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Abstract

In real-time data-intensive multimedia processing applications, data transfer and storage significantly influence, if not

dominate, all the major cost parameters of the design space—namely energy consumption, performance, and chip

area. This paper presents an electronic design automation (EDA) methodology for the high-level design of

hierarchical memory architectures in embedded data-intensive applications, mainly in the area of multidimensional

signal processing. Different from the previous works, the problems of data assignment to the memory layers, of

mapping the signals into the physical memories, and of banking the on-chip memory are addressed in a consistent

way, based on the same formal model. This memory management framework employs techniques specific to the

integral polyhedra based dependence analysis. The main design target is the reduction of the static and dynamic

energy consumption in the hierarchical memory subsystem.

Keywords: Memory management, Multidimensional signals, Signal-to-memory mapping, Scratch-pad memory

banking, Polytopes and lattices

1 Introduction
In embedded real-time communication and multimedia

processing applications, the manipulation of large data

sets has a major effect on both power consumption and

performance of the system. Due to the significant amount

of data transfers between the processing units and the

large and energy consuming off-chip memories, these

applications are often called data-dominated or data-

intensive [1].

At system level, the power cost can be reduced (and,

at the same time, the system performance enhanced) by

introducing an optimized custom memory hierarchy [2].

Hierarchical memory organizations reduce energy con-

sumption by assigning the frequently-accessed data to the

low hierarchy levels [3], diminishing the dynamic energy

consumption—which expands due to memory accesses.

Moreover, it reduces the static energy consumption as

well, since this decreases monotonically with the memory

size [4].

*Correspondence: fbalasa@aucegypt.edu
1Department of Computer Science and Engineering, American University in

Cairo, Cairo, Egypt

Full list of author information is available at the end of the article

Within a given memory hierarchy level, power can be

reduced by memory partitioning—which principle is to

divide the address space in several smaller blocks, and to

map these blocks to physical memory banks that can be

independently enabled and disabled [5, 6].

The most typical implementation of memory hierar-

chies makes use of caches. While extremely versatile and

fast, caches are not always the best choice in embedded

systems. As on-chip storage, the scratch-pad memories

(SPMs)—compiler-controlled synchronous random-

access memories (SRAMs), more energy-efficient than

the hardware-managed caches—are widely used in

embedded systems, where caches incur a significant

penalty in aspects like area cost, energy consumption, hit

latency, and real-time predictability [3].

The SPMs are quite similar to caches in terms of size

and speed (typically, one-cycle access time), but without

dedicated logic for dynamic swapping of contents with the

main memory. Instead, it is the designer’s responsibility

to explicitly map addresses of external memory to loca-

tions of the SPM. While impractical in general-purpose

architectures, this process becomes feasible in embed-

ded systems, where designers usually have fine control on
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both the software and underlying hardware, and are able

to optimally match them. Adding SPMs at the hardware

level is not difficult: they usually require an SRAM array

and decoders to split the SPM accesses from the external

memory (typically, a DRAM) accesses, as shown in Fig. 1.

The research on the assignment of signals (multidimen-

sional arrays) to the memory layers [7] focused in part on

how to restructure the application code tomake better use

of the available memory hierarchy [8]. Brockmeyer et al.

used the steering heuristic of assigning the arrays having

the highest access number over size ratio to the cheapest

memory layer, followed by incremental reassignments [9].

Their model takes into account the relative lifetime dif-

ferences between arrays and between the scalars covered

by each array. However, their model operates on entire

arrays, not taking into account that the access patterns are,

in general, not uniform.

There are rather few research works addressing the

problem of signal mapping to the physical memory. De

Greef et al. mapped each multidimensional array from

the behavioral specification by choosing the canonical

linearization which yielded the minimum distance (in

memory words) between array elements simultaneously

alive [10].

Instead of a linear mapping, Tronçon et al. proposed

to compute an m-dimensional mapping window for each

m-dimensional array [11]: the sides of a window were

computed based on the maximal index difference in each

dimension between array elements simultaneously alive.

(The bounding-window mapping is also used in PPCG—

a source-to-source compiler using polyhedral compilation

techniques that extracts data-parallelism with a code gen-

erator for a modern graphics processing unit [12]). Darte

et al. proposed a lattice-based mathematical framework

for arraymapping, establishing a correspondence between

valid linear storage allocations and integer lattices called

strictly admissible [13].

Partitioning of on-chip memories has been analyzed

by several research teams, being typically used as an

additional dimension of the memory design space. Shiue

andChakrabarti studied power-efficient partitioned cache

organizations, identifying cache sub-banking as an effec-

tive approach to reduce cache power consumption [14].

Benini et al. proposed a recursive partitioning of the

SPM address space, which achieved a complete explo-

ration of the banking solutions [5]. In [6], the cost

function was shown to exhibit properties that allow to

apply a dynamic programming paradigm. A leakage-aware

approach, based on traces of memory accesses, takes into

account that putting a memory block into the dormant

state should be done only if the cost of energy overhead

and decrease of performance can be amortized [15, 16].

The advances in data-dependence analysis [17]

and optimizing compilers [18] have influenced the

development of memory management techniques based

on the processing and restructuring of behavioral spec-

ifications. Ramanujam et al. use data dependence and

data reuse to estimate the minimum amount of memory

in signal processing codes and, then, reduce the storage

requirement through loop-level transformations [19].

However, their approach focuses only on nested loops,

and the window sizes for the arrays are determined

using only a single linearization—the one induced by

the variation of the iterators in the nested loop. De La

Luz et al. present a strategy of increasing the memory

bank idleness by modifying the execution order of loop

iterations [20]. The number of banks and their sizes seem

predetermined, though, and it is not clear what happens

when the arrays are large, exceeding the size of the

banks.

Fig. 1 Simple hierarchical memory architecture with an on-chip SPM and an off-chip DRAM
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This paper presents an energy-aware EDA methodol-

ogy (see Fig. 2) for the high-level design of hierarchi-

cal memory architectures in embedded data-intensive

applications in the domain of multidimensional signal

processing. Different from the previous works, which

typically address one memory management task at a

time, three memory management problems—the data

assignment to the memory layers, the mapping of sig-

nals to the physical memories, and the banking of the

on-chip memory—are addressed in a consistent way,

based on the same formal model. This memory man-

agement framework employs techniques specific to the

integral polyhedra based dependence analysis [21]. The

main target is the reduction of the static and dynamic

energy consumption in the hierarchical memory subsys-

tem of embedded systems (note that several research

works on parallelizing and optimizing compilers—like,

for instance, [18]—focused mainly on data-flow optimiza-

tions and high-level transformations to improve paral-

lelism and memory hierarchy performance: improving the

Fig. 2 Flowchart of a memory management system for data-intensive signal processing applications
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performance of storage organizations is a target orthogo-

nal to ours).

In contrast to previous EDA works, the advantageous

characteristics of the three main tasks are as follows.

• The data assignment to the memory layers identifies
the intensely-accessed parts of the multidimensional
arrays, steering these parts to the energy-efficient

storage layer. Such a strategy is thus independent of

the number and size of the arrays (being dependent

only on the size of the energy-efficient layer) and

entails a significant reduction of energy consumption

in the memory subsystem.
• The signal-to-memory mapping is designed to work

in hierarchical memory organizations, being able to
operate with parts of arrays (rather than entire

arrays). It can provide mapping functions useful for
the design of the address generation units and it can
evaluate metrics of quality, like the minimum storage

requirement of the behavioral specification.
• Two memory banking techniques are implemented

in our framework: they further reduce the memory

energy consumption, computing very fast
near-optimal banking solutions even when the
memory address space is large.

