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Abstract Wireless sensor networks are characterized by
multihop wireless lossy links and resource constrained
nodes. Energy efficiency is a major concern in such net-
works. In this paper, we study Geographic Routing with
Environmental Energy Supply (GREES) and propose two
protocols, GREES-L and GREES-M, which combine geo-
graphic routing and energy efficient routing techniques and
take into account the realistic lossy wireless channel con-
dition and the renewal capability of environmental energy
supply when making routing decisions. Simulation results
show that GREESs are more energy efficient than the cor-
responding residual energy based protocols and geographic
routing protocols without energy awareness. GREESs can
maintain higher mean residual energy on nodes, and achieve
better load balancing in terms of having smaller standard
deviation of residual energy on nodes. Both GREES-L
and GREES-M exhibit graceful degradation on end-to-end
delay, but do not compromise the end-to-end throughput
performance.
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1 Introduction

Wireless sensor networks (WSNs) are characterized by mul-
tihop lossy wireless links and severely resource constrained
nodes. Among the resource constraints, energy is probably
the most crucial one since sensor nodes are typically battery
powered and the lifetime of the battery imposes a limitation
on the operation hours of the sensor network. Unlike the
microprocessor industry or the communication hardware in-
dustry, where computation capability or the line rate has been
continuously improved (regularly doubled every 18 months),
battery technology has been relatively unchanged for many
years. Energy efficiency has been a critical concern in wire-
less sensor network protocol design. Researchers are inves-
tigating energy conservation at every layer in the traditional
protocol stack, from the physical layer up to the network
layer and application layer.

Among the energy consumption factors, communication
has been identified as the major source of energy consump-
tion and costs significantly more than computation in WSNs
[1]. Energy aware routing and geographic routing are two
major approaches to energy efficient communications in
wireless ad hoc and sensor networks.

In former energy aware routing protocols [2–5], sen-
sors/nodes are assumed to be powered by batteries with lim-
ited/fixed capacity and then routing decisions are made based
on the energy consumption by sending/receiving packets on
the wireless links and/or residual energy on each node. The
objective of those protocols is either minimizing the energy
consumption or maximizing the network lifetime. A new ob-
servation related to energy aware routing is the availability
of the so-called energy scavengers which are devices able to
harvest small amount of energy from ambient sources such as
light, heat or vibration [6–8]. Solar-aware routing protocols
are proposed in [9, 10] that preferably route packets via solar
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powered nodes. The optimal paths are calculated based on
each node having global knowledge of the whole network,
which is usually inapplicable in WSNs. Lin et al. [11] ad-
dressed the problem of power-aware routing with distributed
energy replenishment for multihop wireless networks. The
distributed algorithm proposed in [11] needs to flood the
whole network to get the optimal path. More comprehensive
study is necessary to design efficient localized algorithm to
achieve energy efficiency with environmental energy supply.

In geographic routing [12–19], each node makes routing
decision locally based on its own, its neighbors’ and the desti-
nation’s location information. Geographic routing technique
is particularly applicable in wireless sensor networks because
almost all sensing and monitoring applications of sensor net-
works require sensors to be aware of their physical locations.
The properties such as good scalability, statelessness, and
low maintenance overhead make geographic routing an effi-
cient technique especially in large-scale WSNs. The focus of
these geographic routing works was performance gain there-
fore none of them took into account the energy constraint
on nodes. While some geographic routing protocol accounts
for nodes’ residual energy information such as GEAR (Geo-
graphic and Energy Aware Routing) [20], which uses energy
aware and geography-based neighbor selection heuristics to
route a packet towards the target region, it does not take
into account the realistic wireless channel conditions. It is
shown in [18] that the factor of unreliable wireless links must
be explicitly taken into account when designing geographic
routing protocols.

It’s necessary to design new local cost metrics to achieve
efficient geographic routing with environmental energy sup-
ply. In this paper, we take a cross-layer design approach and
carry out a more comprehensive study on energy efficiency
issue. We propose two Geographic Routing with Environ-
mental Energy Supply (GREES) protocols, GREES-L and
GREES-M, which make routing decision locally by jointly
taking into account multiple factors—the realistic wireless
channel condition, packet advancement to the destination,
the residual battery energy level of the node, and the envi-
ronmental energy supply. Simulation results show that our
protocols are more energy efficient than the correspond-
ing residual energy based protocols and geographic routing
protocols without considering the property of the energy
renewal. In particular, given the same energy and traffic
models, GREESs maintain higher mean residual energy on
nodes and achieve better load balancing in terms of having a
smaller standard deviation of residual energy among nodes.
Both GREES-L and GREES-M exhibit graceful degradation
on end-to-end delay, but do not compromise the end-to-end
throughput performance.

