
49

Energy-Aware Code Motion for GPU Shader Processors

YI-PING YOU and SHEN-HONG WANG, National Chiao Tung University

Graphics processing units (GPUs) are now being widely adopted in system-on-a-chip designs, and they are
often used in embedded systems for manipulating computer graphics or even for general-purpose computa-
tion. Energy management is of concern to both hardware and software designers. In this article, we present
an energy-aware code-motion framework for a compiler to generate concentrated accesses to input and output
(I/O) buffers inside a GPU. Our solution attempts to gather the I/O buffer accesses into clusters, thereby
extending the time period during which the I/O buffers are clock or power gated. We performed experiments
in which the energy consumption was simulated by incorporating our compiler-analysis and code-motion
framework into an in-house compiler tool. The experimental results demonstrated that our mechanisms
were effective in reducing the energy consumption of the shader processor by an average of 13.1% and
decreasing the energy-delay product by 2.2%.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers,

Optimization

General Terms: Algorithms, Experimentation, Languages

Additional Key Words and Phrases: Compilers for low power, shader processors, energy management

ACM Reference Format:

You, Y.-P. and Wang, S.-H. 2013. Energy-aware code motion for GPU shader processors. ACM Trans. Embedd.
Comput. Syst. 13, 3, Article 49 (December 2013), 24 pages.
DOI: http://dx.doi.org/10.1145/2539036.2539045

1. INTRODUCTION

The traditional fixed-function pipeline in 3D graphics rendering has evolved into a
programmable pipeline which enables customizations of vertex and pixel/fragment
processing and allows developers to write their own shader programs for various types
of special effects. This programmable pipeline was derived by introducing vertex and
pixel/fragment shader processors with shader models, as shown in Figure 1, to for-
mulate 3D graphics. A unified shader model, in which both vertex and pixel/fragment
shader programs run on the same processors, as shown in Figure 1(b), allows for more
flexible use of the graphics hardware and takes over the task of load balancing from
graphics programmers. The model has been widely used in modern GPUs (graphics
processing units) along with graphics libraries, such as OpenGL [Khronos Group 2011]
or Direct3D [Microsoft 2008], to drive the underlying graphics hardware. OpenGL
and Direct3D also provide high-level shader languages for programming customized
shading effects. OpenGL ES 2.0 [Khronos Group 2010], which is adapted to embedded
platforms, was recently publicly released and is supported by various mobile devices,

This study was partially supported by the National Science Council of Taiwan under grants NSC-97-2218-
E-009-043-MY3 and NSC-100-2218-E-009-011-MY3 and by the Institute for Information Industry.
Authors’ addresses: Y.-P. You and S.-H. Wang, Department of Computer Science, National Chiao Tung
University, Hsinchu, Taiwan; corresponding author’s email: ypyou@cs.nctu.edu.tw.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1539-9087/2013/12-ART49 $15.00

DOI: http://dx.doi.org/10.1145/2539036.2539045

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

49:2 Y.-P. You and S.-H. Wang

Fig. 1. Programmable graphics pipelines.

Fig. 2. A shader processor with input/output buffers.

such as the iPhone, iPad [Apple 2011], Android platform [Google 2011], and Palm
webOS [Palm 2011]. However, the battery life is often crucially important in embedded
systems, and therefore energy consumption must be considered in either hardware or
software designs, or both.

A shader processor works similarly to stream processing. As shown in Figure 2, the
shader processor reads input data (e.g., uniforms, attributes, and varyings) from an in-
put buffer, performs calculations in general-purpose or temporary registers (according
to the shader program), and then writes the results into an output buffer. The cycle re-
peats until all input data have been processed. The aim of shader processing is to keep
the shader processors busy in order to achieve high performance. However, for most of
the time during shader processing, the input and output buffers (I/O buffers) stay in-
active but powered-up—they are usually accessed only at the beginning and end of the
process, respectively—and hence become a major source of leakage energy dissipation
in GPUs. Therefore, in this article, we focus on reducing the energy consumption of the
I/O buffers via clock or power gating. A naı̈ve method of saving energy is to promote
all input data from the input buffer to the temporary registers at the beginning of the
program execution so that the input buffer can be turned off for the rest of the pro-
gram execution, while demoting the results from the temporary registers to the output
buffer immediately before the program terminates in order to keep the output buffer
off for as long as possible. Unfortunately, both approaches have the side effect of a high
register pressure on the shader processors and consequently can impair the speed and
size of the compiled code, or even prevent program execution—some shader-processor
designs inhibit memory accesses and therefore registers are not allowed to be spilled
to memory. This side effect may also counteract the benefit of I/O buffer management
in terms of reducing the energy consumption.

In this article, we propose an energy-aware code-motion framework for a compiler
to address the issue of high register pressures due to register promotion and demo-
tion. Rather than grouping all the I/O buffer accesses around the beginning and end

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

Energy-Aware Code Motion for GPU Shader Processors 49:3

of the program execution, we gather these accesses into multiple clusters in order to
avoid register spillage as well as to reduce the amount of clock- or power-gating con-
trols. We have performed simulation experiments of the energy consumption in our
framework using an in-house compiler. The experimental results demonstrate that our
mechanisms are effective in markedly reducing the energy consumption relative to
naı̈ve methods, with only minor effects on performance. Our energy-aware code-motion
framework reduced the energy consumption of the shader processor by an average of
13.1% compared with the no-clock-gating method. The energy-delay product was 2.2%
lower for the proposed framework than for the no-clock-gating method, which shows
that the proposed framework is effective in reducing the energy consumption without
sacrificing too much performance.

The remainder of this article is organized as follows: Section 2 discusses related
work on low-power GPU designs. Section 3 describes a machine architecture for the
target platform. Section 4 presents the energy-aware code-motion framework. Section 5
describes the experimental results of our study. Finally, conclusions about our work are
drawn in Section 6.

2. RELATED WORK

Energy- and power-aware designs for GPUs have received little attention in the liter-
ature, especially from the perspective of software techniques. Mochocki et al. proposed
an online, signature-based estimation technique for predicting 3D graphics workloads
and used it as a basis for dynamic voltage and frequency scaling of the GPU [2006].
Silpa et al. introduced a code transformation scheme that partitions vertex shaders into
position-variant and position-invariant shaders in order to reduce the power consump-
tion associated with geometry processing [2009]. Hong and Kim developed an analytical
model for predicting both the performance and power consumption of GPU applications
in order to manage the number of active cores in GPU architectures [2010]. Their work
revealed the energy efficiencies of memory-bandwidth-limited applications. Wang et al.
presented a hardware-based, predictive shutdown mechanism for GPU shader proces-
sors that reduces the power consumed by components of a system [2009]. In contrast to
the these previous approaches, our framework uses software techniques to reschedule
instructions and insert power- or clock-gating operations at compile time.

Cooper et al. proposed a compilation approach for transforming several costly cal-
culations (e.g., array-addressing expressions used in loops) into less-expensive ones so
as to reduce the number of execution cycles and thus the energy consumption [2001].
Mahjur et al. proposed several instruction scheduling methods to eliminate unnec-
essary instructions whose results are not used by other instructions in order to re-
duce the code size, execution time, and energy consumption [2008]. These approaches
are performance-oriented optimizations, with any reduction in energy consumption
merely representing a by-product. Recent studies have attempted to reduce the leakage
power consumption using integrated architecture and compiler power-gating mecha-
nisms [You et al. 2002, 2005, 2006, 2007; Rele et al. 2002; Dropsho et al. 2002; Yang et al.
2002; Zhang et al. 2003]. These approaches involve compilers inserting instructions into
programs to shut down and wake up components whenever appropriate, based on a
dataflow or profiling analysis. Although the results obtained in these studies indicated
that the described approaches were effective, none of them considered transforming a
program code by instruction scheduling into one in which the utilization of the system
components is concentrated so as to avoid frequent clock- or power-gating controls.
Roy et al. explored several existing compiler optimizations for enhancing opportunities
to deactivate functional units [2009], but those optimizations were tailored for perfor-
mance enhancement rather than for reducing the energy consumption. In contrast,
our proposed energy-aware code-motion framework for a compiler solution directly

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

49:4 Y.-P. You and S.-H. Wang

Fig. 3. Block diagram of the Cyclone shader architecture.

addresses the energy consumption of the I/O buffers of GPUs by aggressively gather-
ing I/O buffer accesses and using clock or power gating to turn off the I/O buffers when
they are idle.