The main input of this memory management frame-

work is the behavioral specification of a data-intensive

application. Such a specification is described in a high-

level programming language, where the code is typically

organized in sequences of loop nests. The loop bound-

aries are linear functions of the outer loop iterators. The

data structures are multidimensional arrays—a character-

istic of data-intensive applications [1]; the indices of the

array references are linear functions of the loop iterators.

The logical expressions in conditional instructions can be

either simple or compound. The behavioral specifications

describe the processing of streams of data samples: differ-

ent from computer programs, these specifications can be

imagined as surrounded by an implicit loop having time

as iterator. This is why the code can contain delayed sig-

nals, i.e., signals produced (or inputs) in a previous data

processing, which are used as operands during the current

execution of the code (for instance, A[i] [j] @3 means an

array reference produced three time iterations in the past).

The specifications supported by this framework are

procedural1 and non-parametric (for illustration, see the

code examples in the text). Our memory management

model allows the exploration of various functionally

equivalent behavioral specifications by computing the

minimum data storage [22] and generating the graph of

storage variation during the code execution (see Fig. 3).

The rest of the paper is organized as follows. Section 2

discusses the problem of energy-aware signal assignment

                                              //  All the array elements are produced

   for ( i=0; i<767; i++ )         //         and consumed in this loop nest

      for ( j=0; j<256; j++ ) {

         if ( i+j>=127 && i+j<=254 && j<=127 )  A[i][j] = 1 ;

         if ( i+j>=255 && i+j<=382 && j<=127 )  ... = A[i-128][j];

         if ( i+j>=159 && i+j<=318 && j<=159 )  B[i][j] = 2 ;

         if ( i+j>=319 && i+j<=478 && j<=159 )  ... = B[i-160][j];

         if ( i+j>=191 && i+j<=382 && j<=191 )  C[i][j] = 3 ;

         if ( i+j>=383 && i+j<=574 && j<=191 )  ... = C[i-192][j];

         if ( i+j>=223 && i+j<=446 && j<=223 )  D[i][j] = 4 ;

         if ( i+j>=447 && i+j<=670 && j<=223 )  ... = D[i-224][j];

         if ( i+j>=255 && i+j<=510 )                       E[i][j] = 5 ;

         if ( i+j>=511 && i+j<=766 )                       ... = E[i-256][j];

}
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Fig. 3 a Algorithmic specification and b the graph of variation of the

storage requirement for the signals A, B, C, D, and E. The abscissae are

the numbers of assignment instructions executed at run time; the

ordinates are the memory locations (or words, whose width in bytes

is known) in use. The minimum data storage is 125,193 locations;

interchanging the two loops, the storage requirement significantly

decreases to only 576 locations

based on a case study. Section 3 presents the formal

model of the methodology and the algorithm for data

assignment to the memory layers. Section 4 describes a

storage-efficient mapping approach of multidimensional

arrays to the physical memories. Section 5 presents the

algorithm for partitioning the on-chip SPMs. Section 6

discusses implementation aspects and presents experi-

mental results. Finally, Section 7 summarizes the main

conclusions of this research.

2 Signal assignment to thememory layers: a case
study

Let us consider the illustrative code example in Fig. 4, and

assume that each element of the two-dimensional (2-D)

array A can be stored in 1 byte (hence, the whole array

has a storage requirement of 64 Kbytes). The array is not

uniformly accessed during the code execution. Figure 5
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Fig. 4 Code example of behavioral specification

displays the intensity of read accesses of the A-elements:

for each pair of possible indexes—between 0 and 255—of

the A’s elements (the horizontal plane xOy), the num-

ber of memory accesses was recorded on the vertical axis

Oz. One can see the elements near the center of the

array space are accessed with high intensity (for instance,

A[128] [128] is accessed 33,025 times), whereas the ele-

ments at the periphery of the array space are accessed

with a significantly lower intensity (for instance, the ele-

ments in the four corners of the array space A[0] [0],

A[0] [255], A[255] [0], and A[255] [255] are accessed only

once).

Brockmeyer et al. proposed to assign the arrays having

the highest access number over size ratio to the on-

chip memory layer [9]. Certainly, the array A has a high

access ratio—equal to 8320.5 (since there are 545,292,288

accesses to 65,536 array elements): quite obviously, the

most desirable scenario – in point of view of both energy

consumption and performance—is to store all the signals

from the behavioral specification onto the SPM memory

layer or, at least, the entire array A. This is usually not

possible: quite often, the size of the on-chip memory is

a design constraint, usually small relative to the storage

requirement of the entire code.

Not only that arrays from the behavioral specification

may have storage requirements greater than the SPM size,

but also their possible non-uniform pattern of accesses is

not taken into account by this past assignment approach

[9]. Hu et al. can use parts of arrays in the assignment

to the memory layers [23]: their illustrative example sug-

gests cuts along one of the array dimensions as the main

partitioning heuristic. If this is the case, the approach has

a similar shortcoming—the pattern of accesses may have

significant variations along these cuts. For instance, in our

test case, the A-elements of the row 128 have a range of

variation between 128 (for A[128] [0]) and 33,025 accesses

(for A[128] [128]), with an abrupt increase from 8192 to

24,961 accesses for the neighbor elements A[128] [63] and

A[128] [64] (see Fig. 5).

In data-intensive signal processing applications, the

main data structures from the behavioral specification are

multi-dimensional arrays. The problem is how to iden-

tify the intensely-accessed parts of arrays based on the

analysis of the application code, in order to steer their

assignment to the energy-efficient data storage layer– the

on-chip SPM. Note that a simulated execution of the

behavioral specification may be computationally expen-

sive (e.g. when the number of array elements is very large,

or when the application code contains deep loop nests);

at the same time, such a scalar-oriented technique yields

assignment results that cannot be directly used for the

design of the address generation units [24].

Fig. 5 3-D map of memory accesses to the array A from the code in Fig. 4. A’s index (array) space is in the horizontal plane xOy and the numbers of

memory accesses are on the vertical axis Oz
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An assignment algorithm mapping the array elements

from the behavioral specification to the memory layers,

targeting the reduction of the energy consumption in the

hierarchical memory subsystem, will be described in the

next section.

3 Data assignment to thememory layers for the
reduction of energy consumption in the
hierarchical memory subsystem

Our technique is based on a simple observation: the most

intensely-accessed parts of the array space of a multidi-

mensional signal are typically covered by more than one

array reference. Actually, in many cases, the more array

references cover a certain element, the more accessed

that element is. For instance, the most heavily accessed

parts of array A (see Fig. 5) from the code in Fig. 4

are the A-elements belonging to both array references

A[i] [j] and A[k] [l]. Of course the intensity of memory

accesses to them is not uniform but, nevertheless, they

are read more often than the other A-elements. In order

to find out which are the array elements belonging to

several array references, we must intersect the array ref-

erences of the signal. This operation is done based on

an algebraic model whose principle is briefly explain

below.

Each array reference M[ x1(i1, . . . , in)] · · · [ xm(i1, . . . ,

in)] of an m-dimensional signal M, in the scope of a nest

of n loops having the iterators i1, . . . , in , is charac-

terized by an iterator space and an index or array space.

The iterator space signifies the set of all iterator vectors

i = (i1, . . . , in) ∈ Z
n in the scope of the array refer-

ence. The index space is the set of all index vectors x

= (x1, . . . , xm) ∈ Zm of the array reference. When the

indices of an array reference are linear expressions with

integer coefficients of the loop iterators, the index space

consists of one or several linearly bounded lattices (LBLs)

[25]:

{

x = T · i + u ∈ Z
m | A · i ≥ b , i ∈ Z

n
}

where x ∈ Z
m is an index vector of the m-dimensional

signal and i ∈ Z
n is an n-dimensional iterator vector.

