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ABSTRACT A fully verifiable and deployable framework for optimizing schedules in a batch-based

production system is proposed. The scheduler is designed to control and optimize the flow of batches of

material into a network of identical and non-identical parallel and series machines that produce a high

variation of complex hard metal products. The proposed multi-objective batch-based flowshop scheduling

optimization (MOBS-NET) deploys a fully connected deep neural network (FCDNN) with respect to three

performance criteria of energy, cost and makespan. The problem is NP-hard and considers minimizing the

energy consumed per unit of product, operations cost, and the makespan. The output of the method has

been validated and verified as optimal operational planning and scheduling meeting the business operational

objectives. Real-time and look ahead discrete event simulation of the production process provides the

feedback and assurance of the robustness and practicality of the optimum schedules prior to implementation.

INDEX TERMS Scheduling, deep neural networks, discrete event simulation (DES), key performance

indicator (KPI), operational planning and scheduling (OPS), optimization, hard metal.

I. INTRODUCTION

The desire to find the silver bullet of implementable

scheduling solutions in a complex manufacturing environ-

ment is persistent. Despite their theoretical and mathemat-

ical strength, most scheduling optimization solutions have

remained impractical or, at best, highly restricted to exces-

sively controlled environments. However, with significant

advancements inmachines tools automation, shop floor infor-

mation management systems, and adaptability of the work-

force, a breakthrough is occurring. As the industrial system

evolves into the fourth generation known as ‘Industry 4.0’,

more accurate insight into the capabilities and constraints of

plants is becoming possible [1]–[3]. Industry 4.0 is widely

accepted in the manufacturing industry since it guides a novel

and promising production paradigm. The evolution of data-

driven system state analysis is encouraging new numerical

and logical methods but at the same time implementable.

Together, these generate and leverage the concept of ‘smart

factories’ to comprise the next industrial revolution for
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manufacturing, characterized by increased flexibility, pro-

ductivity, efficiency, and sustainability, ultimately ensuring

competitiveness in the global market [4], [5].

In today’s markets, diversity of demand and competi-

tiveness increases, and manufacturing corporations have to

cut out their costs and improve their production line flex-

ibility. However, they face complex scheduling problems

in their workshops. Operational planning and scheduling

(OPS) in flexible manufacturing systems (FMS) operations

is basically a challenging task, and if a decision-making

model can evaluate different scenarios based on production

constraints and business requirements, it will provide the

flexibility needed [6]. OPS involves effective resources allo-

cation (labour, material, equipment) to activities over time in

order to satisfy temporal and resource capacity constraints.

Moreover, OPS optimizes different objectives by minimizing

production cost and makespan whilst maximizing energy

efficiency (i.e., minimizing energy consumed per unit of

production) and customer satisfaction [7], [8]. The flowshop

scheduling or OPS problem, known as a non-deterministic

polynomial-time (NP) hard problem, is significantly diffi-

cult to optimize by most traditional optimization techniques.
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In these methods, performing the optimization algorithm on

the particular points on the domain of the target function

(e.g., the linear motion between these points) will cause

the process to be converged toward the local optimum [9].

Artificial Intelligence (AI) and Machine Learning (ML) [10]

techniques have a great place in the OPS domain due to their

abilities in dealing with the operational diversity and intrinsic

difficulty of most scheduling optimization problems [11].

Schalkoff [12] defined the field of AI in 1990 as follows:

‘‘Artificial intelligence includes problem-solving by methods

modelled after natural activities and cognitive processes of

humans using computer programs that simulate them’’.

The motivation of this study is to prove and subsequently

capitalize on the new capabilities of Industry 4.0 enabled

plants and provide a robust and implementable optimal

and effective schedule to maintain the highest production

efficiency and productivity. Optimal schedules lead to the

faster movement of products (higher productivity) with lower

energy consumption (green manufacturing), betters use of

assets (optimal efficiency) and most importantly, at a lower

cost. Even though the application of a robust scheduler is

articulated in one complicated use case in this paper, the same

solution can be deployed in any batch-based flowshopsmanu-

facturing system. The current scheduling tools have predomi-

nantly been designed to optimize performance oriented KPIs,

such as minimizing makespan and maximizing production

rate. Energy-aware scheduling [13] is a new trend to embed

sustainability into the production planning stage by explic-

itly considering energy consumption as a decision criterion

in shop floor scheduling. To the best of our knowledge,

no commercial tool is available in the market for discrete

part manufacturing operations in general and for batch-based

flowshop operations in particular. Motivated by the needs

of a major discrete part manufacturer in tungsten carbide

hard metal manufacturer in Europe that run energy-intensive

operations, the current research aims to develop and pilot test

a novel methodology for flowshop scheduling considering

multiple decision objectives, including cost, makespan, and

energy consumption, and to develop a prototype as the proof

of concept.