The rest of the paper is organized as follows. The related
work is introduced in Section 2. We explain GREES-L and
GREES-M in detail in Section 3, and present and analyze

our simulation results in Section 4. Section 5 presents our
conclusions.

2 Related work

Our work is inspired and related to prior works on energy-
aware routing and geographic routing, and recent works on
feasibility of using environmental energy resources in wire-
less sensor networks.

2.1 Energy aware ad-hoc routing

Energy-aware routing has received significant attention over
the past few years [2–5]. Woo et al. [2] proposed five energy
aware metrics such as maximizing time to partition and min-
imizing maximum node cost. These are important metrics for
energy efficient routing, however, it is difficult to directly
implement them in a local algorithm when even the global
version of the same problem is NP-complete. Chang et al. [3]
proposed a class of flow augmentation algorithms and a flow
redirection algorithm which balance the energy consumption
rates among the nodes in proportion to the energy reserves.
The limitation of this approach is that it requires the prior
knowledge of the information generation rates at the origin
nodes. Li et al. [4] proposed an “online” power-aware rout-
ing and a zone based routing algorithms which maximize
the network lifetime without knowing the message genera-
tion rate. Following [4], another “online” routing algorithm
was proposed in [5] aiming to maximize the total number of
successfully delivered messages.

All of these works were based on the assumption that
nodes have limited/fixed energy supply and did not take into
account the nodes’ capabilities of extracting energy from the
environment, which will be studied in this paper.

2.2 Geographic ad-hoc routing

The appeal of geographic routing protocol lies in the fact
that it is scalable and the process of making routing decision
is localized. The node holding the packets only needs to be
aware of the location of itself, its one hop neighbors, and
the destination. For traditional geographic routing schemes,
packets are routed/forwarded locally and greedily to the one-
hop neighbor that provides most positive advancement to the
destination. In greedy mode, Cartesian routing [12] chooses
the neighbor closest to the destination as the next hop while
MFR (Most Forward within Radius) [13] prefers the neigh-
bor with the shortest projected distance (on the straight line
joining the current node and the destination) to the destina-
tion.

In recent experimental studies on wireless ad-hoc and
sensor networks, Couto et al. [21], Zhao and Govindan [22]

Springer

40 Wireless Netw (2009) 15:39–51



have shown that wireless links can be highly unreliable and
that this must be explicitly taken into account when con-
sidering higher-layer protocols. Zuniga and Krishnamachari
[23] showed the existence of a large “transitional region”
where link quality has high variance, including both good
and highly unreliable links. The existence of such links ex-
poses a key weakness in greedy forwarding schemes that the
neighbors closest to the destination (also likely to be far-
thest from the forwarding node) may have poor links with
the forwarding node. The weak links would result in a high
packet dropping rate and drastic reduction of delivery ratio or
increased energy wastage if retransmissions are employed.
More recent works on geographic routing are aware of this
realistic lossy channel situation. Seada et al. [18] articu-
lated the distance–hop energy trade-off for geographic rout-
ing. They concluded that the expected packet advancement,
PRR (Packet Reception Rate) × Advancement, is an optimal
metric for making localized geographic routing decisions in
lossy wireless networks with ARQ (Automatic Repeat re-
Quest) mechanisms. Zorzi and Armaroli also independently
proposed the same link metric [24]. Lee et al. [19] pre-
sented a more general framework called normalized advance
(NADV) to normalize various types of link cost. The focus
of the above works was performance gain therefore none of
them took into account the energy constraint on nodes. Al-
though GEAR (Geographic and Energy Aware Routing) [20]
accounts for nodes’ residual energy information, it does not
take into account the realistic wireless channel conditions.

2.3 Routing in environmentally powered sensor networks

There is significant interest in energy harvesting for wireless
sensor networks in order to improve its sustainable lifetime
and performance [25]. Several technologies to extract energy
from the environment have been demonstrated including so-
lar light, heat or vibrational sources [6–8].

Environmental energy is distinct from battery status in two
ways. First it is a continued supply which if appropriately
used can allow the system to last forever, unlike the battery
which is a limited resource. Second, there is an uncertainty
associated with its availability and measurement, compared
to the energy stored in the battery. Thus, methods based
on residual energy in batteries are not always applicable to
environmental energy aware decisions [26].