Example 1: In Fig. 4, B[i] [j] [129∗k−129∗i+l−j+8321]

is an array reference that can be represented by the lattice:

⎧

⎪
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⎪

⎪

⎩

⎡

⎣

x

y

z

⎤
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i

j
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l

⎤

⎥
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⎦
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⎡
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0

0

8321

⎤

⎦

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

where x, y, and z are the m = 3 indexes of the array

reference; the n = 4 iterators satisfy the inequalities:

64 ≤ i, j ≤ 191 , i−64 ≤ k ≤ i+64 , j−64 ≤ l ≤ j+64.

Let L1 = {x = T1i1 + u1 | A1i1 ≥ b1} , L2 = {x =

T2i2+u2 |A2i2 ≥ b2} be two LBLs derived from the same

indexed signal, where T1 and T2 have obviously the same

number of rows—the signal dimensionm. Intersecting the

two linearly bounded lattices means, first of all, solving

a linear Diophantine system (that is, finding the integer

solutions of a linear system with integer coefficients2) [26]

T1i1 − T2i2 = u2 − u1

having the elements of i1 and i2 as unknowns. If the sys-

tem has no solution, then L1 ∩ L2 = ∅ . Otherwise, the

solution of the Diophantine system has the form:

[

i1
i2

]

=

[

V1

V2

]

t +

[

v1
v2

]

, t ∈ Z
p

Replacing i1 and i2 in the sets of constraints A1i1 ≥ b1

and A2i2 ≥ b2 of the two LBLs, we obtain the set of

inequalities:

A1V1 · t ≥ b1 − A1v1 , A2V2 · t ≥ b2 − A2v2 (1)

If (1) has integer solutions, then the intersection is a new

LBL:

L1 ∩ L2 =
{

x = T1V1 · t + (T1v1 + u1)| s.t. (1), t ∈ Zp
}

Note that, in geometrical point of view, the set of

inequalities (1) represents an integral polytope—a multi-

dimensional polyhedron bounded and closed, restricted

to the points having integer coordinates. Checking the

existence of integer solutions of a linear system of inequal-

ities is a well-known problem [27].

The intersection of lattices described above can be used

to decompose the array space of every multidimensional

signal from the application code into disjoint lattices and,

also, to compute the number of accesses to the array

elements in every partition. A high-level pseudo-code is

given below: the decomposition is obtained by recursively

intersecting all the array references of a selected signal.

The structure of each array reference in terms of compo-

nent lattices is determined by gradually building a directed

acyclic graph (DAG)—each node representing an LBL

and each arc denoting an inclusion relation between the

respective sets. Initially, this DAG is just a set of nodes,

one per each array reference in the code. Gradually, new

nodes emerge due to intersections between lattices, and

arcs (inclusions) are added between the nodes.
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Algorithm 1 Partitioning the index space of a multidi-

mensional array/signal into disjoint lattices

initialize the set of LBLs of the selected signal

with the lattice representing some array referenceA0;

for (all the array references of the given signal) {

select a referenceA1 �= A0 and let L1 be its representation;

for (the set of LBLs of the signal) {

select an LBL from the set, let it be called L2 ;

compute L1 ∩ L2 ;

if (the intersection is not empty)

then compute L1 − L2 and L2 − L1 ;

update the set of LBLs and the DAG of lattices;

repeat the above operations till no new LBL is created;

}

}

The difference of lattices is a more complex opera-

tion, described, for instance, in [22]—where it is used to

compute the minimum data storage of behavioral specifi-

cations.

Figure 6 shows the resulting directed acyclic graph for

the 2-D array A from our illustrative example in Fig. 4.

The nodes in the graph are annotated with the amount

of storage required by the lattices they represent. The

bold nodes without incident arcs denote the nine disjoint

lattices partitioning the array space, as displayed in Fig. 7.

The number of read/write accesses is indicated below

these nodes whose names correspond to the partitions in

Fig. 7 (where L means Left, R means Right, B stands for

Bottom and T for Top, and M means Middle). For exam-

ple, the number of memory accesses to the middle region

M, as part of the array reference A[k] [l], is the size of the

LBL {i = t1, j = t2, k = t3, l = t4 | 191 ≥ t1, t2, t3, t4 ≥

64, t1 + 64 ≥ t3 ≥ t1 − 64, t2 + 64 ≥ t4 ≥ t2 − 64},

which is 152,571,904 [22]. On the other hand, M is also

included in the array reference A[i] [j]: the number of

memory accesses is the size of the LBL {i = t1, j =

Fig. 6 Directed acyclic graph (DAG) showing the inclusions between

the linearly bounded lattices partitioning the array space of signal A

t2, k = t3, l = t4 | 191 ≥ t1, t2 ≥ 64, t1 + 64 ≥ t3 ≥

t1 − 64, t2 + 64 ≥ t4 ≥ t2 − 64}, which is 272,646,144 .

Hence, the total amount of memory accesses to partition

M is 152,571,904 + 272,646,144 = 425,218,048.

The benefit of the decomposition of the array space for

each signal is that it yields access information for steering

the signal assignment to the memory layers. The obvious

candidates for being stored on-chip are the regions of

the array space (LBLs) having the highest ratios between

the number of array accesses and their size. Note that

Brockmeyer et al. considered similar ratios but at the level

of whole arrays [9], whereas our approach localizes the

regions heavily accessed in the array space and applies

the ratios at the level of these regions. In our illustra-

tive example, the middle region M has the highest ratio:

425,218,048 / 16,384 = 25,953.25 (that is, an average of

almost 26 thousand accesses per array element). We are

using an even more precise metric—the savings of energy,

as a percentage, when the lattice is stored on-chip, rather

than onto the external DRAM. According to this metric,

the energy benefit of lattice M is 60.88%—computation

will be explained below.

Therefore, storing on-chip the elements in the center of

signal A’s array space would maximize the benefit in term

of energy reduction. However, this central regionM of the

array space requires 16 Kbytes: what is to be done if there

is a design constraint limiting the SPM storage to less than

16 Kbytes?

To explain the idea of our assignment algorithm when

the SPM size is a design constraint, we shall use again the

illustrative example in Fig. 4. The three inner loops are

executed for each value of the outer loop iterator i from 64

to 191. If the outer loop were unrolled, then Algorithm 1

partitioning the array space would yield the 128 lattices

partitioning M, as displayed in Fig. 8, instead of the lin-

early bounded lattice representing the partition M from

Fig. 6. Actually, there is no need to perform any modifica-

tion of the behavioral specification: the smaller lattices can

be obtained by “slicing” the lattice representing M for the

different values of the first iterator. The partitioning can

be continued until a finer level of granularity is reached.

Example 2: The lattice from Example 1 of the array ref-

erence B[ i] [ j] [ 129 ∗ k − 129 ∗ i + l − j + 8321] can be

“sliced” (split) into 128 disjoint finer lattices for each value

of i = 64, . . . , 191. The first and the last of these 128

lattices are shown below:
⎧

⎨

⎩

⎡

⎣

x

y

z

⎤

⎦ =

⎡

⎣

0 0 0

1 0 0

−1 129 1

⎤

⎦

⎡

⎣

j

k

l

⎤

⎦ +

⎡

⎣

64

0

65

⎤

⎦

⎫

⎬

⎭

,

where the iterators j, k, and l satisfy the inequalities:

64 ≤ j ≤ 191 , 0 ≤ k ≤ 128 , j − 64 ≤ l ≤ j + 64 and
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Fig. 7 Partitioning of the array space of signal A steered by the intensity of memory accesses: the darker the partition, the more it is accessed. The

bold nodes in the DAG from Fig. 6 represent the nine partitions

⎧

⎨

⎩

⎡

⎣

x

y

z

⎤

⎦ =

⎡

⎣

0 0 0

1 0 0

−1 129 1

⎤

⎦

⎡

⎣

j

k

l

⎤

⎦ +

⎡

⎣

191

0

−16318

⎤

⎦

⎫

⎬

⎭

,

where the iterators j, k, and l satisfy the inequalities:

64 ≤ j ≤ 191 , 127 ≤ k ≤ 255 , j − 64 ≤ l ≤ j + 64.

