
Energy-Aware Design Techniques for
Differential Power Analysis Protection

Luca Benini∗
lbenini@deis.unibo.it

Alberto Macii‡
alberto.macii@polito.it

Enrico Macii‡
enrico.macii@polito.it

Elvira Omerbegovic�

elvira.omerbegovic@bulldast.com
Massimo Poncino#

poncino@sci.univr.it
Fabrizio Pro�

fabrizio.pro@bulldast.com

�BullDAST s.r.l.
Torino, ITALY

‡Politecnico di Torino
Torino, ITALY

∗Univ. di Bologna
Bologna, ITALY

#Univ. di Verona
Verona, ITALY

ABSTRACT
Differential power analysis is a very effective cryptanalysis
technique that extracts information on secret keys by mon-
itoring instantaneous power consumption of cryptoproces-
sors. To protect against differential power analysis, power
supply noise is added in cryptographic computations, at the
price of an increase in power consumption. We present a
novel technique, based on well-known power-reducing trans-
formations coupled with randomized clock gating, that in-
troduces a significant amount of scrambling in the power
profile without increasing (and, in some cases, by even re-
ducing) circuit power consumption.

Categories and Subject Descriptors
B.5 [Hardware]: Register-Transfer-Level Implementation;
B.6 [Hardware]: Logic Design; B.7 [Hardware]: Inte-
grated Circuits

General Terms
Design

Keywords
Low-power design, differential power analysis

1. INTRODUCTION
As electronics becomes more pervasive in every-day’s life,
an increasing amount of confidential information is electron-
ically processed, stored and communicated.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

Protection of confidential data is thus becoming a serious
concern for many electronic systems. Cryptography is the
best known answer to this challenge, as it provides a way
to securely encode digital information [1, 2]. In synthesis, a
cryptographic scheme is an encryption function C = f(P, K)
that maps an unprotected block of bytes P (the plain-text)
into a secure block of bytes C (the cyphertext), and gives
an easy way (a description function P = f−1(C, K)) to re-
cover the plain-text from the cyphertext if some additional
information K is available (the key).
Security protocols, which enable secure exchange of informa-
tion, have cryptographic algorithms as basic building blocks
[3]. Given their strategic importance in security engineering,
many cryptographic schemes have been developed over the
years. A complete taxonomy of the field is outside the scope
of this work (the interested reader is referred to [1, 2]); how-
ever, a simple distinction can be made between symmetric
(or secret) key and asymmetric or (public) key algorithms.
Symmetric-key schemes rely on a secret key being in ex-
clusive possession of securely communicating peers, while
asymmetric schemes relax this assumption by requiring a
secret key only for message decryption (encryption is per-
formed using a public key). It is important to notice that
both symmetric and asymmetric schemes require, at some
point, the manipulation of a secret key. If an adversary
comes into possession of the secret key, security is violated.
Cryptographic algorithms can be implemented as hardware
blocks or as software routines. The advantages of software
solutions are in terms of flexibility and adaptability. Yet,
dedicated hardware cryptoprocessors are still very common
in practice, because many good algorithms have been stan-
dardized and they do not require in-field modifications. In
addition to that, dedicated cryptoprocessors are significantly
faster, more compact and much more energy-efficient than
their SW counterparts [2, 4, 5, 6].
The work we present in this paper focuses on protection
of cryptoprocessors against power analysis, a particularly
insidious class of security attacks aiming at recovering the
values of secret keys that are stored inside the cryptoproces-
sor.