In this study, the case study is a highly complex hard metal

like most in real-world general flowshop operations. Due to

the shortage of OPS collected from live operation to the Deep

Neural Network (DNN) training, a simulation model has

been designed and implemented in Arena 2018 simulation

package. Simulationmodelling is a conventional approach for

evaluating the scheduling of a flowshop system; however, it

is costly and time-consuming, and design and developing a

model and interpreting the results requires expertise [14]. The

simulator generates limited random scenarios for scheduling

sequences based on various random batch numbers and their

related makespan, total cost, energy consumption and other

key performance indications (KPIs). These limited scenarios

OPSs andKPIs assign as a training dataset to a proposed Fully

Connected Deep Neural Network (FCDNN) as a decision-

making model to replace the simulation model. FCDNN is

a data-driven approach to OPS problems that does not rely on

the traditional prescriptive formulation. NNs are effective and

cheaper alternative modelling of flowshop scheduling opti-

mization problems which, due to their robustness, parallelism

and ability for optimization, have been successfully deployed.

This study reports on research aiming to develop and

pilot test a novel methodology for a Multi-Objective Batch

Base Flowshop Scheduling Optimisation using FCDNN

(MOBS-NET) that schedule batch jobs for identical and non-

identical machines in parallel and series formations and find

quick optimal solutions to the flowshop OPS problem that

is not possible to meet through the simulation. The main

contributions of this research can be listed as follows:

• Design and development of a bespoke data acquisition

system to collect critical production data. This is a com-

plex exercise in the industry, and the process of digiti-

zation can be replicated and scaled to similar industrial

processes and cases (i.e., powder metallurgy)

• Data analytics for combining total production system

and co-relating key performance indicators of manufac-

turing process.

Deploy the FCDNNmethod to find the optimal production

plan by satisfying makespan, total cost, energy consump-

tion objectives. In the following section, we will critically

review the literature on scheduling methods. In Section 3,

we describe a real-world hard metal use case flowshop with

an overview of the framework and some results of the sim-

ulation model. In Section 4, we propose the FCDNN model

that has been designed to be trained from a combination of

collected and a finite number of simulation outputs. This will

be followed by a comparison and evaluation of the deployed

model’s behaviour in the dynamics of the complex opera-

tions. Finally, this study is concluded by a discussion of the

proposed method application, conclusion and future research

direction.

II. RELATED WORK

In the last three decades, extensive research has been dedi-

cated to the pressing problem of how to schedule a production

plan to meet all the desired efficiency, productivity, eco-

nomic, and environmental needs. A plethora of Mathemati-

cal [15], Heuristic [16], and AI-inspired [10] methods have

been suggested. Despite their significant theoretical and at

times, specific practical achievements, to the best knowledge

of the authors, there does not seem to be a complete and

universally accepted scheduling method. Current solutions

and in our own experience with a wide range of industries

show that the efficiency of scheduling solutions is marred

with inflexibilities that arise from the dynamics of system

settings, characteristics, operating conditions, and the ever-

changing production objectives [17].

Alternative names given to scheduling methods in the liter-

ature are priority rules, scheduling rules, or dispatching rules.

Earlier enumerative algorithms provided prescriptive mod-

elling solutions such as linear programming, and later, more

advanced techniques such as mixed integer programming
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(MIP) were introduced [4], [15]. For instance, [15] applied

MIP to analyze the trade-off between minimizing makespan,

a measure of service level and total energy consumption.

In the heuristic approach, a problem-specific algorithm

is developed. Heuristics scheduling methods, due to their

ease of implementation, satisfactory performance, low com-

putational requirement, and flexibility to incorporate domain

knowledge are regularly applied in practice [16]. A heuris-

tic approach is a typical way to solve scheduling problems

because they are NP-hard. But the inherent weakness of

classical Heuristic methods is their reliance on expert judg-

ments, perspective and continuous interference. In the former

cases, bias and in the latter inefficiencies make them at times

impractical and case constrained (meta-heuristic [18], [19]

and hyper-heuristic [20]–[22]. For example, the dispatching

rule approach calculates the priority of each job via a set

of predetermined dispatching rules (i.e., limitation of expert

perspective). The jobs are then processed in order of descend-

ing priority. This approach occasionally encounters issues in

selecting the optimal dispatching rule because it cannot out-

perform other rules in every scheduling situation (i.e., ineffi-

ciency) [16], [17]. Thus, an optimal universal dispatching rule

is absent (i.e., case constrained). To address this shortcoming

and to leverage the emergence of big data in manufacturing,

a strand of scheduling literature has emerged [23]–[28].

Zarandi et al. [11] and Li et al. [29] have conducted

comprehensive literature reviews on artificial and computa-

tional intelligence techniques for scheduling problems and

categorized them into five methods of Fuzzy logic [30],

Expert systems, Machine learning [31]–[33], Stochastic local

search optimization algorithms and modern heuristic algo-

rithms with global optimization performance. Figure 1 shows

these AI techniques applied in the scheduling problem.

Despite extensive research workstreams, there is a persist-

ing inflexibility in the scheduling models; they are incapable

of absorbing the real uncertainties and the unpredictability of

real-time and real-world events. To name a few, quality and

quantity changes of demand, changes to the due date, states

and condition of the shop floor equipment, machinery, raw

material quality fluctuation, etc.