The number of memory accesses for each of the A’s

smaller 128 lattices (see Fig. 8) can be also computed: then,

Fig. 8 The central region of the array space of signal A

the ratios between these numbers and the lattice sizes (of

128 bytes each) decrease from 28,993 (for lattices 127 and

128) to 22,913.5—for the two lateral ones, 64 and 191.

Hence, it is more beneficial to store in the SPM the lat-

tices going from the middle to the periphery of the central

region of the array space.

The data assignment tool can be used to explore

the impact on energy consumption by various storage

distributions between the memory layers. Figure 9 dis-

plays the graphs of the energy consumption (both static

and dynamic) by the SPM, by the DRAM, and overall

when the SPM increases from 0 to 12 Kbytes, while the

external DRAM decreases at the same time from 64 to

52 Kbytes. These graphs were obtained using CACTI 6.5

[28] for a technology of 32 nm.3 When the entire signal

A is stored onto the DRAM, the energy consumption is

87,947.8 μJ . However, when the DRAM is 56 Kbytes and

the SPM is 8 Kbytes, the 64 central lattices of A (num-

bered 96–159 in Fig. 8) being stored onto the SPM, the

energy consumption of the DRAM decreases significantly

to 52,301.1 μJ , while the energy consumption of the SPM

increases from 0 to only 3,063.6μJ . The energy benefit for

this scenario is

(

1 −
52, 301.1 + 3, 063.6

87, 947.8

)

× 100 [ %]= 37.05%
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Algorithm 2 Energy-aware data assignment (multidimen-

sional arrays/signals) to the off- and on-chip memory

layers

for (all the multidimensional arrays in the application

code)

partition its index space in lattices using Algorithm 1;

initially, assign the disjoint lattices of each array to DRAM:

size (DRAM) =
∑

L
size (L); size (SPM) = 0;

compute the energy benefit of each linearly bounded lat-

tice;

do {

select the lattice L having the highest energy benefit;

if ( size (SPM) + size (L) ≤ MAX_SPM_SIZE ) {

assign L to the SPM: size (SPM) += size (L);

size (DRAM) -= size (L);

update the benefits of the lattices assigned to DRAM;

}

else { "slice" the lattice L relative to its first iterator;

compute the benefits of these finer-granularity

lattices;

}

} until (MAX_SPM_SIZE is reached, OR

the maximum level of "slicing" is reached );

Algorithm 2 has, typically, a useful side effect: a decrease

of the total access time to the physical memories. The

data assignment tool can be also used to explore the

access times for various storage distributions. Figure 10

displays the graphs of the total access time to the SPM, to

the DRAM, and to the two-layer data memory when the

SPM increases from 0 to, say, 8 Kbytes, while the external

Fig. 9 The graphs of the energy consumption by the SPM, by the

DRAM, and by the two-layer data memory storing the array A (from

the code in Fig. 4) whose footprint is 64 Kbytes. The lower horizontal

axis shows the increasing size of the on-chip SPM, and the upper

horizontal axis displays the decreasing size of the off-chip DRAM

Fig. 10 The graphs of total access time to the SPM, to the DRAM, and

to the two-layer data memory storing the array A (from the code in

Fig. 4) whose footprint is 64 Kbytes. The lower horizontal axis shows

the increasing size of the on-chip SPM, and the upper horizontal axis

displays the decreasing size of the off-chip DRAM

DRAM decreases at the same time from 64 to 56 Kbytes.

These graphs were also obtained using CACTI 6.5 [28] for

a technology of 32 nm.

When the entire signal A is stored in the DRAM, the

total access time, according to CACTI 6.5, is 907.55 ms;

however, when the DRAM is 56 Kbytes and the SPM is 8

Kbytes, the 64 central lattices of A (numbered 96–159 in

Fig. 8) being stored in the SPM, the DRAM access time

decreases to 521.16 ms on account of an increase of the

SPM access time to 246.48 ms. Hence, the time benefit for

this scenario is
(

1 −
521.16 + 246.48

907.55

)

× 100 [ %]= 15.42%

When comparing time and energy per access in a mem-

ory hierarchy, it may be observed that these two metrics

have often similar behavior; namely, they both increase

as we move from low to high hierarchy levels. While it

sometimes happens that a low-latency memory architec-

ture is also a low-power one, optimizing memory perfor-

mance does not imply power optimization or vice-versa

[14] (although architectural solutions originally devised

for performance optimization can be beneficial in terms

of energy consumption, as well). There are two basic rea-

sons for this: first, energy consumption and performance

do not increase in the same way with memory size and

hierarchy level; second, performance is a worst-case met-

ric, while power is an average-case metric: for instance, the

removal of a critical computation that improves perfor-

mance may be harmful in terms of power consumption.

Algorithm 2 could be extended to an arbitrary number

of memory layers if the functions of energy per access

and static power versus memory size were available for
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each layer. Assuming these functions increase monoton-

ically with the memory size for each layer, and that the

value intervals of these functions are disjoint and increase

with the hierarchy level, the algorithm can be modified

to assign the lattices of larger benefits starting from the

lowest level and gradually moving to the higher levels of

hierarchy. Our current implementation is dependent on

the limitations of CACTI 6.5—the analytical tool used to

provide memory information [28].

4 Mapping signals into the physical memory
This design phase decides the memory addresses of the

signals from the behavioral specification. The signal-to-

memory mapping has the following goals: (a) to map

the signals (already assigned to the memory layers) into

amounts of data storage as small as possible; (b) to guar-

antee that scalar signals (array elements) simultaneously

alive are mapped to distinct storage locations; and (c)

to use mapping functions simple enough in order to

ensure an address generation hardware of a reasonable

complexity.

Different from the previous works [10, 11, 13], this

mapping technique is designed to work in hierarchical

memory organizations, since it operates with parts of

arrays (represented by mutually disjoint lattices) that can

be assigned to different physical memories. The poly-

hedral framework, common to all the design phases in

our system (data assignment to the memory layers, sig-

nal/array mapping onto the external memory and the

SPM, followed by the banking of the latter), entails a high

computation efficiency since all the phases rely on similar

polyhedral operations. We present below the basic ideas

of the mapping approach.

For an m-dimensional array, there are m! orderings of

the indices. For instance, a 2-D array can be typically

linearized concatenating the rows, or concatenating the

columns. In addition, the elements in a given dimension

can bemapped in the increasing or decreasing order of the

respective index. All these 2m ·m! possible linearizations

are called canonical [10]. For any canonical linearization,

we compute for every linearly bounded lattice the largest

distance (in memory words) between any two live lat-

tice elements during the code execution. Based on these

results, we compute—for every canonical linearization—

the largest distance between any two live array elements

at any time during the code execution.4 This distance plus

1 is then the size of the storage window required for the

mapping of the array into the data memory. More for-

mally, |WA| = min max { dist(Ai,Aj) } + 1, where |WA|

is the size of the storage window of a signal A, the mini-

mum is taken over all the canonical linearizations, while

the maximum is taken over all the pairs of A-elements

(Ai,Aj) simultaneously alive. Even when parts of the array

are stored in the SPM and the rest of it in the off-chip

memory, the sizes of the storage windows can still be com-

puted, since the assignment of data to the memory layers

is done at the level of lattices (as explained in Section 3).