36

4.1

Numerous attacks have been devised to break cryptoproces-
sors (good surveys are presented in [7, 3]). A very successful
class of attacks is based on side channel information. The
basic strategy in side-channel attacks is to monitor and mea-
sure various phenomena (side channels), such as electromag-
netic emissions and power supply currents during encryption
and decryption, and try to extract from them information on
the secret key value. These attacks have reported a worry-
some rate of success especially in cracking portable secure
devices (e.g., smart cards) which cannot be kept under con-
tinuous surveillance and are frequently in contact with non-
trusted devices (e.g., public smart card readers). In particu-
lar, power analysis (PA) techniques, which monitor the cur-
rent absorbed over time by the cryptoprocessor, have been
remarkably successful in breaking industry-standard cryp-
tographic algorithms (e.g., DES, RSA) in smart cards [8].
To counter power analysis attack, various techniques have
been proposed. Physical protection of the power supply side
channel [9, 10] can be very effective but it is not always vi-
able because of system constraints (e.g., cost limitations,
power supply accessibility specifications). Software imple-
mentations have been protected by modifying the algorithms
in an effort to de-correlate execution and secret key value
[11]. Finally, hardware-supported techniques have been pro-
posed that modify the cryptoprocessor architecture trying
to enhance its robustness against PA [12, 13], at the price
of significantly increased power consumption. Our approach
belongs to the latter class. Similarly to previously published
work, we increase PA resilience by adding random noise to
deterministic encryption-decryption computation, but as a
key element of novelty we do so without increasing power
consumption. On the contrary, our approach reduces power
consumption if compared with a baseline implementation.
Furthermore, we leverage EDA technology to enhance the
applicability of our technique to many crypto-algorithms in
an automated fashion. The basic idea is to provide a set
of PA-resilient hardware primitives (soft macros) that can
be instantiated by a cryptoprocessor designer. These primi-
tives are commonly used in many algorithms. Additionally,
the designer is allowed to trade off power savings for PA-
resilience in a controlled fashion at design time. This is a
very desirable feature, because encryption and decryption
are often required in environments with tight power con-
straints. Preliminary results show that the application of
our approach to the design of a HW unit for RSA encryption
preserves the original average power consumption in spite of
a non-deterministically scrambled pattern-by-pattern power
profile.
The paper is organized as follows: Section 2 reviews the
previous work on attacks based on side-channel information.
Section 3 describes the design of the randomized, power-
managed units. Finally, Section 4 gives some results on the
power masking potential of these units.

2. POWER ATTACKS
Power analysis attacks come in many variants. The basic
PA technique, known as simple power analysis (SPA) [14],
monitors the power supply of a cryptoprocessor while ex-
ecuting a known encryption algorithm, and correlates the
time-domain current waveform with various phases of the
algorithm. If the algorithm has a key dependent execu-
tion flow, for instance if it has branches dependent on the
value of some bits of the secret key, the current waveform

presents easily recognizable features that reveal key infor-
mation. SPA has limited effectiveness if the algorithm flow
is data-independent, but it can be effective to crack naive
implementations of the encryption algorithm.
Differential power analysis (DPA) [8] and its variants (such
as higher-order power analysis [11]) is significantly more
dangerous, in fact it is effective even when execution flow
is not data-dependent, and for some encryption algorithms
it does not even require knowledge of the plain-text. To per-
form DPA, an attacker needs a collection of m power traces
Ti[j], i = 1, . . . , m (j is the discrete time index of the values
in the trace), and their corresponding cyphertext values Ci.
The critical step in applying DPA is the definition of a se-
lection function D(Kb, Ci) → {0, 1} that, given sub-key Kb

consisting of a (small) subset of b key bits, can split the set
of m traces and cyphertext values in 2 disjoint subsets. The
definition of D depends on the encryption algorithm, and
it is the critical step in a successful DPA attack. It can be
viewed as a clustering algorithm, which given the cyphertext
and assuming the knowledge of the key bits Kb, divides the
cyphertext into two clusters.
DPA proceeds as follows. It assumes a value of the sub-key
Kb, it applies the selection function to partition the Ti[j]
in two disjoint subsets D0 and D1, such that Ti[j] ∈ D1 if
D(Kb, Ci) = 1 and Ti[j] ∈ D0 if D(Kb, Ci) = 0. Then, it
computes the average trace for the two subsets, and their
difference. In symbols:

∆[j] =

�
Ti∈D1

Ti[j]

|D1| −
�

Ti∈D0
Ti[j]

|D0| (1)