3. UNIFIED SHADER ARCHITECTURE

The Cyclone GPU1, the target architecture in this study, is a processor comprising
multiple cores specifically designed to deliver the performance required for state-of-
the-art mobile graphics system [Ko et al. 2011]. It runs at a frequency of 200 MHz with
a 10kB cell-based SRAM and fully meets the OpenGL-ES 2.0 specification. The shader
cluster in the Cyclone GPU differs from early shader architectures that use different
instruction sets for vertex and pixel shaders. The shader cluster in the Cyclone GPU is
a unified architecture that is consistent with the vertex and pixel shaders of the ESSL
specification [Khronos Group 2009].

The Cyclone GPU also uses a central task scheduler to manage all computation
resources in order to efficiently achieve scalability. Figure 3 shows the block diagram
of the shader cluster. There are two shader cores inside which originated from Chien
et al.’s designs [2008], and three local buffers shared by the shader cores to reduce the
amount of internal memory required. The input controller controls the entire shader
cluster by receiving requests from the task scheduler and sending commands to each
module. These two shader cores have a unified structure such that either vertex or
pixel shader code can be processed.

The input controller receives requests from the task scheduler and sends required
control signals to each module. It first informs the input buffer and instruction/constant
buffer to fetch required attributes/varyings, constant/uniform, and shader code. When
these two buffers finish data fetching, the input controller sends out a start signal
to initiate the shader core. After all of the data are written out, the input controller
returns a finish signal to the task scheduler and waits for the next request. The input
buffer is used to store input data of the shader core. Because the shader cores do not

1The released Cyclone GPU open-source package includes RTL modeling, drivers, an ESSL compiler, and a
simulator. It can be obtained by contacting I-Ting Lin <itlin@nmi.iii.org.tw>.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

Energy-Aware Code Motion for GPU Shader Processors 49:5

Fig. 4. Block diagram of the Cyclone shader core.

have load/store instructions, all of the required data must be fetched to local (tem-
porary) registers to speed up the computation. The output buffer is used to store the
computation results of the shader core. When a shader program is finished, the output
buffer writes out the results to an external buffer.

Figure 4 shows the block diagram of the Cyclone shader core. Each Cyclone shader
core is an RISC with a five-stage pipeline VLIW architecture. The shader core is capa-
ble of processing two 32-bit instruction words in parallel, assuming neither data nor
structure dependency between these two words. Concerning computation efficiency
and the fact that there is no data dependency and synchronization across shader cores,
load/store instructions and memory access stage are not considered in the architec-
ture design. There are eight read-only input buffer registers, eight readable/writable
output buffer registers, and eight readable/writable temporary registers. The power
requirements of the I/O buffers represented 9.1% and 15.3% of the total, respectively.
The detailed hardware specification is discussed in Section 5.

Recently, Chang et al. proposed a variant of the Cyclone GPU that contains eight
shader cores to deliver energy-efficient and high-performance graphics rendering for
mobile multimedia applications [2011].

4. ENERGY-AWARE CODE-MOTION FRAMEWORK

A naı̈ve way to address the problem of applying clock or power gating to I/O buffers
for energy saving is to relocate all input data from the input buffer to the temporary
registers at the early stage of the program execution and hold all output results in the
temporary registers until the end of the execution so as to keep the I/O buffers inactive
during the process. However, this type of approach extends the live range of both
input and output variables and thus increases the register pressure of the temporary
registers, which may decrease the overall performance in terms of the speed, code size,
and energy consumption due to register spillage.

For this reason, we present a compiler framework for code motion of I/O buffer
accesses that also considers register pressure in order to reduce the energy consumed
in the I/O buffers. The primary concept of this framework is to gather I/O buffer accesses
into clusters on the premise that the register pressure does not exceed the maximum
operating pressure, that is, all variables can be allocated to physical registers without
causing a spill, so that the I/O buffers remain inactive for long periods of time. More
specifically, the framework clusters the I/O buffer accesses by moving input buffer
accesses forward and by postponing output buffer accesses. Figure 5 presents the
compiler flow of the proposed energy-aware code-motion framework. In the framework,
step I inserts data-transfer operations (DTOs) in order to resolve data-dependency

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

49:6 Y.-P. You and S.-H. Wang

Fig. 5. The energy-aware code-motion framework.

issues, step II attempts to cluster I/O buffer accesses within basic blocks, and step III
involves performing a dataflow analysis and clustering I/O buffer accesses across basic
blocks, producing the code-motion results.

In the following sections, we explain in detail how the framework works, though we
elaborate only from the view of managing the input buffer, since the concept of code
motion for output buffer accesses is similar. The energy-aware code motion for the
output buffer is discussed briefly in Section 4.4.

4.1. Insertion of Data-Transfer Operations

The framework is based on the idea of advancing accesses to the input buffer so as
to extend its idle period. A simple way to move an access forward is to advance the
operation (or instruction), say A, which accesses the input buffer. However, such motion
might involve more than one operation being advanced, since all of the operations that
produce the data required by operation A must be executed prior to A. In an extreme
case, the program remains the same after code motion in that there is a chain of data
dependencies for operation A, and all of the operations prior to A result in a cascading
effect of code motion in order to ensure the program correctness.

In view of this, we insert a DTO that relocates input data from the input buffer to
a temporary register before an input buffer access and replace the input buffer access
by the access to the temporary register. A DTO could be simply a move instruction,
such as a VMOV (vector move) instruction in our target Cyclone architecture. With the
data-transfer process, we can advance an input buffer access (i.e., a move instruction)
without significantly altering the program code. Figure 6 illustrates an example of the
insertion of DTOs. Given a basic block containing three input buffer accesses, as shown
in Figure 6(a), where operands starting with “v” and “t” refer to an input buffer access
and a temporary register, respectively, and “FADD t0, t0, v3” performs a floating-point
addition of t0 and v3 and places the result in t0, we insert a VMOV instruction for each of
the input buffer accesses and change the input buffer accesses to temporary registers
accordingly, as shown in Figure 6(b).

4.2. Local Code Motion

We propose a local code-motion algorithm to cluster the DTOs inserted in Section 4.1
within each basic block. The algorithm aims to bring forward the DTOs with register
pressure in mind so as to concentrate input buffer accesses. In other words, a single
DTO is moved ahead to be clustered with other DTOs if the code motion does not
result in immoderate use of temporary registers; otherwise, the DTO stays where it
is. In addition, DTOs that transfer the same data from the input buffer tend to be
clustered together first so that those DTOs could be merged into a single operation
in order to reduce the overhead of the execution performance as well as the code
size.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

Energy-Aware Code Motion for GPU Shader Processors 49:7

Fig. 6. An illustration of the insertion of data transfer operations: (a) a basic block containing three input
buffer accesses and (b) the basic block after inserting data-transfer operations.