In dynamic scheduling models where one or more con-

ditions like the number of jobs or the number of operation

machines are not constant, the problems are under the con-

sideration of multiple objectives, time-dependent processing

time and uncertainty [4], [34]. TheML techniques are becom-

ing popular because they can handle NP-Hard problems by

learning complex relationships between the input and out-

put variables, which are difficult to express with analytical

and heuristic methods in a dynamic manufacturing envi-

ronment [10], [31], [35]. As examples of these techniques,

studies of scheduling sequences by decision trees by [36]

and Support Vector Machine (SVM) algorithms by [37].

Other studies used Self- OrganizingMaps (SOMs) to indicate

adequate dispatching [38]. However, these machine learn-

ing methods cannot easily guarantee sufficient prediction

FIGURE 1. AI techniques over intelligent scheduling problem [11].

accuracy and are not suitable for high dimensional data due

to the curse of the dimensionality problem.

NNs are one of the AI techniques that have been used

to solve complex problems which might do not have any

analytical or heuristic solutions. TheNNs are a computational

model inspired by the biological nerve system and has an out-

standing learning ability between input and output patterns

of a complex system. The feed-forward NNs are a model

used for data collection, pattern recognition, and simulation

of various complex systems. Through the use of non-linear

data, artificial and deep NNs have better predictive quality

due to their excellent learning ability. The ability to learn from

examples makes NNs a particularly powerful programming

tool when domain rules are not entirely certain or in the

presence of inaccurate or conflicting data [39].

Although NNmodelling has been employed for scheduling

problems in the literature [40]–[42], most of these studies

have focused on simple operations flow, whichmay not incor-

porate the complexity of real-world operations. Modelling

and analysis for the detailed scheduling of complex opera-

tions flowshop systems by NN need more attention. With this

objective, [14] developed a classical NN model to quickly

assess the expected profit, as the main KPI, of different
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schedules of flowshop scheduling. The proposed model helps

managers estimate the throughput based on historical data

with a trained classical NN model instead of a simulation

model, which is costly and complex. We borrowed some of

the ideas from this study and extended it for a multi-objective

flowshop scheduling where multiple KPI’s are considered,

including machines utilization, energy consumption, opera-

tion cost, and settings changes time. Furthermore, the applied

NN in this study has a simple structure (since published

in 2013) and has a significant difference with the proposed

MOBS-NET in our study in the layout and performance.

The recent examples of improved NNs methods in produc-

tion scheduling and objective optimization are the applica-

tion of Long-short term memory (LSTM) in [10], Artificial

NN in [39], DNN in [40], and Convolutional NN in [40].

Recently, hybrid techniques that involve searching strategies

that navigate heuristic algorithms in the problem domain

away from local optima have been applied, such as hybrid

neural network–genetic algorithm [41].

Kim et al. [40] studied machine allocation in a semicon-

ductor fabrication production scheduling problem with an

automated material handling system’s constraint. A DNN-

based scheduling algorithm to solve the problem has been

proposed, and a small-sized experiment was simulated to

address a machine targeting problem. This study claims that

the proposed method could improve the productivity KPI

(throughput and machine utilization) of each workstation.

Despite some similarities of this study with our proposed

method in data preparation and collection, but there are some

differences in the selected objective KPIs and applied DNN

layout with the proposed MOBS-NET. For instance, energy

consumption has not been selected as a decision criterion in

shop floor scheduling in this research.

The makespan of the orders depends on several factors,

including arrival rate of material, variability of material/

production process, and the batch sizes. Some manufactur-

ing systems deploy batch processing procedures to avoid

cumbersome setups, stoppages and to facilitate material han-

dling. A batch is defined as a group of jobs that have to

be processed jointly, and a batch scheduling problem con-

sists of grouping jobs on each machine into batches that are

scheduled either in serial or in parallel. They can be classi-

fied into static and dynamic scheduling [42]. In our experi-

ence with multiple plants, we have realized that batch size

is an important parameter that affects makespan (directly)

and scheduling (indirectly) of an FMS. Literature suggests

meta-heuristic evolutionary learningmethods such as Genetic

Algorithm (GA) or nature-inspired meta-heuristic algorithms

such as monarch butterfly optimization (MBO) [43] or ele-

phant herding optimization (EHO) [44] algorithm as useful

approaches to deal with scheduling challenges [45]. A good

scheduling method can use the ability of batch processing

machines (BPMs) efficiently to achieve expected perfor-

mance while satisfying the constraints of batch size and other

properties, i.e., grouping jobs into batches before applying a

scheduling rule [46]. In recent years, there have been many

studies on BPMs scheduling problems in different manufac-

turing processes.

Due to the complexity of solving batch scheduling

sequences in a real-world flowshop (for more than two-stage

flowshops), there is no mathematical function to analyze a

stochastic model for these problems. Therefore, computer

simulations or AI methods can be employed to deal with the

complexity of this kind of complex and non-linear problem.