The crypto-analysts then analyzes ∆[j]. If it appears like
random noise, then the assumed value of the key bits is
incorrect. If it shows visible peaks, then, with very high
probability, the sub-key Kb has been found. Clearly, in the
worst case all 2b combinations of b bits must be tried, thus a
viable selection function should operate on a small sub-key.
Once the sub-key has been discovered, the analysis can then
proceed to other bits. Viable selection functions have been
found for industry-standard encryption algorithms like DES
and RSA [14, 8], hence DPA is a serious treat to security,
and practical demonstration of successful attacks on smart
cards have been published [11].
The fundamental premise for the applicability of DPA is
that the power profile for an encryption algorithm depends
in some parts on the value of the secret key. All known
DPA countermeasures attempt to falsify this premise. An
intuitive approach is to enforce independence of Ti[j] on the
value of the secret key, or in other words, modify the al-
gorithm or the hardware to reduce the sensitivity of the
power profile to the secret key value. This approach is ad-
vocated in [13, 12]. Unfortunately, it is extremely difficult
to guarantee perfect equalization, and high-resolution, high-
accuracy DPA defeats equalization attempts. For this rea-
son, most recently proposed DPA countermeasures focus on
an alternative approach, namely randomization or, equiva-
lently, random noise insertion [15].
Randomization techniques have many embodiments, rang-
ing from randomized masking of the secret key, to clock noise
insertion, to repetition of the algorithm on randomly gen-
erated secret keys, to embedding the secret key in a much
larger random key [15, 16, 17].
Even though DPA can reduce the effect of randomization by

37

averaging over a larger number of traces, it has been shown
that the number of traces to be averaged increases rapidly
with the noise level [15]. Hence, DPA becomes ineffective
because too many data need to be collected. For this reason,
noise injection via randomization appears to be more gen-
erally accepted as DPA countermeasure than equalization.
Unfortunately, noise injection approaches proposed in the
past always imply redundant computation (often, a signifi-
cant amount of it), and they have a sizable power overhead.
Our approach addresses this limitation. It is based on a
simple intuition: Executing elementary computations in en-
cryption algorithms in a randomized fashion, using func-
tional blocks that non-deterministically select among differ-
ent implementations of a functional unit. Power is saved be-
cause the alternative implementations are not structurally
nor functionally equivalent, but they are low-power, limited
functionality versions of the original unit. Randomly se-
lecting them has the double beneficial effect of increasing
algorithmic noise (thereby foiling DPA) and saving power
(to amortize the cost of redundant hardware instantiation).

3. POWER MASKABLE UNITS
This section describes the general principles that enable the
design of power-managed modules, and how the latter can
be used as a base architectural template to realize power-
maskable, low-power data-path units.

3.1 Power-Managed Units
The design of a power-managed unit is based on the principle
of the “common case” computation. In its most general
form, shown in Figure 1, a unit A, whose inputs are latched
by a register R1, is put in parallel with a smaller block
B, that implements the most typical behavior of A, with a
smaller power cost. Block B may in general depend on fewer
inputs (IB) than the number of inputs of block A (IA), as
well as it might produce a result on fewer outputs (OB) than
those of A (OA).

�

�

��

��

���

�

�

�

��

�

�

��

��

��

�

Figure 1: Architecture of a Power-Managed Unit.

Power savings are achieved by activating block B instead of
the complete functionality A for most of the cycles. Unnec-
essary switching in either block is prevented by selectively
“freezing” the inputs (thus reusing the values of the previous
cycle) through the deactivation of the corresponding input
registers. The choice of which block to activate in a given
cycle is done by a selector (Sel) which, based on the observa-
tion of the inputs, enables the corresponding input registers.

The selection logic also drives the output multiplexer that
steers the appropriate output (A or B).
The energy savings come at the cost of extra area, that must
be taken into account when evaluating the overall power of
the unit. In general, if the probability of activating block B
is significantly greater than 0, average power will benefit of
this scheme. Such probability is equivalent to the fraction
of cycles p in which the output of the Sel block evaluates
to 1. This allows to derive a rough energetic balance of the
power-managed scheme. Power decreases if:

(1 − p) · PA + p · PB + Poverhead < PA (2)

where, PA (PB) represents the average power consumption
of block A (B), and Poverhead accounts for the extra power
consumption due to the selection function, the output MUX,
and the corresponding wiring.
The scheme of Figure 1 is mostly conceptual, and its actual
implementation must carefully consider the detailed timing
of the operations. In the literature, this architectural tem-
plate has found many implementations [18, 19, 20, 21, 22],
that differ in the type of target designs (combinational vs.
sequential circuits) and the abstraction level at which they
are applied (gate-level vs. RTL). The reader is referred to
the book of Benini and De Micheli [23] for a comprehensive
survey of the various implementations.