The works taking environmental energy into account for
routing are [9, 10, 27, 28]. A distributed framework for the
sensor network to adaptively learn its energy environment
was presented in [9]. An example study of routing in [9]
showed that the proposed framework is able to utilize the
extra knowledge about the environment to increase system
lifetime. Voigt et al. [10] designed two solar-aware rout-
ing protocols that preferably route packets via solar pow-
ered nodes and showed that the routing protocols provide

significant energy savings. The optimal paths calculated in
[9, 10] is based on each node having global knowledge of
the whole network, which is usually inapplicable in WSNs.
Although Lin et al. proposed a distributed algorithm that
considers energy replenishment, it still [11] needs to flood
the whole network to get the optimal path. An energy-aware
geographic blacklisting routing was proposed in [28]. More
comprehensive study is necessary to design efficient local-
ized algorithm to achieve energy efficiency with environ-
mental energy supply.

3 Geographic routing with environmental energy
supply (GREES)

Our objective is to design routing protocols that efficiently
direct the packets along low cost links and at the same time
balance the residual energy on nodes with environmental
energy supply. Although the expected advancement is a good
link energy cost metric, we can not simply forward the packet
to the neighbor achieving the largest expected advancement,
as in this condition some nodes will be overused and die out
fast then result in network disconnection. We also can not
simply forward the packet to the nodes that have the highest
residual energy, because the residual energy status may not
represent the energy availability on nodes in some situation.
The example shown in Fig. 1 illustrates this situation.

In Fig. 1(a), node A has two neighbors B and C , and A
has five packets to send to a remote destination D with one
packet per second. The energy consumption per packet de-
livery on link AB and AC are the same. Assume that B and
C have the same battery capacity of Eb units, and Eb − 4
and Eb − 2 units of residual energy respectively; their energy
harvesting rates are 2 and 1 units per second respectively;
they consume the same energy, say 2 units, to relay (receive
and forward) a packet to their next hop. For energy aware
routing that only considers the residual energy information
on nodes, A will send the packets to C because C has more
residual energy. As shown in Fig. 1(b), after relaying the
five packets, C has residual energy of Eb − 7 units since it
consumes 10 units for relaying the packets meanwhile har-
vesting 5 units, and B is fully recharged since it harvests 4
units of energy. Although B can harvest 10 units of energy
in five seconds, the residual energy on it can not exceed the
battery capacity, Eb. For environmental energy aware proto-
col, assume we define the energy availability as the sum of
the battery residual energy and the harvesting energy during
the routing period (5 seconds), B has higher energy avail-
ability than C , then B will be selected as the next hop of A.
As shown in Fig. 1(c), after relaying the five packets, B has
residual energy of Eb − 4 units since it consumes 10 units for
relaying packets meanwhile harvesting the same amount of
energy, and C was fully recharged since it harvests 2 units of
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Fig. 1 Comparision of battery
status of intermediate nodes
between residual energy based
protocol and environmental
energy aware protocol

energy. In this example, using environmental energy aware
routing results in more residual energy remained on nodes
on average and smaller variance of the residual energy which
indicates better load balancing.

3.1 System model

We first describe the system model, the observations and the
assumptions, on which our routing protocol design is based.

We assume that each network node is aware of its own
and its one-hop neighbors’ positions and the source of a mes-
sage knows the position of the destination. This assumption
is reasonable in a wireless sensor network due to its sensing
and monitoring application nature; nodes need to be aware
of their own locations when reporting their sensing data; the
data are usually sent back to a known “sink” location. The
node location information can be obtained by prior config-
uration, by the Global Positioning System (GPS) receiver,
or through some sensor self-configuring localization mech-
anisms such as [29–31].

Each network node is equipped with energy renewable
batteries that can harvest energies from their working envi-
ronment [6–8, 32].

A MAC protocol that allows retransmission is used, such
as 802.11 [33]. The 802.11 ACK mechanism resends lost
data frames, making all but the worst 802.11 links appear
loss-free to the network layer.

Each node is informed with its own and its one-hop neigh-
bors’ battery residual energy level and the short-term energy
harvesting rate, periodically. The residual energy in a bat-
tery can be estimated from its discharge function and mea-
sured voltage supplied [2]. Neighbor nodes exchange these
information with each other by piggybacking them in the
periodically broadcast “Hello” messages.

The network is dense enough so that no communica-
tion voids1 exist. Mechanisms such as FACE routing [15]
or perimeter forwarding in GPSR [16] can be applied to deal
with the communication void problem but it is beyond the
scope of this paper.

3.2 Link quality estimation

We denote the Frame Delivery Ratio (FDR)2 from a node i
to its neighbor j , FDRi j . It is measured using “Hello” mes-
sages3 which are broadcast periodically every τ time unit.
Because the probes are broadcast, 802.11 does not acknowl-
edge or retransmit them.

Two events will drive the updating of FDRi j on node j :
one is the periodical updating event set by the node, for
example, every tu seconds j will update FDRi j . We denote
this event as T ; the other is the event that j receives a “Hello”
packet from i . We denote this event as H .