In this approach, different sequence combinations can be

considered for processing different jobs with different spec-

ifications (e.g., processing time). Hence, different sequence

combinations lead to different makespan, cost or KPIs

(e.g., energy consumption and quality) as the outputs of

the simulation or trained AI model. An excellent example

of a research study on batch grouping and scheduling was

conducted by [16]. A clustering algorithm has been designed

to group similar jobs under machine capacity constraints and

then applied a scheduling rule selection model based on a

classical NN for batch sequencing. Furthermore, two differ-

ent computer simulations based on networkmodelling (visual

SLAM language software) and Discrete Event Simulation

(DES) (Arena 12 simulation software), which were designed

to solve the batch grouping and scheduling problems, respec-

tively, are discussed in [14] and [47]. Noteworthy, the pro-

posedMOBS-NET in this study offers significant insight into

the grouping of the batches.

All reviewed literature has been applied in one or a com-

bination of various platforms such as single machine [48],

parallel machine [49], flow shop [8], series batch [50], [51],

real-time [20], and flexible manufacturing systems schedul-

ing [52]. Between these, the parallel machine scheduling

(PMS) problem is an atypical scheduling problem with

extensive practical relevance. The solution approach to the

PMS problem mainly includes heuristic algorithm, and AI

method such as EA and NNs have been widely studied

to solve the problem with the objective of minimizing the

makespan [15], [53]–[55].

With reference to the reviewed literature on the weakness

and strengths of different production scheduling and objective

optimization techniques, batch grouping, as well as PMS

problems, the proposed alternative MOBS-NET is presented

in the following section.

III. PROBLEM DESCRIPTION AND DATA PREPARATION

In this section, a real-world case study in a tungsten carbide

hard metal corporation will be reviewed.

A. CASE STUDY

A Tungsten carbide hard metal corporation is an intensive

user of precision grinding, milling and turning operations,

particularly for the final stages of hard metals (WC-Co) wear

tooling for numerous industrial applications. Surface fin-

ishing, including surface roughness, dimensional tolerances

and structural integrity, must meet precise standards which

demand continuous measuring and quality control. The non-

quality is very costly at this stage since the production process
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is based on powder metallurgy. The recycling process must

then be made through the chemical dissolution of the parts

to recover the starting powders. The production strategy is

MTO, and the process is included three productions’ cell’.

The production details are as the following.

• Cell 1 includes powder preparations in two non-identical

furnaces and dry machine; the prepared powder enters

cell 2 for pressing with two identical machines to build

the products and then enters to green machining to preci-

sion machining. The product then moves to cell 3, which

includes two identical sintering and a finishingMachine.

Figure 2 shows the production process flow.

• There are four products (P1 to P4) with the presented

raw material (RM) usage in Table 1. RM contains RM1,

RM2, RM3 andRM4 and cost £50, £60, £65, and £70 per

kilogram, respectively.

• Furnaces 1 and 2 have a capacity of 10 and 15 kg (20%

overload is acceptable) and need to run for 10 hrs and

20 hrs (plus 4 hrs for warming up) respectively to cook

and prepare the raw materials.

• The dry machine has a capacity of a maximum of 15kg

and takes 8 hrs to dry and dehumanize the raw material

and make the final powders. Three operators work for

furnace and dry machine.

• Press machine 1 and 2 press the powders for products

P1 to P4 in 15, 45, 30 and 60 minutes, respectively. Set

up a time for each machine is 15 minutes. Press machine

causes defect type 2 over 1% of products.

• Green machine cuts and machines the products are com-

ing out of press machines. For products P1 to P4 in 1,

2, 1.5 and 2 hours respectively. Set up a time for each

machine is 30 minutes. Green machine causes defect

type 3 over 1% of products.

• Two sintering machines sinter the products in 1hrs for

lighter than 2kg and 1.5hrs for heavier products. The

defect cost in this machine is 10% of product cost to

recycle and recover the powders.

Finishing the products last 2 hours and machine set up

time is 15 min. 70% of whole defects occur in this stage

which is called tolerance defect (type 4). Defects in

this line are non-recyclable and should be sold to the

scrapyard with 2% of their raw material weights.

• Overall, six operators are available for pressing, green,

sintering and finishing machines.

• Each shift is 7 hrs work plus an hour break (8 hrs

overall).

• Furnaces and Machines running costs (including labour,

electrical power, depression and maintenance but

excluding raw material cost) and Electrical power usage

are presented in Table 2.

• Electricity cost rate is: 5p/kWh

B. DATA ACQUISITION AND PREPARATION

A detailed shop floor data collection solution was imple-

mented to collect the required data for OPSs and KPIs.

We implemented a digital material tracking and traceability

FIGURE 2. Production flowshop.

TABLE 1. Product raw material contents.

TABLE 2. Machine electrical consumption.

solution that followed the product throughout the production

pathways. In addition, we developed an efficient real-time

data acquisition platform to collect live data in the process.

It included a combination of automatic data acquisition, e.g.,

sensors, actuation, machine states, and operator availability,

as well as a simplified digitalized manual data acquisition

(e.g., Human Machine Interface panels) connected within

a shopfloor Control Area Network (CAN) and SCADA.