3.2 Masking Power Consumption
Using power management to reduce the average power con-
sumption of data-path units in cryptographic hardware is
not beneficial from the point of view of their resistance to
power attacks. As a matter of fact, the principle of power
management is precisely that of explicitly exposing notice-
able variations in the power consumption over time (i.e.,
separating high power-consuming “states” from low-power
consuming ones). Therefore, power management schemes
apparently seem to be incompatible with the objective of
masking power consumption.
At a more careful analysis, however, we notice that the prin-
ciple of instantaneous power randomization can also be ap-
plied to power-managed units. Conventional randomization
exploits redundant hardware that adds noise to a given func-
tionality (the entire algorithm, or part of it) so that the
signal-to-noise ratio is reduced and a power attack is less
likely to work. This addition is done at the cost of extra
power consumption.
In contrast, power-managed units can create randomization
in a quite natural way. Consider the variant of the basic
power-managed architecture depicted in Figure 2, where the
output of the Sel block is now ANDed with a hardware ran-
domizer. This implies that probability p will be decreased
of a random amount, depending on the output of the ran-
domizer. On a cycle-by-cycle basis, this will randomly alter
the power consumption of the power-managed module, thus
achieving the objective of masking the power consumption
over time, yet still with lower average power than the origi-
nal unit.
The randomizer can be implemented in hardware as a linear
feedback shift register (LFSR); the randomizing input that
“modulates” the output of the Sel block can be any of the
outputs of the LFSR. To further increase the degree of ran-
domness, the LFSR may include a parallel input that can
be used to load a new seed once every user-specified number
of cycles.

38

�

�

��

��

���

�

�

�

��

�

�

��

��

��

�

��������	

�

Figure 2: Power Masking of a Power-Managed Unit.

It should be observed that, given the typical duration of a
cryptographic computation, a relatively small LFSR (i.e.,
less than 16-bit) already provides an acceptable degree of
randomness. In fact, using appropriate characteristic poly-
nomials, a r-bit LFSR can guarantee a repetition period
of 2r − 1, i.e., any generated r-bit value will not be gen-
erated again within the successive 2r − 1 attempts. For a
16-bit LFSR, this guarantees about 16K repetition-free cy-
cles, which is definitely a long enough period for any single
cryptographic computation. In most cases, much smaller
values of r may suffice.
The possibility of using a small-width LFSR reduces its
hardware overhead. In fact, if we compare the typical size
of the data inputs used in cryptographic applications (e.g.,
1024-bit values), the addition of a 16-bit LFSR becomes
barely noticeable.

3.2.1 Power Savings/Masking Tradeoffs
If the random number generator implemented by the LFSR
provides a sufficiently uniform distribution, we can assume
that the probability of any single output bit of the LFSR
is about 0.5. This implies that the probability p used in
Equation 2 must be replaced by p′ = p

2
. In many cases,

where the value p is not very large, this reduction of the
probability is too drastic.
We have thus devised a simple scheme that allows to trade
off power reduction (i.e., the reduction of p) with the effi-
ciency of the masking operated by the randomizer. The ac-
tual probability of activating block B (i.e., the probability
output s of the AND gate in Figure 2) is given by p′ = p · q,
where p is the probability of the Sel being 1, and q is the
probability of the randomizing signal, under the assumption
of their mutual statistical independence.
The most efficient randomization is achieved when q = 0.5.
If we skew this probability towards either 0 or 1, we will in-
crease the predictability of the masking process. However,
lower values of q have different impact on the power con-
sumption of the power-managed module than higher ones.
In particular, values of q > 0.5 will be preferable, because
they will tend to keep p′ closer to p.
One way of increasing q simply consists of taking k LFSR
outputs, and ORing them to generate the actual randomiz-
ing input that is to be ANDed with the output of the Sel
block. This arrangement is shown in Figure 3.

��������	

��

�	�

�

�

Figure 3: Trading Off Power Savings for Masking.

Assuming that all LFSR outputs are statistically indepen-
dent of each other, the resulting probability q at the output
of the k-input OR gate is given by:

q = 1 − Πk
i=1(1 − Prob(oi)) (3)

where oi is the i-th LFSR output, and Prob() its probability.
Since Prob(oi) ≡ 0.5, ∀i, Equation 3 is equivalent to q =
1 − 2−k. As an example, by OR-ing k = 3 LFSR outputs,
we get q = 1 − 2−3 = 7

8
= 0.875.