Exponentially Weighted Moving Average (EWMA) func-
tion [34] is used as the link quality estimation algorithm
which is often used in statistical process control applica-
tions. Let FDRi j be the current estimation made by node j ,

1 When the forwarding node is distance-wise closest to the destination
than any of its neighbors, but has no direct connection to the destination
to deliver the packets, a communication void happens.
2 We use Frame Delivery Ratio instead of Packet Delivery Ratio here to
differentiate the data delivery ratio observed from the MAC layer and
the network layer. As mentioned before, due to the lossy links, some
MAC protocols such as 802.11 retransmit lost data frames to guarantee
high delivery ratio at the network layer. That is, a successful packet
transmission at the network layer may cause a number of transmissions
(including retransmissions) at the MAC layer.
3 In our proposed protocols, “Hello” message is used for both exchang-
ing neighbor nodes’ information and probing link quality.
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Table 1 Pseudocode of EWMA

For node j :
When H event happens

Nm = current Seg − last Seg − 1
last Seg = currentSeg

last Hello = current time
l = Max(Nm − Ng, 0)
Ng = 0
FDRi j = FDRi j · γ l+1 + (1 − γ )

When T event happens
Ng =(current time − last Hello) × 1

τ

l = Ng

FDRij = FDRi j · γ l

last Hello be the time stamp of the last event H , Nm be
the number of known missed “Hello” packets between the
current event H and last event H based on sequence num-
ber difference, and Ng be a guess on the number of missed
packets based on “Hello” message broadcast frequency 1

τ

over a time window between the current T event and last H
or T event. Nm and Ng are initialized to be 0, and FDRi j is
initialized to be 1.

This technique allows j to measure FDRi j and i to mea-
sure FDR ji . Each probe sent by a node i contains FDR
measured by i from each of its neighbors Ni during the last
period of time. Then each neighbor of i , Ni , gets the FDR to
i whenever it receives a probe from i .

The pseudocode of EWMA algorithm for node j to es-
timate FDRi j is described in Table 1, where currentSeg and
lastSeg denote the sequence numbers of the current received
“Hello” message and the last received “Hello” message re-
spectively, and 0 < γ < 1 be the tunable parameter.

3.3 Energy consumption model

In this paper, the cost for a node to send or receive a packet is
modelled as a linear function similar to [35]. There is a fixed
cost associated with channel acquisition and an incremental
cost proportional to the size of the packet:

Cost = c × Spkt + b (1)

Where c denotes the energy needed for sending or re-
ceiving one byte of data, Spkt denotes the size of the data in
bytes and b is a constant. In this paper, we only consider the
energy consumption when a node sends or receives data as
most energy aware routing protocols do.

3.4 Energy harvesting model

Depending on the deployment conditions, such as whether
or not directly exposed to sun light, the intensity of the sun
light, the speed of air flow and so on, there is an uncertainty

associated with environmental energy harvesting capability.
We use a random process to model the energy harvesting
rate of node i . We model the mean harvesting rate with a
uniformly distributed random variable with mean μi , varying
between Pimin and Pimax . The energy harvesting capability is
not homogeneous at all nodes. In addition, energy collected
by the scavengers can be stored in some energy reservoirs
such as batteries, fuel cells, capacitors, etc. However there is
a capacity limit of such an energy reservoir, beyond which
environmentally available energy cannot be stored. We use
constant Eb to denote such a capacity limit for each node.

3.5 Protocol description

In our routing protocols, each node locally maintains its one-
hop neighbors’ information such as the neighbor’s location,
residual energy, energy harvesting rate, energy consuming
rate, and wireless link quality (in terms of FDR). We assume
that node i is forwarding a packet M , whose destination is
D. Node i forwards M progressively towards the destination,
while at the same time tries to balance the energy consump-
tion across all its forwarding candidates Ni . We propose two
local cost metric based protocols to achieve the goals.

3.5.1 GREES-L

Node i forwards the packet to the neighbor that minimizes
the cost CL (Ni , D) which is defined as follows:

CL (Ni , D) = 1

α · NPRO(i, Ni , D) + (1 − α) · N E(Ni )

(2)

where 0 < α < 1 is a tunable weight, NPRO(i, Ni , D) is the
normalized progressive distance per data frame from i to Ni

towards D, and N E(Ni ) is the normalized effective energy
on node Ni . NPRO(i, Ni , D) is defined as follows:

NPRO(i, Ni , D) = PRO(i, Ni , D)

Max{PRO(i, Ni , D)} (3)

where

PRO(i, Ni , D) = (Dist(i, D) − Dist(Ni , D))

· F DRi Ni · F DRNi i (4)

and Max{PRO(i, Ni , D)} is the maximum PRO achieved by
the forwarding candidates of node i . The Dist(i, D) and
Dist(Ni , D) are the Euclidean distances between i and D
and Ni and D respectively. So (Dist(i, D) − Dist(Ni , D))
is the packet advancement to the destination when the packet
is forwarded from i to Ni .
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N E(Ni ) is defined as follows:

N E(Ni ) = E(Ni )

Max{E(Ni )} (5)

where

E(Ni ) = β · (μNi − ψNi ) · (tc − tl) + Er (Ni ) (6)

and Max{E(Ni )} is the maximum E achieved by the for-
warding candidates of node i .