Example 3: The mapping model will be illustrated for

the loop nest in Fig. 11a. The graph in Fig. 11b repre-

sents the array space (or index space) of the 2-D signal

A, that is, the values of the indexes of the array reference

A[i] [j]. Each black point represents the index vector of an

A-element A[i] [j] which is produced (that is, assigned a

value) in the loop nest. Assuming these A-elements will

be used as operands in a subsequent code, the storage

requirement of the loop nest is 38 memory words. How-

ever, a minimum physical memory window is difficult to

use in practical memory management problems: in most

of the cases, it would require a significantly complexmem-

ory addressing hardware. A signal-to-memory mapping

model must trade off an excess of data storage against a

less complex address generation unit (AGU), most AGUs

needing to compute additions, multiplications, and mod-

ulo operations [24]. For instance, a memory window WA

of 50 successive locations (relative to some base address)

is sufficient to store the array reference A[i] [j] without

mapping conflicts between elements simultaneously alive:

it suffices that any read/write access to A[i] [j] be redi-

rected to the memory word WA[ (10 ∗ j + i) mod 50],

or to WA[ (5 ∗ i + j) mod 50] (since the integer projec-

tions [29] of the index space on the two axes are 10

and 5).

By analyzing the canonical linearizations, we try to

reduce the memory window even more. This analysis is

based on the evaluation of the distance between the min-

imum and maximum index vectors, relative to the lexico-

graphic order, in a minimal bounding window of the index

space (the computation steps being described and illus-

trated in [30]). In Fig. 11b, these minimum and maximum

index vectors are represented by the pointsM and N, and

the distance between them is dist(M,N) = (11 − 2) × 5 +

(7 − 3) = 49. Assuming that all the array elements within

a linearly bounded lattice are alive, in a canonical lin-

earization, the maximum distance in words between the

array elements is the distance between the (lexicograph-

ically) minimum and maximum index vectors, providing

an index permutation is applied first (in particular, an

index interchange for 2-D signals). If in the canonical lin-

earization some dimension is traversed backwards, then a

simple transformation reversing the index variation must

be also applied. In our example, the interchange of the

indexes in Fig. 11c does not reduce the distance between

between the points representing the minimum and max-

imum index vectors, but the reverse of the first index

variation—as shown in Fig. 11d—entails a distance reduc-

tion: dist(M,N) = (11 − 2)×5 + (5 − 6) = 44. It follows

that the array reference can be stored without mapping

conflicts in a memory windowWA of 45 words: it suffices
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(a)

(b)

(e)

(c) (d) (f)

Fig. 11 a Simple code example, illustrating the mapping idea. b The index space of the array reference A[i] [ j]. c The index space with indexes

interchanged. d The index space flipped horizontally. e Code example with two array references having an identical index space. f The index space

of the two array references from e, where not all the array elements are simultaneously alive

that any read/write access to A[ i] [ j] be redirected to the

memory word, say, WA[ (5 ∗ (13 − i) + j) mod 45]. To

be sure, 45 words represent an excess of storage relative

to the minimum storage requirement of 38 words, but

the advantage is that there is an easy-to-design function

directing the mapping from the index space to the data

storage.

Figure 11e shows another code example, the array ele-

ments produced by the array reference A[i] [j] are con-

sumed by the array reference A[i−3] [j−2]. The points to

the left of the dashed line represent the iterator vectors of

the elements produced till the breakpoint indicated in the

code, the black points representing the elements still alive

(i.e., produced and still used as operands in the next iter-

ations), while the circles representing A-elements already

“dead” (i.e., not needed as operands any more). The light

grey points to the right of the dashed line represent the

index vectors of A-elements still unborn (to be produced

in the next iterations). There is a canonical linearization

in which the distance between the index vectors of simul-

taneously alive elements is 17 (which entails a memory

window of 18 words), very close to the minimal storage

requirement of 17 words.

The computation of distances are performed for each

disjoint lattice extracted from the code [30]. The overall

mapping results are assembled, taking into account the

lifetimes of lattices, as well as the lifetimes of the array

elements they contain.

In order to avoid the inconvenience of analyzing differ-

ent linearization schemes (whose number grows fast with

the signal’s dimension), we also use a second mapping

technique based on integer projections: although it often

yields slightly worse storage results than the linearization

approach, it has the advantage of being faster.

We compute a maximal m-dimensional bounding box

BBA = (w1, . . . ,wm) large enough to encompass at

any time during code execution the simultaneously alive

(m-dimensional) A-elements. As already mentioned in

Section 1, this bounding-box technique was also used

in—a polyhedral parallel code generator for CUDA [12].

An access to the element A[ index1] . . . [ indexm] can then

be redirected without any conflict to the bounding box

element BBA[ index1 mod w1] . . . [ indexm mod wm].

Each window side wk is computed as the maximum

difference in absolute value between the kth indexes of

any two A-elements (Ai,Aj) simultaneously alive, plus

1. More formally, wk = max { |xk(Ai) − xk(Aj)| } +

1, for k = 1, . . . ,m. This ensures that any two

array elements simultaneously alive are mapped to dis-

tinct memory locations. Then, the bounding box BBA

can be mapped one-to-one to a memory window WA.

The amount of data memory required for storing the
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array is the volume of the bounding box BBA, that is,

|WA| = �m
k=1wk .

This mapping approach can be independently applied

to each memory layer, providing mapping functions for

all the signals in the specification and a complete storage

allocation/assignment solution for distributed memory

organizations. In addition, it can generate the traces of

memory accesses for each memory layer, the trace to the

SPM being particularly useful for energy-aware memory

banking (see the next section). Our memory management

software also computes the minimum storage require-

ment of each multidimensional signal in the specification

[22] (therefore, the optimal memory sharing between the

elements of each array), as well as the minimum data stor-

age for the entire algorithmic specification—therefore,

the optimal memory sharing between all the array ele-

ments and scalars in the code. These lower-bounds are

used as metrics of quality for the mapping solution,

since they show how much larger the mapping windows

are versus the minimum storage requirements: no prior

technique provides such metrics of quality for their map-

ping solutions.

5 Scratch-padmemory banking for the reduction
of energy consumption

After being assigned to the off- and on-chip memory

layers, the linearly bounded lattices are mapped to the

external DRAMand SPM; so, the distribution of themem-

ory accesses to the SPM address space is known. Let us

assume that the range of contiguous addresses mapped

to the on-chip SPM is {0, 1, . . . , N − 1}, that memory

is word-addressable and the word width is known (being

imposed by the chosen core processor). The dynamic

energy E
dyn
1 (0,N) (where the arguments are the start

address and the number of words, the subscript being the

number of banks) consumed by a monolithic SPM is [5]

E
dyn
1 (0,N) =ER(N) ·

N−1
∑

i=0

read[i] + EW (N) ·

N−1
∑

i=0

write[i],

where ER(N) and EW (N) are the energies consumed per

read, respectivelywrite, access to an SPMofN words; they

are technology-dependent metrics. In addition, read[i]

and write[i] represent the number of accesses to word i

and, consequently, the sums represent the total numbers

of read/write accesses to the on-chip memory locations

0, 1, . . . , N − 1.

If the address space of the on-chip SPM is arbitrarily

partitioned in two ranges {0, 1, . . . , k − 1} and {k, k +

1, . . . , N − 1}, then the dynamic energy consumed in the

two-bank SPM becomes:

E
dyn
2 (0, k,N) = E

dyn
1 (0, k) + E

dyn
1 (k,N − k)

The first two arguments of E
dyn
2 are the start addresses

in words of the two banks, the third being the total size.

The static energy consumed in the two-bank SPM, hav-

ing the address space partitioned as above, is the sum of

the static energies in each bank: Est2 (0, k,N) = Est1 (0, k) +

Est1 (k,N − k). Neither term depends on the number of

memory accesses.