Furthermore, operational data was also automatically and

directly queried from the proprietary enterprise data man-

agement system (in this case, the SAP platform). Further

contextual intelligence was gathered through interviews with

production and accounting managers. The collected dataset

was limited to ten regular orders and wasn’t sufficient for the

training of the proposed FCDNN model. For this purpose,

a Mont Carlo simulation of the use case has been designed

and implemented in Arena simulation to generate a reliable

and larger amount of dataset.

C. DES SIMULATION AND MODELLING

The DES simulation is used in this study used to generate

a reliable and sufficient number of scenarios for the train-

ing and validation of the proposed MOBS-NET method.

Based on the availability and accessibility of accumulation

of live production data and manufacturing information from
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the shopfloor, DES simulation of the use case was designed

and modelled in Arena 2018 simulation and modelling pack-

age. DES is an effective tool for the analysis of system

performance, system monitoring, prediction and scheduling

problems [58]. DES has also shown to outperform other

analytical or physical models capturing the complexities of

manufacturing systems [59].

The simulation details are not objective of this research

study; see more details in [60], [61]. To create a steady-

state analysis and to statistically validate the DES models

of optimum scheduling solutions, the following assumptions

have been made in consultation with the production man-

agement team at the plant, it was agreed that: (1) the trans-

fer time between machines are ignorable (cellular layout),

(2) jobs are prepared for processing at the machine release

times (sufficient material buffer), (3) the total manufactur-

ing cost calculation excludes raw material cost, and (4) the

machine capacity is one item per cycle, except for the two

furnaceswhich can be loaded up to their maximum capacities.

In the end, the simulation model has been compared and

validated through 10 direct collected scenarios and also in

consultation with the production management team. The sce-

narioswere collected based on a regular order which is a batch

size of 20 from various products (P1, . . . , P4).

An example of the direct collected OPSs from shopfloor

is in Appendix I. Appendix I includes the OPS for all the

machines in the process line (the batch and machine numbers

for the parallel furnaces and machines, starting and leaving

process times for all the machines). Moreover, Appendix II

presents the manufacturing KPIs including machines uti-

lizations, machines energy consumption, machines operation

cost, and settings changes time. TheseKPIs are the simulation

outputs for the collected scheduling in Appendix I (approved

by the production management team).

As explained above, the simulation purpose is to generate

a larger dataset for the training of the proposed method.

However, implementation of all these possible scenarios in

the simulation is time-consuming and costly; therefore, a total

of 300 various scenarios (including ten direct collected) have

been prepared. The operational planning, scheduling and

KPIs will be used in training and validation of the proposed

NN method in the following section.

Table 3 presents four production scenarios with the mini-

mum total cost, energy consumption, quality and makespan

from 300 simulated scenarios. There are two approaches to

find the production plan for a specified period and defined

decision objectives of the total cost, makespan, and total

energy consumption. The first approach is to run the simula-

tion for a long period and detect the best solution. The second

approach is to train a model with the known scenarios and

monitor the patterns of model inputs (e.g., machines cycle

time, batch size, machine capacity and numbers), and find

their correlations/impact on the system outputs (e.g., cost,

makespan and energy consumption).

In the following section, we will propose an FCDNN

model to find the pattern and inter-relationship between the

OPSs and the corresponding KPIs to meet the customer’s

ideal cost and makespan as well as the manufacturer’s con-

straints in energy consumption.

IV. FULLY CONNECTED DEEP NEURAL

NETWORKS (FCDNN)

NN algorithms are extensively used by machine learning and

data scientists for solving different kinds of data regression

and classification problems [62]. In this research study, three

NN regression models will be built for each cell to find the

OPS which meet the customer’s ideal cost and makespan as

well as the manufacturer’s desired energy consumption.

Artificial Neural Networks (ANN) has proven in many

applications to be a robust data modelling tool capable of cap-

turing and representing complex input/output relationships.

They are a human brain-inspired programming paradigm that

allows a computer to learn from observational data similar to

the brain. Fully connected networks are ‘Structure Agnostic’

and the subcategory of deep neural networks [63]. DNNs have

been shown great success in various tasks like nonparametric

regression and classification.

Numerous research has explained the reasons for the great

success of this method in practical applications and filled the

gap between practical use and theoretical Understanding [64].

A fully connected deep neural network (FCDNN) consists of

a series of fully connected layers that connect every layer

neuron to the others in another layer. The structure of the

proposed FCDNN developed for this study is represented as

follows in Figure 3.

A. FCDNN STRUCTURE

The FCDNN used in this study has a five-layer network

structure, consisting of an input layer, three hidden layers,

and an output layer, each composed of a plurality of neurons

that can be calculated in parallel. The connection between the

hidden layers and between the first hidden layer and the input

layer are connected by an activation function. The details of

the structure of the proposed FCDNN are as following:

1) FULLY CONNECTED LAYER (OR DENSE LAYER)

The fully connected layers are able to learn non-linear combi-

nations of input features considerably efficiently. Neurons in

a fully connected layer have full connections to all activations

in the previous layer. Their activations can hence be computed

with a matrix multiplication followed by a bias offset [65].

H (x) = Wx + b (1)

where W ∈ R(K ,n) is weight matrix and b ∈ RK is the bias

offset.