In Eq. (6), β is a tunable weight. μNi is the last received
expected energy harvesting rate information on node Ni by
node i . ψNi is the last received expected energy consuming
rate information on node Ni by node i . tc is the time when
the node i is forwarding the packet. tl is the last time when
“Hello” message broadcast by Ni is heard by i , and μNi and
Er (Ni ) are updated. ψNi is updated every τ (“Hello” interval)
at node Ni according to Eq. (7) when it broadcasts “Hello”
message.

ψNi = Ecτ
(Ni )

τ
(7)

where Ecτ
(Ni ) is the energy consumed in the last interval τ .

Note that due to the lossy wireless channel, the updated in-
formation, such as μNi , ψNi and Er (Ni ), may not be received
by node i every τ . So the energy availability estimation E(Ni )
to the neighbor with worse FDRNi i is less accurate than the
neighbor with better FDRNi i . However this inaccuracy will
not affect the next hop selection much if μNi and ψNi do not
change much in the interval (tl, tc). Furthermore the worse
the FDRNi i is, the smaller the PRO(i, Ni , D) is. So the prob-
ability of choosing Ni with low FDRNi i as the next hop will
become lower according to Eq. (2).

The rationale to define and minimize the cost function
in Eq. (2) is as follows. Minimizing the cost in Eq. (2) is
equivalent to maximizing the denominator. The denomina-
tor is a linear combination of two parts. The first part is
NPRO(i, Ni , D) which represents how much progress one
frame can make towards the destination. In Eq. (4), the fac-
tor FDRi Ni · FDRNi i is the inverse of the ETX (expected
transmission count) defined in [21]. The physical meaning
of Eq. (4) is the expected progress towards the destination per
packet transmission. Maximizing it means maximizing the
efficiency of transmitting a packet. When the transmission
power is fixed, maximizing Eq. (4) also decreases the energy
consumed per packet, as each transmission or retransmission
increases a node’s energy consumption. The second part is
NE(Ni ) which represents the estimated energy availability
on node Ni . From Eq. (6), we know the energy availability is
represented by the linear combination of harvesting energy,
consuming energy and the residual energy on the battery.

The key difference from the traditional energy aware routing
proposed in [2] which only considers the residual energy on
nodes is that we also consider the environmental energy. So
Eq. (2) is one way to balance the importance of progress per
packet transmission (related to delay and energy consump-
tion), energy replenishment and residual energy (related to
load balancing).

Suppose that each neighbor of node i has the same energy
harvesting rate and the same residual energy, node i will
forward the packets to the neighbor with larger PRO to the
destination.

In an environment where the energy source distribution is
heterogeneous, the defined cost function in Eq. (2) will direct
traffic to nodes with a faster energy renewal rate. Consider
node i’s neighbors having similar residual energy as well
as similar PRO to the destination. Among these neighbors,
the one which can replenish its battery at a higher rate will
advertise a cheaper cost and will be selected as the next hop
of node i .

When α = 1, GREES-L degenerates to geographic rout-
ing similar to [19]. When α =β = 0, GREES-L degenerates
to traditional energy aware routing based on residual energy
only similar to [2].

In this paper, we assume there is no communication voids,
so there is always at least one neighbor of node i satisfying
PRO(i, Ni , D) > 0. We only consider the neighbors with
FDRi Ni > 0.2 and FDRNi i > 0.2 as the candidates of node
i’s next hop, since it will cause a lot of retransmissions if
we choose neighbors having bad link quality from/to node i .
Retransmissions will not only consume sender’s energy but
also increase the interference to other nodes. When E(Ni )
in Eq. (6) is smaller than (2 · Cost) in Eq. (1), Ni will not
be selected as the next hop of node i , since it does not have
enough energy to receive and transmit a packet.

3.5.2 GREES-M

GREES-L uses linear combination to balance the geographi-
cal advance efficiency per packet transmission and the energy
availability on receiving nodes, while GREES-M uses mul-
tiplication to balance these factors. The local cost function
CM (Ni , D) is defined as follows:

CM (Ni , D) = Eb(Ni ) · ηλNi

logη · (μNi + ε) · PRO(i, Ni , D)
(8)

where ε and η are appropriately chosen constants, Eb(Ni )
is the battery capacity, PRO(i, Ni , D) is defined in Eq. (4)
and λNi is the fraction of energy used at node Ni defined in
Eq. (9).