The partitioning is energetically beneficial if

E
dyn
2 (0, k,N) + Est2 (0, k,N) + �E12 < E

dyn
1 (0,N)+

Est1 (0,N), where �E12 is the energy overhead required

by the extra logic (usually, a decoder) and intercon-

nections necessary to move from the monolithic SPM

to a two-bank architecture. Figure 12 shows the more

complex architecture of a multi-bank versus the mono-

lithic architecture: the additional components and

interconnects—the address and data buses, the decoder,

the control signals—may introduce a non-negligible over-

head on power consumption that must be compensated

by the savings entailed by bank partitioning. These savings

are caused by the average power decrease in accessing the

memory hierarchy, because a large fraction of accesses is

typically concentrated on a smaller, more energy-efficient

bank. In addition, the memory banks that stay idle

long enough can be disabled through their chip-select

(CS) pins. Equivalently, the partitioning is energetically

beneficial if the energy benefit of the two-bank solution

(

1 −
E
dyn
2 (0, k,N) + Est2 (0, k,N) + �E12

E
dyn
1 (0,N) + Est1 (0,N)

)

×100 [ %]

versus a monolithic SPM is positive.

Fig. 12 Architectures with monolithic and two-bank SPMs
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The solution space of two-way memory banking can

be exhaustively explored (and, hence, optimally solved

in energy point of view) by iteratively moving the upper

bound k of the first bank from 1 to N − 1, and finding

the global minimum: mink {E
dyn
2 (0, k,N) + Est2 (0, k,N)} +

�E12.

A similar cost metric can be used to explore multi-way

banking solutions: any possible partition into M (≥ 2)

banks is defined by a set of M-1 addresses identifying the

memory bank boundaries. Based on this idea, Benini et

al. implemented a recursive algorithm [5] where the solu-

tion space is exhaustively explored (their main input is

the graph of the distribution of memory accesses to the

SPM address space, rather than the behavioral specifica-

tion of the application). This search for an energetically-

optimal solution proves to be computationally expensive

(see Section 6), even infeasible, for larger values of M—

the maximum number of banks—and/or larger values of

the SPM size. Angiolini et al. carried out more efficiently

a similar exploration using dynamic programming [6].

Although the time complexity is polynomial, our exper-

iments found that the running times of their method

exhibit a fast increase with the sizes of the SPM and the

execution trace (the computation timewas over 8 h for our

illustrative example in Fig. 4, and an SPM size of 8 Kbytes,

when the memory word was 1 byte. For SPM sizes smaller

than 2 Kbytes, the technique can be effective, though).

The banking algorithms we propose are consistent with

our model of partitioning the array space of signals into

disjoint lattices (see Section 3). For M < 4, these algo-

rithms are basically identical to the exploration algorithm

presented in [5] since this approach yields optimal solu-

tions. For M ≥ 4, as the running times may be extremely

large, we introduce a constraint that significantly reduces

the exploration space: no SPM-assigned lattice can cross

a bank boundary. This constraint ensures the effective-

ness of our approach in point of view of speed and

near-optimality of the results—as Example 4 will show.

5.1 Lattice-based recursive algorithm

In addition to M, the maximum number of SPM banks,

the inputs of the SPM partitioning algorithm are:

Input 1: An array A =[ addr0, addr1, . . . , addrn]

of ordered addresses such that a linearly bounded lat-

tice Lk , k = 1, . . . , n, assigned to the on-chip mem-

ory layer be mapped at the SPM successive addresses

{addrk−1, . . . , addrk − 1}.

Input 2: An array RW =[ rw1, . . . , rwn] which ele-

ments represent the numbers of read/write accesses for

each lattice mapped onto the SPM (notice that the num-

bers of read/write accesses for each lattice mapped onto

the SPM are already known from Section 3).

Input 3: An array E =[�E12, �E23, . . . , �EM−1,M],

which elements �Ek,k+1 are the energy overheads

resulting frommoving from an on-chip SPM with k banks

to one with k + 1 banks. The decoding circuitry was

synthesized using the ECP family of FPGA’s from lattice

semiconductor [31] and, for the energy overheads, we

used the power calculator from Lattice Diamond [31].

Output: The energetically-optimal SPM partitioning,

i.e., an array of SPM addresses delimiting the banks, and

the minimum value of the total (static and dynamic)

energy consumption for this optimal SPM banking

solution.

The algorithm starts from the monolithic architecture

and searches for the energetically-optimal partitioning of

the SPM in no more than M memory banks, such that

the borderlines between banks are addresses in the array

A (hence, ensuring that any lattice of signals is entirely

stored in one bank). A variable crtBestSolution

records the set of addresses in A corresponding to

the most energetically-efficient partition reached in any

moment of the exploration; initially, the SPM being

monolithic, this set is {addr0, addrn}. A variable

crtMinEnergy registers the total energy consumption

of the best SPM banking solution encountered during

the exploration. A function SPM_energy(bank_size,

number_accesses) uses CACTI 6.5 [28] and the

number of read/write accesses in order to compute

the total energy (both static and dynamic) consumed

in a bank of the specified size. A recursive function

Multi_Bank, whose first formal parameter m (initially

equal to 2) is the current number of banks, searches

for the optimal solution such that the first bank ends

at addrk . This function is successively called for k =

1, 2, . . . , n − 1. EnergyConsumed registers the

amount of energy consumed from the start of the

SPM till the borderline addrk . If its value exceeds the

best energy already recorded (crtMinEnergy), there

is no need to continue the exploration since all the

next solutions will be energetically-worse—due to the

monotonic increase of the energy consumption with the

SPM size.

Algorithm 3 Energy-aware recursive SPM banking

crtBestSolution = {addr0 , addrn};

crtMinEnergy =

SPM_energy (addrn–addr0 ,
∑n

i=0 rwi);

push (SolutionStack, crtBestSolution);

for k = 1 to n-1 do {

EnergyConsumed =

SPM_energy (addrk–addr0 ,
∑k

i=0 rwi);

if (EnergyConsumed ≥ crtMinEnergy) break; // no chance

// finding a better solution for any larger k: exploration over!

Multi_Bank (2, M, k, EnergyConsumed);

// explore solutions with first bank [addr0 , addrk]

}

pop (SolutionStack);
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Outputs: crtBestSolution – an ordered set of SPM

addresses from A delimiting the banks, and the corre-

sponding energy consumption crtMinEnergy.

The recursive function Multi_Bank searches for the

best banking solution starting from addrk till the end of

the SPM at addrn. From the beginning of the SPM (addr0)

till the address addrk there are already m − 1 banks. At

the beginning, the function considers [addrk , addrn] as

the mth bank of the SPM: if this banking configuration is

energetically better than all previous solutions, it is duly

recorded as the best solution reached during the explo-

ration. If the maximum number of banks is not reached

yet (m < M), then the function explores solutions with

m + 1 banks or more, considering the mth bank to be

[ addrk , addrj], for j = k + 1, k + 2, . . . , n − 1.

A solution stack is used and typical stack functions

(push, pop, top) to record and resume the partial

banking solutions. For instance, the push instruction in

the body of the Multi_Bank function takes the set of

memory addresses on the top of the stack, adds the new

element addrk to it, and the new set is pushed back on the

stack.

Since the energy cost is monotonically increasing with

the SPM size, a backtracking mechanism is incorpo-

rated before the recursive call to prevent the search

towards more energetically-expensive partitions. The

output of the algorithm is an array of SPM addresses

delimiting the banks, and the corresponding energy

consumption.