Algorithm 1 outlines the pseudocode for performing local code motion. Given a basic
block, we first eliminate redundant DTOs by traversing all DTOs in a backward manner
(lines 2–8). Suppose there is a pair of DTOs, say Ii and Ii−1, where Ii and Ii−1 have
the same source operand and Ii−1 is the last DTO prior to Ii. Ii is merged with Ii−1

by eliminating Ii and replacing all of the usages of the definition of Ii with the target
operand of I j if CMT(I j , Ii) is greater than zero, where CMT(I j , Ii) returns the code-
motion tunnel between Ii−1 and Ii (i.e., the number of unoccupied registers between
Ii−1 and Ii). Ii can be moved ahead to the position following Ii−1 only when there is an
unoccupied register to be allocated for the extended live range of the target operand
of Ii. The code-motion tunnel suggests how many DTOs could be moved across it.

ALGORITHM 1: Local Code Motion
Input : A shader program with inserted data-transfer operations.
Output: The shader program with clustered data-transfer operations within basic

blocks.

1 foreach basic block b ∈ input program do
2 foreach data transfer operation Ii ∈ b in the reverse order of their appearance do
3 if there exists an Ii−1 that is the last one prior to Ii and Ii and Ii−1 have the same

source operand then
4 if CMT(Ii−1, Ii) > 0 then
5 Eliminate Ii and replace all of the usages of the definition of Ii with the

target operand of Ii−1;
6 end

7 end

8 end
9 Each data transfer operation Ii ∈ b forms a cluster Ci ;

10 foreach cluster Ci ∈ b in the reverse order of their appearance do
11 if there exists a Ci−1 that is the last cluster prior to Ci then
12 if CMT(Ci−1, Ci) ≥ |Ci| then
13 Move Ci to the position following Ci−1 and combine Ci and Ci−1 into a

new Ci−1;
14 end

15 end

16 end

17 end

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

49:8 Y.-P. You and S.-H. Wang

Fig. 7. An illustration of local code motion: (a) a basic block with four data-transfer operations inside, (b) the
basic block after eliminating redundant data-transfer operations, (c) the basic block after the iterations of
local code motion, and (d) the basic block after the local code motion.

Following the elimination of redundant DTOs, we implement an iterative code-motion
method from the bottom to the top of the basic block while treating a cluster as the
smallest unit for code motion (lines 9–16). Initially, each DTO forms a single cluster.
If a cluster, Ci, could be moved ahead to the position following the last cluster (i.e.,
Ci−1) prior to Ci without exceeding the maximum operating register pressure (i.e.,
Ci can pass through the code-motion tunnel between Ci and Ci−1), Ci is combined
with Ci−1 into a new Ci−1. In other words, in line 12, CMT(Ci−1, Ci) ≥ |Ci| could be
interpreted as the number of unoccupied registers between the last DTO of Ci−1 and
the first DTO of Ci being greater than or equal to the number of DTOs in Ci so that
the live range of the target of all of the DTOs in Ci could be extended to the end of
Ci−1.

It is worth mentioning that local code motion is performed so as to move a cluster
(instead of a DTO) ahead so that it is combined with another cluster. Moving a DTO
seems to be more intuitive than moving a cluster, but we do not benefit by moving a
DTO ahead unless there is no other input buffer access around the DTO. Recall that a
DTO actually contains an input buffer access—it transfers a data value from the input
buffer to a temporary register. If there are other DTOs not being forwarded, the input
buffer must remain alive and cannot be shut down. Besides, moving a DTO forward so
that it is clustered with other DTOs would increase the size of the cluster that might
be moved across basic blocks via subsequent global code motion. For these reasons, it
is better to move a cluster than a DTO.

Figure 7 illustrates an example of local code motion. Figures 7(a) and 7(b) elaborate
an example of the first half of Algorithm 1: elimination of redundant DTOs. Given a
basic block with five DTOs, we traverse the block backward and meet a DTO, I4 (I5 is
the first DTO we meet, but it is not a candidate to eliminate according to the rules given
next). We then examine whether I4 could be eliminated by inspecting in a backward
direction whether there is a DTO that is prior to I4 and transfers the same data (v2
in this case) from the input buffer as I4, and learn that I4 might be eliminated due
to the prior DTO, I2. Next, we check on whether there is an unoccupied register that
could be used to extend the live range of t58 (the target operand of I4) by the condition
of CMT(I2, I4) > 0; this indicates that I4 should be eliminated and the consequent t58
should be renamed as t56, the target operand of I2. Figure 7(b) shows the result after
repeating this procedure for each DTO.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

Energy-Aware Code Motion for GPU Shader Processors 49:9

Figures 7(b) to 7(d) provide an example of the second half of Algorithm 1. Initially,
each Ii forms a Ci, which is tagged on the right side of Figure 7(b). We traverse the block
backward and meet a cluster, C4, and another cluster, C3, prior to C4. We then examine
whether C4 could be moved ahead to the position following C3 by determining whether
the inequality CMT(C3, C4) ≥ |C4| holds; in other words, we examine whether there are
unoccupied registers between C3 and C4, and whether there are more of them than the
number of DTOs in C4. If this is not the case, we continue to process the next cluster,
C3. Similarly, we determine whether the inequality CMT(C2, C3) ≥ |C3| applies. If this
is the case, we combine C2 and C3 into a new C2, as shown in Figure 7(c). The process
is continued in the same manner until all clusters have been traversed, at which point
we have the result of the local code motion, as shown in Figure 7(d).

4.3. Global Code Motion

Local code motion clusters input buffer instructions within each basic block and could
reduce the power switching overhead when clock- or power-gating mechanisms are
applied, but there remain some cases that local code motion cannot handle. If a source
program consists of many small basic blocks and contains complex control flows, little
advantage is gained from local code motion, because there is a low probability of DTOs
having been clustered within basic blocks. In this case, we need a more powerful
scheme, global code motion, to move DTOs or DTO clusters across basic blocks. More
specifically, clusters that are located at the beginning of each basic block after local
code motion are the ones to be relocated in global code motion, since clusters other
than those at the top of a basic block can no longer be moved forward due to the
register pressure reaching its maximum operating limit.

We propose a backward dataflow analysis method, called cluster placement analysis,
to determine the possible locations for placing the DTO clusters while considering
register pressure, and perform a global code motion of clusters based on the information
gathered by the dataflow analysis. The algorithm of cluster placement analysis is listed
in Algorithm 2, where EXIT is the exit block of a control-flow graph. The algorithm works
similarly to a traditional dataflow analysis, which refers to a group of techniques that
derive information about the flow of data along program execution paths [Aho et al.
2006]. In our proposed dataflow analysis, we associate each program point with a
dataflow value that represents a set of clusters that could be placed at that point and
denote the dataflow value immediately before and immediately after each basic block
b by CLUSTERin(b) and CLUSTERout(b), respectively. The transfer equations, which
define the relationship between the dataflow values before and after a basic block, and

ALGORITHM 2: Cluster Placement Analysis

Input : A shader program after local code motion.
Output: Possible locations for placing the DTO clusters.

1 CLUSTERout(EXIT) = ∅;
2 foreach basic block b ∈ input program other than EXIT do
3 CLUSTERgen(b) = {c | c is the cluster at the beginning of b};
4 CLUSTERin(b) = ∅;
5 end
6 while changes to any CLUSTERin occur do
7 foreach basic block b ∈ input program other than EXIT do
8 CLUSTERout(b) =

⋃

cs∈CandidateSucc(b) CLUSTERin(cs);
9 CLUSTERin(b) = CLUSTERgen(b) ∪ CLUSTERout(b);

10 end

11 end

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

49:10 Y.-P. You and S.-H. Wang

predicates of the control-flow equations for collecting cluster placement information
are given as follows.