λNi = Eb(Ni ) − Er (Ni )

Eb(Ni )
(9)
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Node i forwards the packet to the neighbor that mini-
mizes the local cost CM (Ni , D). Note that the cost function
is different from the one in [11] in that we take into account
the link quality and packet progress efficiency by using the
factor PRO(i, Ni , D).

The rationale for minimizing the cost function Eq. (8) is
as follows. Note that the cost function is an exponential func-
tion of the nodal residual energy, an inversely linear func-
tion of the replenishment rate and the expected geographical
progress per packet transmission. So Eq. (8) is another way to
balance the importance of progress per packet transmission
(related to delay and energy consumption), energy replen-
ishment and residual energy (related to load balancing).

This cost function also directs traffic to the neighbor with
larger PRO to the destination when neighbors have similar
residual battery energy and environmental energy harvesting
rate, and directs traffic to the neighbor with larger environ-
mental energy harvesting rate when neighbors have similar
residual battery energy level and PRO.

Note that even though Eb(Ni ) is in the numerator in
Eq. (8), it does not imply that nodes with larger battery ca-
pacity are assigned a higher cost. The reason is that Eb(Ni ) is
also embedded in the exponential cost metric ηλNi where λNi

is defined in Eq. (9). The introduction of ε accounts for the
situation when nodes are not harvesting energy and μNi = 0.

The cost should be positive, which means PRO should
be larger than zero. Then this cost function implicitly elim-
inates the neighbors that give negative progress to the desti-
nation. The candidate neighbor selection criteria is the same
as GREES-L.

4 Performance evaluation

4.1 Simulation setup

All the simulations are implemented within the GloMoSim
library [36], which is a scalable simulation environment
for wireless network systems. The simulated sensor net-
work has N = 196 stationary nodes uniformly distributed
in a d × d m2 square region, with nodes having identical
fixed transmission power. We use d = 250, 210, 180, 160
to achieve various node densities in terms of 10, 15, 20, 25
neighbors per node on average. To simulate a randomly lossy
channel, we assume Ground Reflection (Two-Ray) path loss
model and Ricean fading model [37] for signal propaga-
tion. The packet reception decision is based on the SNR
threshold. When the SNR is larger than a defined threshold,
the signal is received without error. Otherwise the packet
is dropped. We set proper parameters to make the maxi-
mum transmission range as 35 m. EWMA, described in
Section 3.2, is used as the link estimation algorithm, where
γ is chosen to be 0.9. IEEE 802.11 [33] is used as the

Table 2 Level of energy harvesting rate

High Medium Low

Pimin (mw) 10 1 0.1
Pimax (mw) 20 5 1

MAC layer protocol. Each node was initialized with a fixed
amount of energy/battery reserve (EbmJ) before network
deployment. The energy consumption model is described
in Section 3.3, where c = 1.9 μJ/byte and b = 450 μJ for
sending packets and b = 260 μJ for receiving packets. The
energy harvesting model is described in Section 3.4. Three
nodal energy harvesting rates are assumed in Table 2. Each
node’s harvesting rate is randomly chosen to be one of the
three levels and is fixed on the level in one simulation run.
We apply two types of application traffic: (1) peer-to-peer ap-
plication traffic, which consists of fifteen randomly chosen
communication pairs in the simulation area, and (2) multiple-
to-one application traffic, which consists of fifteen applica-
tion sessions from randomly selected 15 nodes to the sink
node at the center of the simulation area. The sources are
CBR (constant bit rate) with one packet per second and each
packet being 512 bytes long. Each point in the plotted results
represents an average of ten simulation runs with different
seeds.

4.2 Evaluation metrics

We define the following two metrics to evaluate the energy
efficiency performance of the proposed routing protocols.

� Mean residual energy. This metric calculates the average
residual energy at the end of simulation for all the sen-
sor nodes. It is an indicator of energy efficiency in the
sense that it represents the level of remaining energy in
the network. The higher the value is, the more the energy
remains in the network, and the better the performance
is. Note that due to the presence of the renewable energy
sources, this metric cannot be replaced by a metric that
measures the total energy consumed. A better routing pro-
tocol with renewable energy supply should achieve better
residual energy when total energy consumption is the same
or even higher.

� Standard deviation of residual energy. This metric mea-
sures the standard deviation of the residual energy of
all nodes. This quantity indicates how well the traffic
load/energy consumption is distributed among nodes. The
smaller the value is, the better the capability the routing
protocol has in balancing the energy consumption.