2) ELU ACTIVATION LAYER

Exponential Linear Unit (ELU) is a function that tends to

converge cost faster and generate more accurate results [66].

ELU(x) =

{

α(exp(x) − 1), if x ≤ 0

x, if x > 0
(2)
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TABLE 3. Some Scenarios with a minimum total cost, makespan and total
energy consumption.

FIGURE 3. Proposed FCDNN with multiple hidden layers and a dropout
layer.

ELU uses the activation function to achieve mean zero,

as the learning can be made faster. For the ELU activation

function, an α value is picked; a common value is between

0.1 and 0.3. Hence it is a good option against activation

functions like ReLU (Rectified Linear Unit) since it decreases

the bias shift by pushing the mean activation towards zero.

Unlike ReLU, ELU can produce negative outputs.

3) DROPOUT LAYER

Dropout is a sort of regularisation that randomly drops some

proportion of the nodes that feed into a fully connected

layer. Dropping a node means that its contribution to the

corresponding activation function is set to zero, and therefore

it prevents the network from memorizing the training data

(overfitting). With dropout, training loss will no longer tend

rapidly toward zero, even for very large deep networks.

4) LINER ACTIVATION LAYER

A linear activation function takes the form [63]:

A = cx (3)

where c is a constant number and activation is proportional to

the input. This way, it provides a range of activations, so it is

not binary activation.

B. LOSS AND OPTIMIZATION FUNCTIONS

In most learning networks, the error is determined as the

difference between the actual output and the predicted out-

put [57].

J (w) = p− p̂ (4)

where J is a function of internal parameters of model, i.e.

weights and bias. The function that is used to compute this

error is known as Loss Function.

Different loss functions will provide different errors for the

same prediction, and therefore have a considerable effect on

the performance of the model. One of the most widely used

loss functions is Mean Absolute Error (MAE) that is used

in this research, which calculates the absolute of the differ-

ence between the actual value and predicted value. Various

loss functions are used to deal with different type of tasks,

i.e., regression and classification.

For accurate predictions, minimization of the calculated

error functions is needed. In a NN model, the weights and

biases are modified using a function called optimization func-

tion. Some important first-order optimization functions are

Adaptive Moment Estimation (Adam), Stochastic Gradient

Descent, and Adagrad [67]. It also calculates a different

learning rate. Adam works well in practice, is faster, and

outperforms other techniques and is used in this paper with

a learning rate set to 0.01.

C. THE IMPLEMENTATION OF THE PROPOSED FCDNN

The simplified production process flow shown in figure 2,

consists of three cells which each cell begins with two parallel

furnaces or machines and continue with a series machine. The

first cell includes two non-identical furnaces with different

capacities and process time, and then raw material enters

a drying machine. The second cell starts with two parallel

identical press machines, and then the pressed products go to

the green machine and at the end in the third cell, pressed,

and machined products enter to either of the parallel identical

sintering machines to be sintered and then to the finishing

machines for precision quality.

For this experiment, the proposed architecture consists of

three similar FCDNNs (Figure 3) for three cells and several

hyperparameters that should be determined, including the

number of fully connected layers, the number of nodes in

fully connected layers, dropout, etc. Choosing the number

of hidden layers and nodes in hidden layers depends upon

the use case and problem statement that we are dealing with.

The introduction of the hidden layer(s) makes it possible

for the network to exhibit non-linear behaviour. The uncaused

increasing hidden layers and the number of neurons would

increase the complexity of the model. Choosing hidden lay-

ers such as eight, nine, or more may sometimes lead to

overfitting.

The presented network settings in Table 4 are set after

several comparative experiments, which shows that this com-

bination produces the best performance for all three networks.

Hidden layers (dense layers) 1 to 3 are features extraction,

the ELU layer is added at the end of every dense layer for

accelerating the training speed, and the dropout layer is added

after the third dense layer to avoid the extraction of redundant

features and to prevent over-fitting, a challenge in deploying

deep neural networks to applications [68].
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TABLE 4. FCDNN layer types, Output shapes and parameters numbers.

1) MODEL STRUCTURE

There are 300 scenarios collected from the simulator. The

input for each FCDNN is a cluster of cell costs, finishing

time and the number of products from each type (Categorical

data). After gathering all data and encoding categorical data

to numbers, the final input vector dimension is (58 × 1).

The output vector dimension is (40 × 1) that denotes the

machines number (for parallel machines) and starting pro-

cess time for every single product. As we mentioned earlier,

the structure of FCDNN for all three cells are the same.

Before training, a normalization process has been applied

to re-scale the data to [0, 1] in order to diminish the data

redundancy and progress data integrity.

2) TRAINING DATASETS

Training a NN is the process of finding the values for the

weights and biases. The training of a NN model is most

challenging because it requires solving two difficult problems

at the same time; learning and generalizing. Learning the

training dataset is intended to minimize the loss function

while generalizing the model performance allows predictions

on test examples (validation dataset). The dichotomy of learn-

ing models is that if it learns well, it could be at the cost of

generalization (i.e., overfitting), and if a model generalizes

well, it may lead to underfitting. One of the objectives in

training a NN is to obtain a good balance between these two

problems.