—CLUSTERgen(b) is a set with only one element, which is the cluster at the beginning
of basic block b. CLUSTERgen(b) represents the cluster that is initially placed at the
beginning of basic block b and might “flow” to other basic blocks.

—CLUSTERout(b) is a set of clusters that are from the successors of basic block b and
can be moved to the end of block b.

CLUSTERout(b) =
⋃

cs∈CandidateSucc(b)

CLUSTERin(cs), (1)

where CandidateSucc(b) basically indicates a set of successors of block b in which all
of the clusters at the top of them can pass through the code-motion tunnel of block b,
that is, the clusters can be hoisted to the top of block b. CLUSTERout(b) basically holds
clusters that flow from the successors of block b and can be moved to the beginning of
block b. Moreover, CLUSTERout(b) excludes the clusters that belong to a set of clusters
at the top of a successor of block b when the other clusters in the set cannot be moved.
This exclusion eliminates the unnecessary code motion of clusters—the input buffer
must remain powered-up if the other clusters are not brought forward as well—and
thus decreases the likelihood of an increase in register pressure. Therefore, we define
CandidateSucc(b) as follows.

CandidateSucc(b) =

⎧

⎪

⎨

⎪

⎩

Succ(b), if ‖
⋃

s∈Succ(b) CLUSTERin(s)‖ ≤ CMT(b),

{s}, where s ∈ Succ(b) and

‖CLUSTERin(s)‖ ≤ CMT(b), otherwise,

(2)

where Succ(b) is the set of successor program blocks of block b, ‖X‖ returns the
number of usages of the input buffer registers in the set X, and CMT(b) is the code-
motion tunnel in block b. CMT(b) conceptually represents the number of unoccupied
registers between the first and last operations (instructions) of block b. Specifically,
CandidateSucc(b) is identical to Succ(b) if the number of usages of the input buffer
registers in CLUSTERin(s) for each successor s of block b is less than or equal to
the code-motion tunnel of block b; otherwise, it is a singleton set in which is one
of the successors, s, of block b, and ‖CLUSTERin(s)‖ is either less than or equal to
CMT(b) or the empty set. In the former case, Equation (1) transfers all of the dataflow
values at the points immediately before the successors of b to the point immediately
after b. In the latter case, suppose that there is a block b with two successors (a
basic block has at most two successors) and that the clusters at the top of the two
successors (one cluster in each successor) are able to be moved individually to the
top of b, that is, only one of the two clusters can pass through the code-motion
tunnel of block b. There should be a policy to determine shifting which of the two
clusters would make the most profit for global code motion. In general, path profiling
information would help in choosing an appropriate cluster to shift, with the cluster
in a highly skewed branch preferentially moved forward so as to be merged with
other clusters. However, feedback compilation is not practicable in many cases, so we
propose two alternatives—large-cluster-favorable and small-cluster-favorable code
motion—to determine which cluster to select for code motion when two clusters are
able to pass through a tunnel but only one of them is allowed to do so. As implied by
the names, the larger and smaller clusters are respectively chosen in the large- and
small-cluster-favorable approaches. An alternative, naı̈ve approach, called zero-or-all
code motion, is to move no clusters if not all of them can pass through the tunnel.
These approaches are evaluated and discussed in Section 5.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

Energy-Aware Code Motion for GPU Shader Processors 49:11

Fig. 8. An illustration of global code motion: (a) a control-flow graph before global code motion, (b) the
control-flow graph after global code motion without redundancy elimination, and (c) the control-flow graph
after global code motion.

—CLUSTERin(b) is a set of clusters that can be moved to the beginning of block b.

CLUSTERin(b) = CLUSTERgen(b) ∪ CLUSTERout(b). (3)

Basically, two kinds of clusters are included in the set of CLUSTERin(b): (1) the cluster
that are originally located at the beginning of block b after local code motion, namely,
the cluster in CLUSTERgen(b), and (2) those that flow from CLUSTERout(b).

We now present a running example to illustrate how the analysis works. Given a
control-flow graph, as shown in Figure 8(a), we can determine where DTO clusters can
be placed by performing cluster placement analysis. Suppose that steps I and II in the
energy-aware code-motion framework (Figure 5) have been performed and the static
register pressure information, CMT(b), has been calculated. In this example, it is found
that clusters C1, C2, C4, and C5 are located at the beginning of B1 to B4, respectively.
By the definition of CLUSTERgen(b), which is a set of clusters at the beginning of
block b, we have CLUSTERgen(B1) = {C1}, CLUSTERgen(B2) = {C2}, CLUSTERgen(B3) =
{C4}, and CLUSTERgen(B4) = {C5}. We iteratively perform the analysis backward from
block B4 according to Algorithm 2 until CLUSTERin(b) and CLUSTERout(b) converge
for each basic block b. Tables I and II give the computation results of the first and
second iterations, respectively, and Table III lists the computation results of the third
and fourth iterations (the algorithm converges in the fourth iteration). Note that a
superscript following CLUSTERout(b) represents the number of usages of input buffer
registers in the DTOs of those clusters in CLUSTERout(b).

While CLUSTERin(b) indicates the set of clusters that can be advanced to the begin-
ning of block b, the analysis results still cannot be used directly to move clusters, since
some clusters may be placed in multiple locations; however, CLUSTERin(b) provides
hints about where to place the clusters. Algorithm 3 outlines the pseudocode for global
code motion. We first perform cluster placement analysis to gather the CLUSTERin(b)
information for each block b and then determine the appropriate position for each clus-
ter (lines 2–15). The principle of the determination process is to advance a cluster as
far as possible away from its located block so that it has a higher probability of being
merged or clustered, and thereby to extend the inactive periods of the input buffer. In

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

49:12 Y.-P. You and S.-H. Wang

Table I. Results of Cluster Placement Analysis after the First Iteration

Block CMT(b) CLUSTERgen(b) CLUSTERin(b) CLUSTERout(b)

B1 3 {C1} {C1, C2, C4, C5} {C2, C4, C5}
3

B2 1 {C2} {C2, C5} {C5}
1

B3 2 {C4} {C4, C5} {C5}
1

B4 2 {C5} {C5} ∅

Table II. Results of Cluster Placement Analysis after the Second
Iteration

Block CMT(b) CLUSTERgen(b) CLUSTERin(b) CLUSTERout(b)

B1 3 {C1} {C1, C2, C4, C5} {C2, C4, C5}
3

B2 1 {C2} {C2} ∅

B3 2 {C4} {C2, C4, C5} {C2, C5}
2

B4 2 {C5} {C2, C5} {C2, C5}
2

Table III. Results of Cluster Placement Analysis after the Third and
Forth Iterations

Block CMT(b) CLUSTERgen(b) CLUSTERin(b) CLUSTERout(b)