The following performance metrics are also measured to
evaluate the quality of service provided by the proposed
routing protocols.
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Fig. 2 Mean residual energy on nodes and their deviation at the end of the simulation under randomly distributed peer-to-peer traffic vs. network
density

� Normalized end-to-end throughput. This metric is mea-
sured in bit-meters per second (bmps) as in [38]. It is
calculated as in Eq. (10),

T (S, D) = Ndelivered · Spkt · Dist(S, D)

tsession
(10)

where T (S, D) denotes the normalized throughput from
source node S to destination node D, Ndelivered denotes
the number of packets successfully delivered from S to D
in the communication session, Spkt denotes the packet size
in bit, Dist(S, D) denotes the Euclidean distance between
S and D, and tsession denotes the communication session
duration from S to D in second. We account for the distance
factor, because the throughput is indeed relative to the
distance between the communication pair due to the lossy
property of multi-hop wireless links in wireless sensor
networks.

� Normalized end-to-end delay. It is measured as per packet
delay from S to D over Dist(S, D) in second per packet-
meter (sppm), as the delay is also proportional to the dis-
tance between the communication pair.

4.3 Simulation results and analysis

4.3.1 Peer-to-peer traffic

Figures 2 and 3 show the simulation results under randomly
distributed peer-to-peer application traffic. In this simulation,
we set the “Hello” interval τ to 50 s, α in Eq. (2) to 0.5 for
GREES-L, the battery capacity Eb to 5,000 mJ, β in Eq. (6)
to 40, η to 100,000 and ε to 0.3 in Eq. (8) for GREES-M. In
the figures, “Greedy” denotes the geographic routing without
energy awareness but taking into account the wireless chan-
nel conditions, which is an extreme situation for GREES-L
by setting α to 1 in Eq. (2). “Residual-based-L” denotes the

Fig. 3 Normalized end-to-end delay and throughput under randomly distributed peer-to-peer traffic vs. network density
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energy aware routing protocol that only considers the resid-
ual energy level on nodes, which is also an extreme situation
of GREES-L by setting β in Eq. (6) to 0. “Residual-based-
M”, corresponding to GREES-M, denotes the energy aware
routing protocol that only considers the residual energy level
on nodes, which is just by eliminating the factor (μNi + ε)
in Eq. (8).

Figure 2 shows that under randomly distributed peer-to-
peer application traffic, (a) Both GREES-L and GREES-M
are more energy efficient than the corresponding residual en-
ergy based protocols in terms of having higher mean residual
energy and smaller standard deviation of residual energy; (b)
GREES-M performs better than GREES-L on efficiency and
load balancing; (c) The “Greedy” routing without energy
awareness has the lowest mean residual energy and largest
standard deviation of residual energy.

This results can be explained by the fact that GREES-L
and GREES-M take into account the environmental energy
harvesting rate as well as the residual energy on node, so
they have more accurate energy availability estimation than
the corresponding residual energy based protocols, there-
fore they are able to distribute the load better based on the
energy level. Since “Greedy” routing considers neither the
residual energy on node nor environmental energy harvest-
ing, it has the worst performance on energy efficiency and
load balancing. It is worth to mention that if there is no en-
vironmental energy supply, “Greedy” routing may achieve
high mean residual energy, since it locally maximizes PRO
to the destination. In our model, the transmission power is
fixed, so maximizing the progress per packet transmission is
equivalent to maximizing the progress per packet per unit of
energy consumption. However, when there is environmental
energy supply, it is not necessary to maximize the PRO for
every packet. Some packets can be routed to the neighbor

that makes smaller PRO but has more energy availability in
order to avoid overusing some node and make good use of
the environmental energy on some other nodes.

Another observation from Fig. 2 is that the more densely
the nodes are deployed, the more energy remained on nodes,
and the smaller the standard deviation is. Because when the
nodes are closer to each other, the hop counts between the
source and destination pairs become smaller, then the re-
quired energy for delivering one packet from the source to
the destination is reduced, so the mean residual energy on
nodes increases. Furthermore, when network is denser, the
number of paths between the communication pairs increases,
each node has more choices of the next hop to distribute traf-
fic load, and the result is the decreased energy consumption
variance among all the nodes.