In this experiment, the existing 300 scenarios are randomly

split into a training dataset (typically 80 per cent of the data),

a validation dataset (10 per cent of data) and a test dataset

(the remaining ten per cent, usually this been named valida-

tion of the model in non-neural network research domains).

After training is completed, the trained model’s weights and

biases will be applied and tested on the test dataset. One of

the significant difficulties when working with NNs is over-

fitting. Model’s overfitting often occurs when the training

algorithm runs too long. The validation helps to find when

FIGURE 4. The loss changes and convergence during training for cell1.

model overfitting starts to happen by keeping the model

parameters when the validation error is lowest during the

training. Figure 4 shows the training and validation data

loss curve for predicting the cell 1 network parameters after

200 epochs. The training process is carried on the other two

cells as well. The results show the proposed model addresses

the dichotomy of learning and keeps the balance between

learning and generalization.

3) MODEL DEPLOYMENT

Three distinctive trained FCDNN models for the three cells,

deployed in this section to predict the machine numbers

in the parallel process as well as starting process time for

each cell in unseen scenarios (named validation) dataset. The

series machines (i.e. dry machine, green machine and fin-

ishing machine) scheduling have not been predicted through

this model since, in the series production process, it has

been assumed the first output enters the next series machine.

Appendix III presents the predicted scheduling and machine

numbers for the three cells in a randomly selected sample

scenario in which its machine OPS and KPIs are presented

in Appendix I and II, respectively. Figure 5 compares the

actual and predicted starting process time of all three cells

on random sample scenario (See Appendix I and III) Starting

process times of each cell have been chosen as the trigger of

scheduling events of the cell, and the start event of subsequent

processes in downstream cells are based on parts leaving the

previous process (contiguous process). The results reveal that

some divergence between actual and predicted scheduling

of cells occurs for each order number. For instance, while

the actual starting process time for order no.5 in cell 1 is

56 hours, but the model estimates it to be hour 32 hours. This

divergence is somewhat inevitable because of the nature of

the NN models and can be reduced by increasing the number

of training datasets. Although increasing the number of sce-

narios means more direct sampling or simulation runs which

are time-consuming and costly. The authors have chosen

300 scenarios since themodel can be validated and testedwith

30 scenarios (ten per cent of the dataset). Furthermore, these

divergences are not evidence of the model flaw in predicting
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FIGURE 5. Comparison of the actual and predicted scheduling of three
cells on the selected scenarios.

the OPS. Any logical and practicability flaw in the new OPC

will be identified when the process simulator calculates the

values of the process KPIs.

In the following section, the predicted OPSs from the

proposed FCDNN model is fed to the DES for the purpose

of predicting the values KPIs in look-ahead mode. This novel

approach allows the scheduling solution to be verified into a

near accurate computer simulation of the plant. Avoiding any

disruption and disturbance to the actual system. Moreover,

it allows the operation managers to visualize and assess the

efficacy of the scheduler prior to implementation.

V. VALIDATION AND COMPARISON

The proposed FCDNN performance in calculating the pro-

cess OPSs is compared with the actual OPSs on the test

FIGURE 6. Comparison between the actual and predicted objective KPIs
for the test dataset.

dataset in this section. As discussed before, ten per cent

of the existing 300 scenarios (i.e., thirty scenarios) hasn’t

been trained for the final validation purpose. These sce-

narios’ selected KPIs, i.e., energy consumption, cost of

each machine, plus final Markesan, have been presented in

Appendix IV. The proposed model takes these KPIs as inputs

and calculated the operational planning (machines number

and batch numbers) and machines scheduling as a sample is

presented in Appendix III.
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In this section, the estimated OPSs fed to the simulator to

predict the KPIs for the machines (and cells) in Appendix V.

These objective KPIs comparison between total actual and

predicted KPIs on the test dataset (thirty scenarios) are shown

in Figure 6 in three distinctive charts of the total cost,

makespan and total energy consumption. The MAE (Mean

Average Error), average deviation and t_Test between these

parameters are compared in Table 5. The comparison meth-

ods have been chosen because of their extensive applications

in the observations’ comparison domain. The purpose of the

applied paired T-test (two-tailed) is to assess whether the

mean scores from two paired thirty actual and predicted KPIs

in the test dataset are statistically different from one another.

The results present that the proposed FCDNNmethod regard-

ing the number of model’s inputs and outputs and training

dataset volume (240 scenarios) has met the manufacturer’s

satisfying accuracy of under %4 deviations of estimated

KPIs.

The performance of the proposed FCDNNmethod is com-

pared with the two most popular data mining and ML [69]

methods. Random Forest Regression and single hidden layer

NN methods (with 100 hidden neurons and ReLU active

transfer function) were chosen due to their accuracy and

applications in similar industrial experiments. Both models

are trained with the same training dataset, and the outputs

between the actual and predicted KPIs on the test dataset are

shown in Table 6. In comparison, FCDNN performs better

accuracy due to the more advanced and extensive architec-

ture. However, in the training algorithm’s speed and com-

putational complexity, the single-layer NN is faster and less

complex to implement.