B1 3 {C1} {C1, C2, C4, C5} {C2, C4, C5}
3

B2 1 {C2} {C2} ∅

B3 2 {C4} {C2, C4, C5} {C2, C5}
2

B4 2 {C5} {C2, C5} {C2}
1

general, if a cluster could be placed at both block b and block p (which is one of b’s pre-
decessors), it will eventually be placed at block p. However, if block b has at least two
predecessors and the cluster cannot pass through one of them, no code motion should
be performed in order to ensure program correctness. Moreover, even if the cluster
can pass through all of them, placing the cluster at all of its predecessors (named
cluster-duplication-allowed code motion) might increase the code size. Therefore, we
propose an alternative approach, called cluster-duplication-forbidden code motion, in
which a cluster c in block b can be moved to block d only if block d is a strict domi-
nator2 of block b, and cluster c can pass through all of the blocks on the paths from
block b to block d. In other words, c ∈ CLUSTERin(d) and c ∈ CLUSTERin(t), where
t is a block on the path between blocks d and b, that is, t ∈ {t | d ∈ S.Dom(t) and
b ∈ P.Dom(t)}, where d ∈ S.Dom(t) indicates block d is a strict dominator of block
t and b ∈ P.Dom(t) represents that block b is a postdominator2 of block t. In addi-
tion, the correctness of the program execution is guaranteed by not moving clusters
in a loop kernel to the blocks outside the loop. Hence a cluster c at the beginning of
b can be moved to block d only if there is no back edge from any of the descendant
blocks of b, Desc(b), to block t, which is located on the path between blocks d and b.
In other words, cluster c can be moved to block d only if Pred(t) ∩ Desc(b) = ∅, where
Pred(t) represents the set of predecessor blocks of t. We keep the placement informa-
tion in GCM(b) for each block b, which represents the set of clusters that should be
placed at the beginning of b and is initially the empty set. Accordingly, cluster c is
put into GCM(d) if c can be moved to the beginning of block d and the preceding con-
straints are met. Next, the clusters are moved according to the placement information

2Block M is a strict dominator of block N if every path from the entry that reaches block N has to pass
through block M, where M 	= N, while block N is a postdominator of block M if every path from block M to
the exit has to pass through block N.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

Energy-Aware Code Motion for GPU Shader Processors 49:13

Table IV. Placement Information GCM

Block CLUSTERin(b) S.Dom(b) P.Dom(b) Desc(b) GCM(b)

B1 {C1, C2, C4, C5} ∅ {B4} {B2, B3, B4} {C4}

B2 {C2} {B1} {B4} {B2, B4} ∅

B3 {C2, C4, C5} {B1} {B4} {B2, B4} ∅

B4 {C2, C5} {B1} {B4} {B2, B4} ∅

ALGORITHM 3: Global Code Motion
Input : A shader program after local code motion.
Output: The shader program with clustered data-transfer operations across basic

blocks.

1 Perform Cluster Placement Analysis;
2 foreach basic block b ∈ input program do
3 GCM(b) = ∅;
4 end
5 foreach cluster c where c is at the beginning of basic block b; that is, c = CLUSTERgen(b)

do
6 foreach basic block d ∈ S.Dom(b) in the order of their appearance and

c ⊆ CLUSTERin(d) do
7 foreach basic block t ∈ {t | d ∈ S.Dom(t) and b ∈ P.Dom(t)} do
8 if c � CLUSTERin(t) or Pred(t) ∩ Desc(b) 	= ∅ then
9 continue 6;

10 end

11 end
12 GCM(d) = GCM(d) ∪ c;
13 break;
14 end

15 end
16 foreach basic block b ∈ input program do
17 Perform code motion according to GCM(b);
18 end
19 foreach basic block b ∈ input program do
20 foreach data-transfer operation Ii clustered at the beginning of b in the reverse order

of their appearance do
21 if there exists an Ii−1 that is the last one prior to Ii and Ii and Ii−1 have the same

source operand then
22 Eliminate Ii and replace all of the usages of the definition of Ii with the

target operand of Ii−1;
23 end

24 end

25 end

(lines 16–18), and finally, the redundant DTOs are eliminated, as in local code motion
(lines 19–25).

Continuing with the running example in Figure 8(a), the calculation results of
GCM(b) are given in Table IV. Figure 8(b) illustrates the control-flow graph after global
code motion according to the GCM(b) information. Figure 8(c) presents the final results
of the global code motion after eliminating redundant DTOs.

4.4. Energy-Aware Code Motion for Output Buffers

The only difference between the concepts of code motion for output buffer and input
buffer accesses is the direction of motion. In the case of the output buffer, we prefer

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

49:14 Y.-P. You and S.-H. Wang

to demote the results from the temporary registers to the output buffer immediately
before the program terminates so that the output buffer can be kept off for as long as
possible. As illustrated in Figure 5, three phases of actions are performed: insertion
of DTOs, local code motion, and global code motion. Unlike in code motion for the
input buffer, we insert a DTO that relocates output data from a temporary register
to the output buffer after each output buffer access, replace the output buffer access
by the access to the temporary register, and then move the DTOs backward according
to local and global code motions so as to extend the idle period of the output buffer.
The concept of local code motion for the output buffer involves bringing backward
the DTOs (based on consideration of the register pressure) within basic blocks so as to
concentrate output buffer accesses, whereas we bring DTOs forward for the input buffer,
as described in Algorithm 1. There is no need to eliminate redundant DTOs in this case,
because each output buffer register is generally written to once only. Algorithm 3 is
also used for global code motion of the output buffer with some minor revisions with
regard to functions, such as dominators/postdominators, predecessors/successors, and
descendants/ancestors, being exchanged and the backward cluster placement analysis
defined in Algorithm 2 being modified into a forward analysis.

5. EXPERIMENTAL RESULTS AND DISCUSSION

5.1. Experimental Setup

We used a shader core in the Cyclone GPU, which runs at a frequency of 200 MHz with
a 10kB cell-based SRAM with hardware clock-gating control, as described in Figure 3,
as the target architecture for our experiments. The proposed energy-aware code-motion
framework was incorporated into an in-house compiler that was developed based on
the Vincent 3D Rendering Library [Vincent Pervasive Media Technologies 2011] by the
Institute for Information Industry (III), Taiwan, prior to the phase of register allocation,
and it was evaluated by a cycle-approximate simulator. Nine common shader programs
(which are provided by III) were evaluated. Table V summarizes the characteristics
of each benchmarks, which includes both fragment and vertex shader programs. The
second column of the table presents the execution time ratios of the fragment and vertex
shader programs, the third and fourth columns indicate the proportions of the input-
buffer-access cycles to the execution cycles of fragment/vertex shader programs and
the proportions of the output-buffer-access cycles to the execution cycles, respectively,
and the fifth column gives the numbers of registers required. In general, the lesser the
register requirement and the lower the proportion of input or output buffer accesses in
a program, the higher the reduction in energy reduction that might be achieved, since
the proposed framework is likely to cluster these input/output buffer accesses at the
beginning/end of the program.

The target architecture contains an eight-entry input buffer, an eight-entry output
buffer, and eight temporary registers in the shader core, with both the output buffer and
the temporary registers having read/write accesses, and the input buffer being read-
only. Since the target shader core has no load/store instructions, the compiler does not
generate memory spill code, but the readable/writable output buffer may be used for
storing spilled variables if none of the temporary registers are available. Therefore,
programs with register requirements higher than eight registers will contain extra
output buffer accesses due to spilling. Unfortunately, such an implementation makes
the proposed framework ineffective in managing the output buffer for certain shader
programs, since it changes the behavior of output buffer accesses after those accesses
have been clustered.