The QoS performance of the five protocols under differ-
ent network densities are shown in Fig. 3. We can see that
GREES-L and GREES-M have longer delay than the cor-
responding residual energy based protocols since in order
to achieve better load balancing, some packets may travel
along some links of worse quality or travel longer hops to
get to the destination. However the delay performance is not
compromised much. In our simulation, GREES-L has 19%
longer delay than the Residual-based-L and GREES-M has
14% longer delay than the Residual-based-M. The delay per-
formance is not changed much with network density, as we
already normalized the delay by dividing it by distance. The
throughput performance is nearly the same for all the five
protocols under different network density. It indicates that
although some packets spend a little more time travelling
to the destination, the packet delivery ratio is not compro-
mised at all. Throughput is smaller when nodes are closer
(denser) since the throughput is normalized by multiplying
the source-destination distance.
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Fig. 4 Mean residual energy on nodes and their deviation at the end of the simulation under randomly distributed multiple-to-one traffic with sink
at the center vs. network density
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Fig. 5 Normalized end-to-end delay and throughput under randomly distributed multiple-to-one application traffic with sink at the center vs.
network density
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Fig. 6 Simulation results under randomly distributed peer-to-peer application traffic with different “Hello” intervals
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4.3.2 Multiple-to-one traffic

Figures 4 and 5 show the simulation results under randomly
distributed multiple-to-one application traffic. The simula-
tion settings are the same as the peer-to-peer case, except
that the communication pattern is from sensor nodes to the
sink which is located at the center of the network, and the
battery capacity is set to 7,000 mJ to accommodate the more
demanding energy consumption of nodes close to the sink.
The sink is not energy constrained.

Figure 4 shows the same trend as Fig. 2 that both GREES-
L and GREES-M achieve better energy efficiency and load
balancing than the corresponding residual energy based pro-
tocols under multiple-to-one application traffic. The reason
is the same as explained in Section 4.3.1.

Figure 5 also shows the same trend as in Fig. 3 that
both GREES-L and GREES-M exhibit graceful degradation
on end-to-end delay but do not compromise the end-to-end
throughput performance.

4.3.3 The effect of “Hello” interval

The results shown in this section are for uniformly distributed
peer-to-peer application traffic. The simulation settings are
similar to the simulation in Section 4.3.1, except that the
average number of neighbors per node is fixed on 15, bat-
tery capacity is 9,000 mJ and β = 60. We vary the “Hello”
interval from 2 s to 50 s. As shown in Fig. 6(a), the mean
residual energy on nodes increases when the “Hello” inter-
val increases. When the “Hello” interval is small, the energy
efficiency and load balancing performance of GREES-L and
GREES-M are nearly the same as the corresponding resid-
ual energy based protocols, especially when “Hello” interval
is smaller than 3 s, as the residual energy information on
nodes reflects the energy availability more accurately when
the nodal information is exchanged more frequently. The
reasoning also applies to the observation in Fig. 6(b) that
when the “Hello” interval is small, the performance differ-
ence between GREESs and the corresponding residual en-
ergy based protocols is not obvious. Figure 6(c) shows the
end-to-end delay performance. Generally the delay decreases
as the “Hello” interval increases, except for GREES-L when
“Hello” interval is larger than 10 s. The reason behind this
result is that the energy availability estimation in Eq. (6) may
play a more important role when the “Hello” interval is larger
than a threshold, then the packets are distributed more evenly
and travel longer hops. This can be seen in Fig. 6(a) that the
mean residual energy is still increasing when “Hello” inter-
val is larger than 10 s for GREES-L while other protocols
remains nearly unchanged. Figure 6(b) also shows that the
standard deviation of residual energy is still decreasing for
GREES-L when “Hello” interval is larger than 10 s while
other protocols remains nearly unchanged. The throughput

performance is not shown here since all the five protocols ex-
hibit almost the same throughput performance. These results
imply that the information from neighbors does not need
to be exchanged too frequently. The reduced broadcast fre-
quency may help to reduce interference from local broadcast
as well as to reduce energy consumption for transmitting and
receiving broadcast messages.

5 Conclusion and future work

We proposed two energy aware geographic routing proto-
cols, GREES-L and GREES-M, which make routing deci-
sion locally by jointly taking into account the realistic wire-
less channel condition, packet progress to the destination,
the residual battery energy level of the node, and the envi-
ronmental energy supply. The performance of the proposed
protocols are evaluated and compared with the correspond-
ing residual energy based protocols and “Greedy” routing
protocols under different traffic patterns. Simulation results
show that GREES-L and GREES-M are more energy effi-
cient than the corresponding residual energy based proto-
cols and “Greedy” routing protocols in terms of achieving
higher mean residual energy on nodes, and achieve better
load balancing in terms of having smaller standard devia-
tion of residual energy on nodes. GREES-L and GREES-M
have graceful degradation on the performance of end-to-end
delay, but do not compromise the end-to-end throughput
performance. GREES-M performs better than GREES-L on
energy efficiency and load balancing. Our future work is the
theoretical analysis of the two protocols and a more com-
prehensive simulation study which will be focusing on the
understanding and optimization of the tunable parameters
under various practical situations.
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