4. EXPERIMENTAL RESULTS
We have implemented a number of data-path components
using the scheme proposed in Figure 2, and we have used
them as basic building blocks for a power-masked crypto-
processor implementing the RSA algorithm. Details on the
achieved results are summarized in the sequel.

4.1 Analysis of Power-Maskable Units
In order to illustrate the benefits in terms of both power
masking and power consumption control that the architec-
tural template of Figure 2 may provide, let us consider a
32-bit add-comparator unit. Its traditional implementa-
tion (synthesized using Synopsys DesignCompiler onto the
0.18µm HCMOS8 technology library by STMicroelectron-
ics), when exercised with a given input stream, produces the
power consumption profile (cycle-by-cycle power, estimated
using Synopsys PowerCompiler) shown in Figure 4, whose
average value is 6.05 mW. By applying the automatic pre-
computation generation technique of [18], we obtain a low-
power version of the macro whose average consumption is
4.54 mW, with the cycle-by-cycle power profile of Figure 5.
Clearly, power consumption has decreased significantly, but
no power masking occurs, as the power profile is fully de-
terministic and dependent on the input data. By further
modifying the architecture of the macro in accordance to
the template of Figure 2, for the same input stream, we ob-
tain the power profile depicted in Figure 6, whose average
value is 5.42 mW. It is evident that the power profile of the
latter implementation is scrambled with respect to that of
the macro with deterministic precomputation logic.
The degree of power masking is quantified by the amount of
randomness introduced in the profile is related to probability
q of the randomizer to mask precomputation (25% in our
case). Yet, power consumption s reduced by approximately
10.4% w.r.t. the traditional macro.

39

0

1

2

3

4

5

6

7

8

0 5000 10000 15000 20000 25000

’addcomp_prof’

Figure 4: Power Profile of Original Unit.

0

2

4

6

8

10

12

14

16

18

0 5000 10000 15000 20000 25000

’addcomp_pre_prof’

Figure 5: Power Profile of Precomputed Unit.

0

2

4

6

8

10

12

14

16

18

0 5000 10000 15000 20000 25000

’addcomp_pre_rnd_prof’

Figure 6: Power Profile of Masked Unit.

4.2 Library of Power-Maskable Units
We built a library of power-maskable data-path units, whose
usage is thought for the implementation of secure cryp-
toprocessors. The library includes a comparator, an add-
comparator, an adder, a multiplier and a residue-to-weighted
number converter. All units are written in synthesizable
VHDL, and have parametric bit width of the I/O operands.
Although all implementations fall into the general template
of Figure 2, for some units (i.e., comparator, add-comparator
and RTW number converter), we resorted to the precompu-
tation schemes of [18], while for the others (i.e., adder and
multiplier) we devised specific architectures based on data-
range analysis and null-data detection.
The results of the power simulations, performed on different
input streams and assuming 32-bit operands, are collected
in Table 1. The Worst stream is such that precomputation
never occurs; thus, power consumption is always increased,
but this is obviously not what happens in real usage of the
units. Similarly, the Best stream is such that precomputa-
tion is always active. Thus, power savings are significant.
Finally, streams Real1 and Real2 represent typical examples
of usage of the units. In both cases (and for all units) aver-
age power does not increase after the randomizer is inserted.

Unit Str Orig preC ∆P Rnd ∆P
Best 6.09 4.12 -32.35 5.15 -15.44

AddC Real1 7.19 5.13 -28.65 7.02 -2.36
Real2 6.05 4.54 -24.96 5.42 -10.41
Worst 5.51 11.61 110.71 12.74 131.22
Best 5.76 3.97 -31.08 4.21 -26.91

R2W Real1 5.31 4.22 -20.53 4.29 -19.21
Real2 6.72 6.41 -4.61 6.57 -2.23
Worst 4.35 4.49 3.22 4.61 5.98
Best 2.34 1.45 -38.03 2.03 -13.25

Comp Real1 2.33 1.56 -33.05 2.26 -3.00
Real2 3.21 2.98 -7.17 3.04 -5.30
Worst 1.82 3.36 84.62 4.28 135.16
Best 3.24 1.98 -38.89 2.70 -16.67

Add Real1 16.19 11.25 -30.51 12.47 -22.98
Real2 5.88 4.28 -27.21 4.93 -16.16
Worst 4.19 5.29 26.25 5.92 41.28
Best 67.95 42.45 -37.53 50.19 -26.14

Mult Real1 134.29 121.29 -9.68 126.60 -5.73
Real2 68.20 48.68 -28.62 57.76 -15.31
Worst 143.34 157.49 9.87 157.89 10.15

Table 1: Power Results for Library of Units.