In addition, for each LBL in the decomposition of the

array space, we compute the time intervals (in clock

cycles) when the lattice is not accessed. This idleness anal-

ysis cannot be done directly in terms of time: first, it is

done in terms of loop iterators. For instance, we must

determine the iterator vectors in the loop nests when a

disjoint lattice is accessed for the first time and for the

last time.5 Only afterwards, we compute the clock cycles

during the code execution corresponding to those itera-

tor vectors. When the recursive function Multi_Bank

investigates the case when the m-th bank is between

Addr[k] and Addr[n] (the end of the SPM), the idleness

intervals of the lattices Lk+1, . . . , Ln assigned to thism-th

bank are intersected in order to determine whether there

are idleness intervals at the bank level. If this is the case,

the bank can be switched to the sleep state during the idle-

ness intervals that are large enough. (A time overhead of

one clock cycle for the transition from the sleep to the

active state is also applied, in accordance with simulated

data on caches reported in [32]). In order to overcome

the energy overhead entailed by the transition of a mem-

ory bank from the active state into the sleep state and

back to the active state, the bank must remain in the sleep

state at least a minimum number of clock cycles (other-

wise, the economy of static energy is lesser than the energy

overhead of the transitions). This idleness threshold in

cycles can be estimated; typical values are in the order

of hundreds of cycles [16]. So, if the idleness of a bank

(resulted from the intersection of the idleness intervals

of the lattices assigned to the bank) exceeds the idleness

threshold, then the energy cost of the bank is computed

taking into account the switches to the sleep state and

back. The idleness intervals of each lattice are organized

into an interval tree [33] as the depth of this data structure

is O(log n) for n intervals, and typical interval operations

have logarithmic complexity.

A high-level pseudo-code of the recursive function

Multi_Bank is given below:

void Multi_Bank (m, M, k, EnergyConsumed) {

if (crtMinEnergy ≤ EnergyConsumed+�Em−1,m)

return;

EnergyConsumed += �Em−1,m ;

EnergySPM = EnergyConsumed +

SPM_energy (addrn–addrk ,
∑n

i=k rwi);

// a new partitioning solution ofm banks is ready

if (EnergySPM < crtMinEnergy) {

crtMinEnergy = EnergySPM ; // the new solution is

better!

crtBestSolution = top (SolutionStack) ∪ {addrk};

// set of bank boundaries on top of the stack, plus

addrk
}

if (m<M ) { // if max. number of banks not reached yet

// then explore finer SPM partitions

push (SolutionStack, top (SolutionStack) ∪ {addrk});

for (int j=k+1; j<n; j++) {

e = EnergyConsumed +

SPM_energy (addrj–addrk ,
∑j

i=k rwi);

if (e ≥ crtMinEnergy) break; // no chance of

finding

// a better finer partition for any j; then, backtrack!

Multi_Bank (m+1, M, j, e);

// else explore solutions with new bank [addrk , addrj]

}

pop (SolutionStack);

}

}

Example 4: Let us consider again the illustrative exam-

ple from Fig. 4, where the 64 central lattices of the

array A (numbered 96–159 in Fig. 8) were stored in

an SPM of 8 Kbyte, the external DRAM being of 56

Kbytes. As shown in Section 3, the energy consump-

tion of this monolithic SPM is 3,063.6 μJ , assuming a

32 nm technology. Running the banking algorithm from

[5], where the maximum number of banks M was set

to 4, the 4-bank optimal banking solution (of 1,602.23

μJ) was found in 4433 s, after the exploration of 58.73
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billion SPM partitions. (Setting M at a higher value than

4 proved to be computationally infeasible for [5]). In con-

trast, Algorithm 3 (for M=8) found a 6-bank solution of a

lower energy (1564.95 μJ) in only 30.38 s, exploring less

than 1% SPM partitions (363.6 million versus 58.73 bil-

lion). Figure 13 displays the graphs of the best energies

of banking solutions (the values of crtMinEnergy from

Algorithm 3) found by the two techniques after analyzing

the first ten thousand banking configurations. The figure

shows that our algorithm finds faster the energetically-

better solutions. To be sure, Algorithm 3 finds only sub-

optimal solutions for values of M larger than 3; but these

solutions are near-optimal and they are found very fast.

For instance, setting M=4, Algorithm 3 found a 4-bank

solution of 1604.01 μJ , slightly worse than the optimal

value 1,602.23 μJ ; on the other hand, the run time was

only 0.012 s, that is, several orders of magnitude faster

than 4433 s!

5.2 Lattice-based dynamic programming algorithm

The inputs are identical as in the previous algorithm,

except the last one:

Input 3: An array E =[0 �E2 �E3 . . . �EM] which

elements �Ek (1 < k ≤ M) are energy overheads

resulting from moving from a monolithic SPM to one

with k banks (obviously, �E1=0). These energy overheads

were estimated with the power calculator from Lattice

Diamond [31].

The main data structures used by the algorithm are:

• 2-D “cost” array C : each element C [i , j ]
(0 ≤ i < j ≤ n) is initialized to the energy consumed

by a monolithic SPM having the address space

[ addri , addrj) and storing the linearly bounded

lattices Li+1, . . . , Lj ; in particular, C [0 , n] is,

Fig. 13 Energy-aware SPM banking: the decrease of the SPM energy

consumption as different banking solutions are analyzed by our

algorithm and by the exhaustive partitioning in [5]

initially, the energy consumed by the whole

monolithic SPM. At the end of the algorithm, each

element C [i , j ] will contain the energy consumption

after the address space [ addri , addrj) was optimally

partitioned—under the constraint that bank

boundaries are only addresses from the input array

A. The additional exploration constraint—that no

disjoint lattice assigned to the SPM can cross a bank

boundary— ensures the effectiveness of the approach.
• 2-D arraym : each elementm[i , j ] (0 ≤ i < j ≤ n) is

the number of banks in the address space

[ addri , addrj); their initial value is 1.
• 2-D array s : used for constructing an optimal

partitioning solution.

Algorithm 4 Energy-aware SPM banking by dynamic

programming

1. let C be a new array [0 .. n-1 , 1 .. n] ;

2. letm be a new array [0 .. n-1 , 1 .. n] ;

3. let s be a new array [0 .. n-1 , 1 .. n] ;

4. for j = 1 to n do // initialization of the arrays C,m, s

5. for i = 0 to j − 1 do {

6. C[i , j] = SPM_energy (addrj–addri ,
∑j

k=i+1 rwk) ;

7. m[i , j] = 1 ; s[i , j] = i ;

}

8. for L = 2 to n do

9. for i = 0 to n − L do {

10. j = i + L ;

11. q = C[i , j] ;

12. for k = i + 1 to j − 1 do {

13. if (m[i , k] +m[k , j] > M ) continue ;

14. � = �Em[i,k]+m[k,j] − �Em[i,k] − �Em[k,j] ;

15. if ( q > C[i , k] + C[k , j] + � ) {

16. q = C[i , k] + C[k , j] + � ;

17. s[i , j] = k ; }

}

18. m[i , j] =m[i , s[i, j]] +m[s[i, j] , j] ;

19. C[i , j] = q ;

} // C[0 , n] = optimal energy consumption

// after the SPM partitioning

The first loop nest (instructions 4–7) initializes the

three arrays: C – see Fig. 14a, m, and s. The function

SPMenergy uses information provided by CACTI 6.5 [28]—

the dynamic energy per access and the static power—to

compute the energy consumption of a monolithic SPM of

(addrj−addri) bytes, which is accessed
∑j

k=i+1 rwk times.