In the following section, the application of the proposed

method in the optimal OPSs calculation will be discussed.

Furthermore, minimum final production cost, makespan and

energy consumption for the regular order will be reviewed.

VI. DISCUSSION

In a general flowshop environment, dynamism and complex-

ity of operations enhance the need for an accurate model pre-

diction. The dilemma of the businesses is manufacturing with

minimum costs, makespan, defects and energy consumption.

As discussed in Section III.C, the presented four scenarios

in Table 3, which have the minimums, do not prove that they

are optimal solutions or have the overall minimums KPIs.

There are two approaches to find the optimal solution(s);

1) collection of thousand scenarios (direct collection or

through the validated simulator) and find the optimal(s)

between them or 2) build a representative function model to

generate the optimal OPSs. In Section 4, an FCDNN model

proposed based onNN’s predictive ability to generate the sce-

narios. The proposed model acquires the KPIs as the inputs

and generates the OPS, i.e., details of operational plans and

schedules to meet the KPIs. And finally, for validation of the

proposed model, the generated OPSs applied to the simulator

and the calculated KPIs compared with the actuals KPIs on a

test dataset in Table 7.

TABLE 5. MAE, average variation and T test between the actual and
predicted parameters on the test dataset with the proposed FCDNN.

TABLE 6. MAE, average variation and T-test between the actual and
predicted parameters on the test dataset with single hidden layer NN and
Random Forest methods.

TABLE 7. Some scenarios with minimum total cost, Makespan and
energy consumption.

To find the optimal solution(s) of this multi-objective prob-

lem, a deviation test is conducted. In this test, the less than

minimums of makespan, total cost and energy consumption

(Table 3) were fed into the proposed model, and the resulting

calculated OPSs were tested in the simulator. The deviation

results (in Table 6) show if the KPIs are reduced fromTest 1 to

Test 4, the deviation increases. In other words, there is no spe-

cific single optimal solution, and the production manager will

be informed of the possible ‘‘no single optimum solution’’.

At this stage, an intuitive decision-making exercise based on

business priorities and local regulations (e.g., regulation in
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GHG emissions) could allow the decision-maker to select

one solution from a number of alternative solutions. This

is still significant assistance to continuous improvement in

operations and decision making to meet business and legal

objectives in production systems.

VII. CONCLUSION

This study proposes MOBS-NET framework to solve the

batch base production flowshop scheduling problems in live

real-world complex manufacturing production systems. The

experiment in this study is from hardmetal use case flowshop,

where sequences of a wide variety of jobs are processed in
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identical and non-identical machines. The machines operate

in parallel and series, forming complex routing production

process plans. Any change in the production plan, resource

schedules, job sequences, or formation of batches (i.e., OPS)

lead to different cost, makespan, and energy consumption as

the chosen KPIs by our operations managers in the plant. This

problem is NP-hard.

The accumulation of shopfloor real-time data, as well as

a finite number of scenarios of a verified DES model, have

been used to train the FCDNN model. Once the proposed

model trained, it will be used to generate OPSs of the complex

production lines. It will be able to capture the underlying

relationship between input and output variables and conse-

quently build the optimal OPSs based on the optimal KPIs.

Therefore, complex simulation settings can be replaced by the

proposed FCDNN. The results of the proposed model proved

statistically equivalent to the results provided by the verified

discrete event simulation model.

This decision support model can help decision-makers

evaluate possible OPS and make the best decision automat-

ically and without the intervention of experts. This model

adds flexibility and convenience for managing the hard and

complex operations of day-to-day production systems and

sustain continuous optimal production settings.
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The primary objective of this studywas to demonstrate how

to design an effective DNNmodel for detailed scheduling and

operational planning of a complex flowshop. This method

is open to additional complexity, modification of objective

functions, and customized KPIs. One future possibility is to

include preventive maintenance and sudden breakdowns as

new input parameters of the system. These input parameters

act as a new KPI and will lead to the generation of the

OPSs to meet the KPIs while generating Zero Breakdown

processes. Another line of research could be to compare the

proposed technique with evolutionary optimization methods

such as [43], [44].
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APPENDIX I

A sample scenario in Arena simulation package for opera-

tional planning and scheduling of the machines in the pro-

duction line.

See Table 8.

VOLUME 9, 2021 141689



M. Danishvar et al.: Energy-Aware Flowshop Scheduling: Case for AI-Driven Sustainable Manufacturing

T
A

B
L
E

1
2
.

S
im

u
la

to
r’

s
o

u
tp

u
ts

o
n

th
e

O
P

S
s

cr
e
a
te

d
b

y
th

e
p

ro
p

o
se

d
m

e
th

o
d

.

APPENDIX II

A sample scenario in Arena simulation package for the main

KPIs of the machines in the process line.

See Table 9.

APPENDIX III

A sample of estimated operational planning and machines

scheduling by the proposed method.

See Table 10.

APPENDIX IV

The applied test Dataset for validation.

See Table 11.

APPENDIX V

The simulator’s outputs on the OPSs created by the proposed

method.

See Table 12.
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