Table VI presents the dynamic power consumption of the input buffer, output
buffer, and other components of a Cyclone shader core given by the Synopsys Design

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

Energy-Aware Code Motion for GPU Shader Processors 49:15

Table V. Benchmark Characteristics

Benchmark name
Execution
time ratio

Proportion of
input-buffer-
access cycles⋆

Proportion of
output-buffer-
access cycles⋆

Register
requirement Description

Blur0
frag.† 90.6% 11.2%

10.9%
0.9%

3.1%
3 Blur rendering (high float

precision)vert.‡ 9.4% 8.3% 25.0% 3

Blur1
frag. 90.6% 11.2%

10.9%
0.9%

3.1%
3 Blur rendering (medium

float precision)vert. 9.4% 8.3% 25.0% 3

HGaussianBlur
frag. 82.8% 26.0%

26.7%
1.0%

6.0%
3 Horizontal Gaussian blur

renderingvert. 17.2% 30.0% 30.0% 2

NormalMap
frag. 27.7% 8.9%

10.4%
1.8%

2.5%
6 Adding detail to a flat

surfacevert. 72.3% 11.0% 2.7% 8

POM
frag. 95.1% 2.9%

3.5%
21.5%

20.9%
13 Parallax occlusion

mappingvert. 4.9% 14.9% 8.5% 6

SimpleT exLight
frag. 43.9% 19.1%

16.1%
1.5%

5.2%
6 Texture and light

renderingvert. 56.1% 13.8% 8.0% 7

SimpleT ex
frag. 69.5% 10.2%

11.7%
0.7%

3.6%
8

Texture rendering
vert. 30.5% 15.0% 10.0% 7

V GaussianBlur
frag. 83.9% 24.0%

15.0%
1.0%

5.6%
3 Vertical Gaussian blur

renderingvert. 16.1% 30.0% 30.0% 2

WaterWave
frag. 93.8% 3.6%

6.2%
0.6%

1.7%
5

Water wave rendering
vert. 6.2% 45.5% 18.2% 3

⋆The proportion of the input-/output-buffer-access cycles to the execution cycles of the fragment and/or

vertex shader programs.
†frag. is abbreviation of fragment shader program.
‡vert. is abbreviation of vertex shader program.

Table VI. Dynamic Power Consumption in a Cyclone Shader
Core

Component Power Consumption (unit) Power Breakdown

Input Buffer 3.28 9.1%

Output Buffer 5.51 15.3%

Others 27.20 75.6%

Compiler R© [Synopsys 2009]. The energy overhead of hardware clock gating can
be ignored, since only an extra AND gate is needed to implement the clock-gating
mechanism, but an extra cycle is required to turn on the gated clock.

5.2. Evaluations

The results presented in the following sections are evaluated with three configurations:
performing the proposed energy-aware code-motion framework when (1) only the input
buffer, (2) only the output buffer, and (3) both of the I/O buffers are considered to be
clock gated. Sections 5.2.1, 5.2.2, and 5.2.3 discuss the evaluation results, respectively.

5.2.1. Applying the Proposed Framework to the Input Buffer. Figures 9–11 give the com-
pilation and simulation results of the energy-aware code-motion framework when
clock gating is considered during the use of the input buffer and compare the results
from five types of experiments: (1) no clock-gating mechanism (used as the baseline),
(2) naı̈ve clock gating without code motion, (3) clock gating with local code motion,
(4) clock gating with both local and global code motions, and (5) clock gating with naı̈ve

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

49:16 Y.-P. You and S.-H. Wang

Fig. 9. Reduction in energy consumption of the input buffer when the input buffer is considered to be clock
gated.

Fig. 10. Performance degradation when the input buffer is considered to be clock gated.

code motion. Naı̈ve clock gating means that the input buffer is clock gated immediately
after the buffer is accessed and its gated clock is turned on before an access, and hence
suffers from frequent clock gating; whereas naı̈ve code motion refers to relocating all
input data from the input buffer to the temporary registers at the beginning of the
program execution.

Figure 9 illustrates the reduction in energy consumption of the input buffer for vari-
ous programs, each of which includes both fragment and vertex shader programs. The
figure shows that the method of naı̈ve clock gating, clock gating with local code motion,
clock gating with both local and global code motions reduced the energy consumption
of the input buffer by averages of 85.6%, 96.1%, and 96.8%, respectively, relative to the
conventional no-clock-gating method. The reductions made by naı̈ve clock gating are
reversely proportional to the proportion of the input-buffer-access cycles of programs

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

Energy-Aware Code Motion for GPU Shader Processors 49:17

Fig. 11. Reduction in energy consumption of the entire shader processor when the input buffer is considered
to be clock gated.

(i.e., column three of Table V). Clock gating with both local and global code motions
reduced the energy consumption by the greatest amount because it clusters—and also
eliminates—DTOs (the accesses to the input buffer) across basic blocks so as to keep
the buffer clocked-off for as long as possible and reduce the amount of clock gating.
Clock gating with naı̈ve code motion was only applicable to the first three benchmarks
whose register pressure is sufficiently low to allow the promotion of input data from
the input buffer to the temporary registers at the beginning of the programs, so the
fourth bar is absent for the other benchmarks. Recall that the Cyclone shader cores
have no load/store instructions, and thus spilling a register to memory does not apply,
and the execution of a shader program will fail if the register allocator runs out of
registers. Although the method of clock gating with naı̈ve code motion should be the
simplest approach and provide the greatest reduction in energy consumption (if it is
applicable), the other proposed methods actually work just as well.

Although the naı̈ve clock-gating method provided acceptable results in terms of the
reduction in energy consumption of the input buffer, frequent clock gating signifi-
cantly slowed down program execution and increased the energy consumption of the
other parts of the shader processor, which counteracted the benefit. Figure 10 presents
the performance degradation due to the inserted DTOs and the clock-gating delay.
Without appropriate management of the input buffer accesses, the performance degra-
dation was up to 24.1% (18.4% on average) for naı̈ve clock gating. When we applied
the proposed energy-aware code-motion framework, the performance degradation was
on average reduced to 7.4% and 5.3% using the local and global code-motion schemes,
respectively. Local code motion worked as well as both local and global code motions
for most of the programs containing a single basic block, but did not work well for
POM, SimpleTexLight, SimpleTex, and WaterWave, which are characterized by small
basic blocks and complex control flows. When using only local code motion, POM,
SimpleTexLight, SimpleTex, and WaterWave suffered from the inserted DTOs, espe-
cially within loops, and some of them took longer to execute, even compared with naı̈ve
clock gating.

Figure 11 shows the reduction in energy consumption for the entire shader processor,
based on the data in Table VI. The energy consumption of the entire shader processor
was reduced by −9.8%, 1.8%, and 3.9% for naı̈ve clock gating, clock gating with local

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

49:18 Y.-P. You and S.-H. Wang

Fig. 12. Reduction in energy consumption of the output buffer when the output buffer is considered to be
clock gated.

code motion, and clock gating with both local and global code motions, respectively,
relative to the no-clock-gating method. Again, local code motion had a negative effect
on the energy consumption for POM and WaterWave compared with naı̈ve clock gating
due to their inclusion of small basic blocks and complex control flows. Clock gating
with both local and global code motions failed to reduce the energy consumption of the
entire shader processor for SimpleT exLight and SimpleT ex (with an increase of 0.6%
and a reduction of 0.1%, respectively), since the high register pressure and the slightly
high proportion of input buffer accesses of these programs disallowed the code-motion
scheme to cluster all of the input buffer accesses, meaning that these programs still
suffered from frequent clock gating although the amount of clock gating was reduced.

In Section 4.3, we propose several strategies for global code motion: (1) cluster-
duplication-allowed and (2) cluster-duplication-forbidden code motions for deciding
how a cluster is moved across a joint point of programs where two branches meet. We
also propose (1) large-cluster-favorable, (2) small-cluster-favorable, and (3) zero-or-all
code motions for determining which cluster to move across a branch point of programs
when two clusters (one in each branch path) could be moved across the branch point
individually. The strategies basically produced the same outcome with regard to both
the reduction in energy consumption and the performance degradation for the evalu-
ated benchmarks (with average less than 3% of variation). Comparing the strategies
for joint-point code motion, cluster-duplication-allowed code motion performed slightly
better than cluster-duplication-forbidden code motion, since the former provided more
opportunities for clusters to be merged with other clusters, allowing more DTOs to be
eliminated. As for the strategies for branch-point code motion, zero-or-all code motion
performed the worst in most cases, since it did not allow even partial code motion
of clusters and thus lost the opportunity for a movable cluster to be merged with
other clusters, while large-cluster-favorable and small-cluster-favorable code motions
performed about the same.

