.0 -object_list GN
40. set_operating_conditions BCCOM
41. compile -map_effort medium -incremental_mapping

42. write -hierarchy -format verilog -output

/home/ozan//Desktop/power_results/sdf_files/v1_2400_14cells_std.v
43. write_sdf /home/ozan//Desktop/power_results/sdf_files/v1_2400_14cells_std.sdf

Report Power

1. vcd2saif -i myvcdfile.vcd -o mysaiffile

2. read_file -format verilog {/home/ozan/Desktop/power_results/netlists/v1_2400_14cells.v}
3. elaborate FABRIC -architecture RTL -library DEFAULT
4. read_saif -input /home/ozan/Desktop/power_results/saif_files/v1_2400.saif -instance_name tb_mode7
5. report_power -analysis_effort low > /home/ozan/Desktop/power_results/results/v2_1500MHz.rep

Page 49 of 51

References

[1] Moore, G. E.; , "Cramming more components onto integrated circuits," Electronics

 Magazine , vol. 38, no. 8, Apr 1965

[2] Bohr, M.; , "The new era of scaling in an SoC world," Solid-State Circuits Conference

 - Digest of Technical Papers, 2009

[3] Z. ul Abdin and B. Svensson, “Evolution in architectures and programming

 methodologies of coarse-grained reconfigurable computing,” Microprocess.

 Microsyst., vol. 33, no. 3, pp. 161–178, May 2009. [Online]. Available:

 http://dx.doi.org/10.1016/j.micpro.2008.10.003

[4] W. J. Dally and J. W. Poulton, Digital System Engineering, W. J. Dally and J. W.

 Poulton, Eds. Cambridge University Press, 1998.

[5] M. A. Shami and A. Hemani, “Morphable dpu: Smart and efficient data path for signal

 processing applications,” in SiPS, 2009, pp. 167–172.

[6] R. Airoldi, F. Garzia, and J. Nurmi, “Improving reconfigurable hardware energy

 efficiency and robustness via dvfs-scaled homogeneous mpsoc,” in Parallel and

 Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE

 International Symposium on, may 2011, pp. 286–289.

[7] L. Guang, E. Nigussie, and H. Tenhunen, “Run-time communication bypassing for

 energy-efficient, low-latency per-core dvfs on networkon- chip,” in SOC Conference

 (SOCC), 2010 IEEE International, sept. 2010, pp. 481 –486.

[8] R. Lysecky, “Low-power warp processor for power efficient highperformance

 embedded systems,” in Design, Automation Test in Europe Conference Exhibition,

 2007. DATE ’07, april 2007, pp. 1 –6.

[9] J. Kim, S. Yoo, and C.-M. Kyung, “Program phase and runtime distribution-aware

 online dvfs for combined vdd/vbb scaling,” in Design, Automation Test in Europe

 Conference Exhibition, 2009. DATE ’09., april 2009, pp. 417 –422.

[10] G. Rauwerda and G. Smit, “Implementation of a flexible rake receiver in

 heterogeneous reconfigurable hardware,” in Field-Programmable Technology, 2004.

 Proceedings. 2004 IEEE International Conference on, dec. 2004, pp. 437 – 440.

Page 50 of 51

[11] V. Nollet and D. Verkestt, “A quick safari through the mpsoc run-time management

 jungle,” in Embedded Systems for Real-Time Multimedia, 2007. ESTIMedia 2007.

 IEEE/ACM/IFIP Workshop on, oct. 2007, pp. 41 –46.

[12] M. Galanis, G. Dimitroulakos, and C. Goutis, “Mapping dsp applications on

 processor/coarse-grain reconfigurable array architectures,” in Circuits and Systems,

 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on, may 2006,

 p. 4 pp.

[13] N. Abbas, “Runtime parallelisation switching for MPEG4 encoder on MPSoC,”

 Master’s thesis, Royal Institute of Technology, 2007.

[14] C. Ykman-Couvreur, E. Brockmeyer, V. Nollet, T. Marescaux, F. Catthoor, and H.

 Corporaal, “Design-time application exploration for mp-soc customized run-time

 management,” in System-on-Chip, 2005. Proceedings. 2005 International Symposium

 on, nov. 2005, pp. 66 –69.

[15] C. Ykman-Couvreur, V. Nollet, T. Marescaux, E. Brockmeyer, F. Catthoor, and H.

 Corporaal, “Pareto-based application specification for mp-soc customized run-time

 management,” in Embedded Computer Systems: Architectures, Modeling and

 Simulation, 2006. IC-SAMOS 2006. International Conference on, july 2006, pp. 78 –

 84.

[16] S. Jafri, A. Hemani, K. Paul, J. Plosila, and H. Tenhunen, “Compact generic

 intermediate representation (cgir) to enable late binding in

[20] J.-M. Chabloz and A. Hemani, “Distributed dvfs using rationally-related frequencies

 and discrete voltage levels,” in ISLPED, 2010, pp. 247–252.

[21] Messerschmitt, D.G.; , "Synchronization in digital system design," Selected Areas in

 Communications, IEEE Journal on , vol.8, no.8, pp.1404-1419, Oct 1990

 [22] Mu, F.; Svensson, C.; , "Self-tested self-synchronization circuit for mesochronous

 clocking ," Circuits and Systems II: Analog and Digital Signal Processing, IEEE

 Transactions on , vol.48, no.2, pp.129-140, Feb 2001

[23] Muttersbach, J.; Villiger, T.; Fichtner, W.; , "Practical design of globallyasynchronous

 locally-synchronous systems," Advanced Research in Asynchronous Circuits and

 Systems, 2000. (ASYNC 2000) Proceedings. Sixth International Symposium on , vol.,

 no., pp.52-59, 2000

Page 51 of 51

[24] J. M. Chabloz and A. Hemani, ”A Flexible Interface for Rationally- Related

 Frequencies,” ICCD 2009

[25] J. M. Chabloz, ”Distributed DVFS with Rationally-Related Frequencies and Quantized

 Voltage Levels,” ISLPED 2010

[26] A. Hemani, DRRA Summary, 2009.

[27] V. Tunbunheng, M. Suzuki, and H. Amano, “Romultic: fast and simple configuration
 data multicasting scheme for coarse grain reconfigurable devices,” in Field-

 Programmable Technology, 2005. Proceedings. 2005 IEEE International Conference

 on, dec. 2005, pp. 129 –136.