4.3 Case Study
We applied the proposed power masking approach to the
implementation of a typical cryptographic operation that is
used in many public key algorithms, namely, modular expo-
nentiation (ME). In the RSA algorithm, for example, ME
coincides with the actual encryption/decryption step.
ME is the operation that is usually subject to DPA attacks,
because during decryption, it directly involves the private
key [11, 24].
ME is defined as Memod N ; in RSA decryption, M repre-
sents the cyphertext, e is the private key, and N is part of
the public key generated in an initial phase of the algorithm.
Conversely, in the encryption step, M represents the plain-
text, while e and N are the public key of the destination
entity. In this case, M is represented as an integer in the
interval [0 . . . N − 1]. Notice that the private key is used by
ME only in the decryption phase.
A direct hardware implementation of exponentiation is usu-
ally deemed as impractical. For this reason, several efficient
implementations of ME have been proposed by researchers.
Since efficiency is not the main objective of our analysis,
we have chosen a relatively simple implementation of ME,
namely the square-and-multiply algorithm, that is widely
used in many cryptosystems [24]. The algorithm explic-
itly uses multiplication (2), division (2), addition (1) and
comparison (1). Therefore, many of these data-path units
can be implemented using the components taken from our
library of power-maskable units.
The power profiles of the three implementations of the ME
unit (traditional, precomputed and randomized) are shown
in Figures 7, 8 and 9. The increased degree of randomness
derived by the instantiation of the power maskable units is
evident in Figure 9 (it corresponds to a probability q = 0.25
used for all randomized units). The average power consump-
tion of the traditional implementation is of 351.1 mW, that
of the precomputed implementation is 339.7 mW and the
power of the randomized implementation is 350.9 mW, thus
slightly below the original. We can thus conclude that, al-
though the presented results are preliminary, the approach
introduced in this paper is very promising.

40

0

100

200

300

400

500

600

700

800

900

0 5000 10000 15000 20000 25000

’t1’

Figure 7: Power Profile of ME Unit.

0

200

400

600

800

1000

1200

1400

1600

1800

0 5000 10000 15000 20000 25000

’t2’

Figure 8: Power Profile of Precomputed ME Unit.

0

200

400

600

800

1000

1200

1400

1600

1800

0 5000 10000 15000 20000 25000

’t3’

Figure 9: Power Profile of Masked ME Unit.

5. CONCLUSIONS
We have presented a novel design technique aimed at pro-
tecting cryptoprocessors against attacks based on power pro-
file analysis. In particular, we have proposed the concept
of randomized power masking, which is based on a com-
bination of power-management techniques and randomized
clock gating. End result of the application of this new de-
sign paradigm is the introduction into the cryptoprocessor of
a significant amount of non-deterministic scrambling in the
power profile, which prevents external attacks at no cost in
the circuit average power consumption.

Acknowledgments
This work was supported, in part, by the European Commis-
sion, under grants IST-2001-30125 “POET” and IST-2001-
30093 “EASY”.

6. REFERENCES
[1] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of

Applied Cryptography, CRC Press, 1998.

[2] B. Schneier, Applied Cryptography, II Edition, Wiley, 1996.

[3] R. Anderson, Security Engineering: A Guide for Building
Dependable Distributed Systems, Wiley, 2001.

[4] D. Yuliang, M. Zhigang, W. Tao, ”Implementation of RSA
Cryptoprocessor based on Montgomery Algorithm,” IEEE
International Solid-State Circuits Conference, pp. 254-256,
Jan. 1998.

[5] J. Goodman, A. Chandrakasan, ”An Energy-Efficient
Reconfigurable Public-Key Cryptography Processor,” IEEE
Journal of Solid-State Circuits, vol. 36, no. 11, pp. 1808-1820,
Nov. 2001.

[6] L. Shuguo, Z. Runde, G. Yuanging, ”A 1024-bit RSA
Crypto-Coprocessor for Smart Cards,” IEEE International
Conference on ASICs, pp. 352-355, Sept. 2001.