5.2.2. Applying the Proposed Framework to the Output Buffer. Figures 12–14 illustrate the
reduction in energy consumption of the output buffer, the performance degradation,
and the reduction in energy consumption of the entire shader processor, respectively,

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

Energy-Aware Code Motion for GPU Shader Processors 49:19

Fig. 13. Performance degradation when the output buffer is considered to be clock gated.

Fig. 14. Reduction in energy consumption of the entire shader processor when the output buffer is considered
to be clock gated.

obtained when applying the reverse code-motion framework described in Section 4.4 for
various programs, each of which includes both fragment and vertex shader programs.
These figures show that the proposed framework was effective in reducing the energy
consumption of the entire shader processor for most programs (with an average of
7.6% reduction and an average of 7.3% of performance degradation), but it is only
slightly more effective than the naı̈ve clock-gating method (which has an average of
6.9% reduction in energy consumption of the entire shader processor and an average of
7.9% of performance degradation). This slight difference is attributed to the proportion
of the output buffer accesses of these programs being mostly less than or equal to 6%
(as shown in Table V) and the code-motion schemes having few chances to gather DTOs
or even eliminate redundant DTOs; this also explains naı̈ve clock gating, clock gating

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

49:20 Y.-P. You and S.-H. Wang

Fig. 15. Reduction in energy consumption of the I/O buffers when the I/O buffers are considered to be clock
gated.

with local code motion, and clock gating with both local and global code motion having
the same reduction in energy consumption of the output buffer for each program, as
shown in Figure 12.

It is noteworthy that the proposed framework increased the average energy con-
sumption of the entire shader processor by 8.1% for vertex shader programs, since
some of these vertex shader programs are so small (relative to fragment programs)
that the additional DTOs and the clock-gating operations inserted by the code-motion
framework have a negative impact on energy consumption. Nevertheless, the reduc-
tion in energy consumption of the entire shader processor was 7.6% on average when
considering both fragment and vertex shader programs.

However, POM behaved extremely badly, with 3.7% of increase in energy consump-
tion of the entire shader processor and 16.4% of performance degradation. This negative
effect is attributed to the access behavior of the output buffer in POM being more com-
plex than that of other programs: the proportion of the output buffer accesses is 20.9%
and the number of register requirement is 13, which exceeds the number of temporary
registers (which is eight). In addition to the accesses triggered by programmers, the
output buffer might be used for spilling registers due to the lack of load/store operations
in the target shader processors. Furthermore, according to OpenGL ES 2.0 specifica-
tion, programmers are allowed to use the output buffer in the same manner as the
use of the temporary registers. Unfortunately, these kinds of output buffer access are
very difficult to barely move. Therefore, the output buffer is often accessed randomly
and frequently so that the recurring clock gating negates energy-efficiency efforts, es-
pecially for programs with a high register pressure. The phenomenon will eventually
diminish as the number of temporary registers increases. We performed another ex-
periment with 16 temporary registers in the shader core and obtained 12.5% reduction
in energy consumption of the entire shader processor for POM.

5.2.3. Applying the Proposed Framework to Both Input and Output Buffers. Figures 15–18 give
the reduction in energy consumption of the I/O buffers, the performance degradation,
the reduction in energy consumption of the entire shader processor, and the energy-
delay product for various programs when clock gating is considered during the use of
I/O buffers, respectively.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

Energy-Aware Code Motion for GPU Shader Processors 49:21

Fig. 16. Performance degradation when the I/O buffers are considered to be clock gated.

Fig. 17. Reduction in energy consumption of the entire shader processor when the I/O buffers are considered
to be clock gated.

Figure 15 shows that the method of naı̈ve clock gating, clock gating with local code
motion, clock gating with both local and global code motions reduced the energy con-
sumption of the I/O buffers by averages of 90.7%, 94.3%, and 94.7%, respectively,
while Figure 16 shows that these methods increased the number of execution cycles
by averages of 26.1%, 15.0%, and 12.4%, respectively. Figure 17 indicates that the
energy-aware code motion framework was effective in reducing the energy consump-
tion of the entire shader processor, with an average of 13.1% reduction, for applying
the framework to both of the I/O buffers, whereas naı̈ve clock gating and clock gating
with local code motion reduced the energy consumption by averages of 0.9% and 11.0%,
respectively. It can be seen that the proposed method has a synergistic effect on the

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

49:22 Y.-P. You and S.-H. Wang

Fig. 18. Energy-delay product in terms of the entire shader processor when the I/O buffers are considered
to be clock gated.

combination of applying it individually to the input and output buffers for most pro-
grams. This effect can be explained by the fact that for most shader programs, the live
intervals of input variables (residing in the input buffer) usually do not overlap with
those of output variables (residing in the output buffer); hence, promoting data in the
input buffer and demoting data in the output buffer to the temporary registers do not
interfere with each other.

Figure 18 illustrates the energy-delay product relative to the no-clock-gating method.
The figure shows that the proposed framework has a positive effect on reducing the
energy-delay product by an average of 2.2%, whereas naı̈ve clock gating and clock
gating with local code motion increased the energy-delay product by averages of 25.1%
and 2.7%, respectively. The proposed framework had a negative impact on POM and
SimpleTexLight (with an increase of 9.7% and 5.5%, respectively), since POM and
SimpleTexLight are characterized by small basic blocks and complex control flows, as
described in Section 5.2.1, and POM has complex output buffer accesses, as described
in Section 5.2.2. However, when the number of the temporary registers is increased to
16, the proposed framework reduced the energy-delay product by 18.7% for POM. With
the 16-temporary-register configuration, the reduction in energy-delay product is 4.8%
on average for applying the framework to both of the I/O buffers. However, for most
programs, the results with the 16-temporary-register configuration are worse than
those with the 8-temporary-register configuration. This is attributed to the increased
size of temporary registers also consuming energy per se, and in our experiment, it was
assumed that eight temporary registers consume the same energy as an eight-entry
output buffer, since they are both readable and writable.

All in all, the proposed energy-aware code-motion framework was found to be effective
in reducing the energy consumption of the entire shader processor and the overall
energy-delay product. The framework reduced the energy consumption of the entire
shader processor by averages of 3.9%, 7.6%, and 13.1%, and reduced the energy-delay
product by averages of 3.0%, 0.7%, and 2.2% for applying the framework to the input
buffer, output buffer, and both of the I/O buffers, respectively. In the framework, local
code motion is suitable for handling programs with large basic blocks, and combining

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

Energy-Aware Code Motion for GPU Shader Processors 49:23

global code motion with local code motion can further handle those with small basic
blocks or complex control flows.

6. CONCLUSIONS AND FUTURE WORK

Herein, we have proposed an energy-aware code-motion framework for a compiler solu-
tion to reduce the energy consumption of buffers and memory in stream-processing-like
architectures. Our experiments have demonstrated that the proposed energy-aware
code-motion framework improves the energy consumption and performance: the en-
ergy consumptions of the entire shader processor were reduced from −9.8% (by naı̈ve
clock gating) to 3.9% and 6.9% to 7.6% compared with the no-clock-gating method when
we applied the proposed framework to the input buffer and output buffer, respectively,
while the performance degradation was reduced from 18.4% to 5.3% and 8.0% to 7.3%.
The results can be further improved if we apply the proposed framework to both of
the I/O buffers: an average of 13.1% of reduction in energy consumption of the shader
processor was achieved, whereas the energy-delay product was reduced by 2.2%.

We are currently in the process of incorporating single-static-assignment forms into
our framework to simplify the data-dependency problem so as to increase the efficiency
of clustering buffer-access instructions. The experiments were performed only with
clock-gating mechanisms, and we expect that our approach will be even more beneficial
if it is applied to system-on-a-chip platforms with power-gating controls that reduce
both dynamic and static energy consumption.

The proposed framework could also be applied to compilers for embedded CPUs
or any other platforms as long as the execution model of such a platform is similar
to the stream-processing model (in which the processing unit reads input data from
an input buffer, performs calculations, and writes the results into an output buffer)
and the processing unit is equipped with power control systems for the I/O buffers.
Conceptually, data caches in CPUs could be treated as a joint I/O buffer, that is, the
data caches are both an input buffer and an output buffer. With our proposed scheme,
accesses to the data caches would be clustered, with data reads and writes forming
distinct groups, and hence the data caches may be forced to enter a low-power mode
when they are not accessed. However, general-purpose programs may require more
accesses to data caches than graphics-processing programs to I/O buffers, making the
clusters less concentrated. We think this might be an interesting issue and leave it for
future study.

REFERENCES

AHO, A. V., LAM, M. S., SETHI, R., AND ULLMAN, J. D. 2006. Compilers: Principles, Techniques, and Tools 2nd
Ed. Prentice Hall.

APPLE 2011. OpenGL ES on iOS. http://developer.apple.com/iphone/library/documentation/
3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/OpenGLESontheiPhone/OpenGLESontheiPhone.
html\#//apple_ref/doc/uid/TP40008793-CH101-SW1.

CHANG, C.-M., CHEN, Y.-J., LU, Y.-C., LIN, C.-Y., CHEN, L.-G., AND CHIEN, S.-Y. 2011. A 172.6mW 43.8GFLOPS
energy-efficient scalable eight-core 3D graphics processor for mobile multimedia applications. In Pro-
ceedings of the IEEE Asian Solid-State Circuits Conference (A-SSCC’11). 405–408.

CHIEN, S.-Y., TSAO, Y.-M., CHANG, C.-H., AND LIN, Y.-C. 2008. An 8.6mW 25Mvertices/s 400-MFLOPS 800-MOPS
8.91mm2 multimedia stream processor core for mobile applications. IEEE J. Solid-State Circuits 43, 9,
2025–2035.

COOPER, K. D., SIMPSON, L. T., AND VICK, C. A. 2001. Operator strength reduction. ACM Trans. Program. Lang.
Syst. 23, 5, 603–625.

DROPSHO, S., KURSUN, V., ALBONESI, D. H., DWARKADAS, S., AND FRIEDMAN, E. G. 2002. Managing static leakage
energy in microprocessor functional units. In Proceedings of the 35th International Symposium on
Microarchitecture (MICRO’02). IEEE Computer Society Press, 321–332.

GOOGLE. 2011. Android 3.2 platform. http://developer.android.com/sdk/android-3.2.html.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

49:24 Y.-P. You and S.-H. Wang

HONG, S. AND KIM, H. 2010. An integrated GPU power and performance model. In Proceedings of the 37th
Annual International Symposium on Computer Architecture (ISCA’10). 280–289.

KHRONOS GROUP. 2010. OpenGL ES 2.0 specification. http://www.khronos.org/opengles/2_X/.

KHRONOS GROUP. 2011. OpenGL. http://www.opengl.org/.

KHRONOS GROUP. 2009. The OpenGL ES Shading Language. http://www.khronos.org/opengles/sdk/docs/
manglsl/.

KO, M.-Y., LIN, I.-T., LEE, S.-Y., LYU, Z.-H., CHANG, C.-M., AND CHENG, Y.-J. 2011. Cyclone—A GPU IP designed
for embedded 3D games. In Proceedings of the 24th Conference on Computer Vision, Graphics, and Image
Processing (CVGIP’11). SS1–1–4.

MAHJUR, A., TAGHIZADEH, M., AND JAHANGIR, A.-H. 2008. Lazy instruction scheduling: Keeping performance,
reducing power. In Proceedings of the International Symposium on Low Power Electronics and Design
(ISLPED’08). 375–380.

MICROSOFT. 2008. DirectX common-shader core (directx hlsl). http://www.microsoft.com/windows/directx/
default.mspx.

MOCHOCKI, B. C., LAHIRI, K., CADAMBI, S., AND HU, X. S. 2006. Signature-based workload estimation for mobile
3D graphics. In Proceedings of the 43rd Annual Design Automation Conference (DAC’06). 592–597.

PALM. 2011. webOS developer center. https://developer.palm.com/.

RELE, S., PANDE, S., ONDER, S., AND GUPTA, R. 2002. Optimizing static power dissipation by functional units in
superscalar processors. In Proceedings of the 11th International Conference on Compiler Construction
(CC’02). 261–275.

ROY, S., RANGANATHAN, N., AND KATKOORI, S. 2009. Exploring compiler optimizations for enhancing power
gating. In Proceedings of the IEEE International Symposium on Circuit and Systems (ISCAS’09). 1004–
1007.

SILPA, B., VEMURI, K. S., AND PANDA, P. R. 2009. Adaptive partitioning of vertex shader for low power high
performance geometry engine. In Advances in Visual Computing. Lecture Notes in Computer Science,
vol. 5875, Springer, Berlin, 111–124.

SYNOPSYS. 2009. Design Compiler. http://www.synopsys.com/.

VINCENT PERVASIVE MEDIA TECHNOLOGIES. 2011. Vincent 3D rendering library—open source graphics libraries
for mobile and embedded devices. http://www.vincent3d.com/software/software.html.

WANG, P.-H., CHEN, Y.-M., YANG, C.-L., AND CHENG, Y.-J. 2009. A predictive shutdown technique for GPU shader
processors. IEEE Comput. Architect. Lett. 8, 1, 9–12.

YANG, H., GOVINDARAJAN, R., GAO, G. R., CAI, G., AND HU, Z. 2002. Exploiting schedule slacks for rate-optimal
power-minimum software pipelining. In Proceedings of the 3rd Workshop on Compilers and Operating
Systems for Low Power (COLP’02).

YOU, Y.-P., HUANG, C.-W., AND LEE, J. K. 2005. A Sink-N-Hoist framework for leakage power reduction. In
Proceedings of the ACM International Conference on Embedded Software (EMSOFT’05). 124–133.

YOU, Y.-P., HUANG, C.-W., AND LEE, J. K. 2007. Compilation for compact power-gating controls. ACM Trans.
Des. Autom. Electron. Syst. 12, 4, 51.

YOU, Y.-P., LEE, C., AND LEE, J. K. 2002. Compiler analysis and supports for leakage power reduction on
microprocessors. In Proceedings of the International Workshop on Languages and Compilers for Parallel
Computing (LCPC’02). Lecture Notes in Computer Science, vol. 2481, Springer Verlag, Berlin, 63–73.

YOU, Y.-P., LEE, C., AND LEE, J. K. 2006. Compilers for leakage power reduction. ACM Trans. Des. Autom.
Electron. Syst. 11, 1, 147–164.

ZHANG, W., KANDEMIR, M. T., VIJAYKRISHNAN, N., IRWIN, M. J., AND DE, V. 2003. Compiler support for reducing
leakage energy consumption. In Proceedings of the 6th Design Automation and Test in Europe Conference
(DATE’03). 1146–1147.

Received September 2011; revised April, September 2012; accepted December 2012

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 49, Publication date: December 2013.