[7] O. Koemmerling, M. Kuhn, ”Design Principles for
Tamper-Resistant Smart Card Processors,” USENIX
Workshop on Smart Card Technology, pp. 9-20, May 1999.

[8] P. Kocher,J. Ja, B. Jun, ”Differential Power Analysis,”
CRYPTO 99: Advances in Cryptology,, Springer-Verlag, pp.
388-397, 1999.

[9] A. Shamir, ”Protecting Smart Cards from Passive Power
Analysis with Detached Power Supplies,” CHES-00:
International Workshop on Cryptographic Hardware and
Embedded Systems Springer-Verlag, pp. 71-77, 2000.

[10] P. Rakers, L. Connell, T. Collins, D. Russel, ”Secure
Contactless Smart Card ASIC with DPA Protection,” IEEE
Journal of Solid-State Circuits, vol. 36, no.3, pp. 559-565,
March 2001.

[11] T. Messerges, E. Dabbish, R. Sloan, ”Examining Smart-Card
security under the thread of power analysis attacks,” IEEE
Transactions on Computers, Vol. 51, no. 5, pp. 541-552, 2002.

[12] S. Moore, R. Anderson, M. Kuhn, ”Improving Smart Card
Security using Self-Timed Circuit Technology,” IEEE
International Symposium on Ansychnronous Circuits and
Systems, pp. 120-126, 2002.

[13] H. Saputra, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, R.
Brooks, S. Kim, W. Zhang, ”Masking the Energy Behavior of
DES Encryption,” DATE-03: IEEE Design Automation and
Test in Europe, pp. 84-89, 2003.

[14] P. Kocher, ”Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS and Other Systems,” CRYPTO-96:
Advances in Cryptology, Springer-Verlag, pp. 104-113, 1996.

[15] S. Chari, C. Jutla, J. Rao, P. Rohatgi, ”Towards Sound
Approaches to Counteract Power-Analysis Attacks,”
CRYPTO-99: Advances in Cryptology, Springer-Verlag, pp.
398-412, 1999.

[16] M. Hasan, ”Power Analysis Attacks and Algorithmic
Approaches to their Countermeasures for Koblitz Curve
Cryptosystems,” IEEE Transactions on Computers, Vol. 50,
no. 10, pp. 1071-1083, Oct. 2001.

[17] J. Golic, C. Tymen, ”Multiplicative Masking and Power
Analysis of AES,” CHES-02: International Workshop on
Cryptographic Hardware and Embedded Systems,
Springer-Verlag, pp. 198-212, 2002.

[18] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, M.
Papaefthymiou, “Precomputation-based Sequential Logic
Optimization for Low Power,” IEEE Transactions on VLSI
Systems, Vol. 2, no. 4, pp. 426-436, Dec. 1994.

[19] V. Tiwari, S. Malik, P. Ashar, “Guarded Evaluation: Pushing
Power Management to Logic Synthesis/Design,” IEEE
Transactions on CAD, Vol. 17, no. 10, pp. 1051-1060, Oct.
1998.

[20] L. Benini, G. De Micheli, A. Lioy, E. Macii, G. Odasso, M.
Poncino, “Synthesis of Power-Managed Sequential Components
Based on Computational Kernel Extraction,”, IEEE
Transactions on CAD, Vol. 20, no. 9, pp. 1118-113, Sep. 2001.

[21] L. Benini, G. De Micheli, E. Macii, M. Poncino, R. Scarsi,
“Symbolic Synthesis of Clock-Gating Logic for Power
Optimization of Synchronous Controllers,”
ACM Transactions on Design Automation of Electronic
Systems, Vol. 4, No. 4, pp. 351-375, Oct. 1999.

[22] G. Lakshminarayana, A. Raghunathan, K. S. Khouri, N. K.
Jha, S. Dey, “Common-Case Computation: A High-Level
Technique for Power and Performance Optimization,”
DAC-36: ACM/IEEE Design Automation Conference,
pp. 56-61, June 1999.

[23] L. Benini, G. De Micheli, Dynamic Power Management of
Electronic Systems, Kluwer Academic Publishers, 1998.

[24] T. S. Messerges, E. A. Dabbish, R. H. Sloan, “Power Analysis
Attacks of Modular Exponentiation in Smartcards,” CHES-99:
International Workshop on Cryptographic Hardware and
Embedded Systems Springer-Verlag, pp. 144-157, 1999.

41