A 32-nm technology is assumed by default. For the com-

putation of the static energy consumption, the number of

clock cycles for the execution of the given application is

obtained by simulation; a frequency of 400MHz is used by

default (but this value can be modified by the user).
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(a)

(b)

Fig. 14 a The initialization of the cost array C (see instruction 6 in Algorithm 4). b The update of the cost array C: the element C[0, n] is the energy

consumption corresponding to the optimal SPM partitioning

Afterwards, the next loop nest (starting at instruc-

tion 8) computes with a bottom-up approach (see Fig. 14b)

the energetically-optimal banking in the address space

[ addri , addrj), where j − i = L increases gradually from

L = 2 to L = n. The last value of L corresponds to the

entire address space of the SPM: [ addr0 , addrn). For each

pair (i, j), the optimal energy cost C[ i , j] is computed

(instructions 11–19) as the minimum between the energy

consumed in the monolithic case, and

mini<k<j{ C[i , k] + C[k , j] + EnergyOverhead }
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that is, when a bank boundary is introduced at addrk (in

between addri and addrj). Since the component address

spaces [ addri , addrk) and [ addrk , addrj) are already

partitioned into m[ i, k] and, respectively, m[k, j] banks,

the number of banks in the address space [ addri , addrj)

would increase to m[i, k] + m[k, j], entailing an energy

overhead of �Em[i,k]+m[k,j]– which must be added to the

energy cost. At the same time, the energy overheads

�Em[i,k] and �Em[k,j]—corresponding to the m[i, k] and

m[ k, j] banks—must be subtracted from the cost (see

instructions 14 and 16).

Note that, if any of the component address spaces is

not partitioned, say m[i, k]=1, then �Em[i,k] = �E1 = 0 .

All these energy overheads are elements of the array E

(Input 3).

The conditional instruction 13 eliminates the solu-

tions exceeding M number of banks. Arbitrarily fine

partitioning is prevented since an excessively large

number of small banks is area inefficient, impos-

ing a severe wiring overhead, which also tends

to increase communication power and decrease

performance.

The time complexity of the algorithm is �(n3) due to

the three for loops (instructions 8, 9, and 12). The main

parameter n is the number of disjoint linearly bounded

lattices that are assigned to the SPM; these n lattices rep-

resent only a subset of the disjoint LBLs that result from

the partitioning of the multidimensional signals from the

behavioral specification (part of the LBLs being stored

off-chip in a DRAM).

The space complexity is �(n2 + M). The latter term is

entailed by the input matrix E . Note that the maximum

number of banks M has, typically, a small value, so it is

negligible in comparison to the former term n2.

The banking solution can be determined calling a

recursive function PrintOptimalPartition(s, 0,

n, A).

void PrintOptimalPartition (s, i, j,A) {

if ( s[i , j] == i ) print addr[i] ;

else

PrintOptimalPartition (s, i, s[i , j],A) ;

PrintOptimalPartition (s, s[i , j], j,A) ;

}

6 Experimental results
An EDA framework for memory management has been

implemented in C++, incorporating the three memory

management tasks described in this paper. In addition to

these algorithms, the software system contains a tool for

the computation of the minimum data storage of the given

application [22]. The main input of the software tool is an

algorithmic specification of the signal processing applica-

tion, as described at the end of Section 1. An interface to

CACTI 6.5 [28] has been implemented in order to obtain

memory data concerning power consumption. (CACTI

6.5 supports 32, 45, 68, and 90 nm technologies.) Tables 1,

2, and 3 summarize the results of our experiments, carried

out on a PCwith an Intel Core 2Quad 2.83GHz processor.

Table 1 shows several experiments considering as input

application a motion detection algorithm—used in the

transmission of real-time video signals on data networks.

It displays the energy consumption in the memory sub-

system for different data assignments to the memory

layers. Column 1 shows the values of the parameters of

the motion detection algorithm, columns 2 and 3 dis-

play the numbers of array elements and scalar signals,

and the total numbers of read/write accesses. Column 4

displays the storage requirements of the application, com-

puted with the algorithm from [22]—which is embedded

in our framework. For the motion detection, our mapping

algorithm (Section 4) finds optimal mapping solutions in

terms of storage (column 5). Actually, two multidimen-

sional signals from the application code will be stored in

two registers: their footprint is only 1 byte each, since our

tool correctly detected that their elements have disjoint

lifetimes. Then, columns 6–10 present different scenar-

ios for data assignment between the on-chip SPM and the

off-chip DRAM, together with the energy consumption

(both static and dynamic) in these memories.6 Column 11

displays the energy consumption in the memory subsys-

tem, e.g., for the first set of parameters, the total energy

increases from 2.24 μJ—when all the data is stored into

the SPM—to 56.03 μJ—when all the data is stored off-

chip. The computation times (column 12) are very similar

for each data assignment, so only the ballpark values are

given.

The benchmarks used in the next tables are algebraic

kernels—Durbin’s algorithm for solving Toeplitz systems;

a singular value decomposition (SVD) updating algorithm

[34] used in spatial division multiplex access (SDMA)

modulation in mobile communication, in beamforming,

and Kalman filtering— and a fewmultimedia applications:

the kernel of an MPEG4 motion estimation algorithm for

moving objects; a 2-D Gaussian blur filter algorithm from

a medical image processing application which extracts

contours from tomograms in order to detect brain tumors;

the kernel of a voice coding application—an essential

component of a mobile radio terminal.

Table 2 displays in columns 2–3 information on the

behavioral specification of the given application (column

1): the amounts of scalar signals (array elements) and

the numbers of memory accesses. Column 4 shows the

amount of data storage computed by the mapping algo-

rithm. Then, column 7 displays the (static and dynamic)

energy consumption in the memory subsystem when

the sizes in bytes of the SPM and DRAM are the ones

shown in columns 5–6. For a better evaluation of our

energy-aware data assignment model, we implemented
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Table 1 Experimental results for a motion detection algorithm

Parameters Scalars Memory Minimum Data storage SPM SPM SPM DRAM DRAM Total CPU

(array accesses data storage (after mapping) size banks energy size energy energy

elements) [22] [bytes] [bytes] [μJ] [bytes] [μJ] [μJ] [sec]

M = N = 32 185,239 361,250 3364 3364 3362 2 2.24 0 0 2.24 1.8

m = n = 8 2306 2 2.14 1056 15.02 17.16

1650 2 1.86 1712 18.09 19.95

1250 1 1.64 2112 20.62 22.26

0 – 0 3362 56.03 56.03

M = N = 64 2,632,615 5,229,378 13,124 13,124 13122 2 97.47 0 0 97.47 24.7

m = n = 16 6370 3 37.23 6752 263.59 300.82

4802 2 32.52 8320 302.29 334.81

0 – 0 13122 854.38 854.38

another signal assignment strategy—similar to the one

used in [23], where the steering mechanism is based on

the intensely-accessed cuts within the array space. The

savings of energy consumption (column 8) were, typically,

between 18 and 28% relative to this model. The CPU

times when executing the entire memory management

flow are shown in column 9. The tests have been done for

a 32 nm technology and assuming a clock frequency of

400 MHz.

Table 3 shows the savings of energy consumption after

SPM banking (32 nm technology) for various benchmarks.

Column 2 displays the number of addresses in the on-

chip memory. Column 3 reports the computation times

for a full exploration with backtracking—implemented as

the one presented in [4, 5] —targeting energy reduction,

but using CACTI 6.5 [28] for power estimation (the max-

imum number of banks was set toM = 4, since for larger

values of M the times were unknown—as the exploration

had to be stopped after several hours). Our own energy

results for M = 4 for all the benchmark tests were no

more than 0.4% higher than the optimal ones; but they all

were obtained in only a fraction of a second, in contrast

to the significant running times from column 3. Col-

umn 4 reports the computation times in seconds for our

recursive banking algorithm that explored the search

space for up to M = 8 banks—a value that proved

impossible for [5] if the word-length is 1 byte.

Column 5 shows the computation times obtained run-

ning an implementation of the dynamic programming

approach of Angiolini et al. [6]. The main input of this

algorithm is the graph of memory accesses during the

execution of the application code. Themain data structure

is an array having the numbers of rows and columns equal

to the size (in words) of the graph of memory accesses

and, respectively, the size of the SPM. The array elements

are profit values targeting energy (or, alternatively, perfor-

mance) optimization. The silicon area is indirectly taken

into account by increasing heuristically the indexes of the

profits computed during the dynamic programming by

amounts depending on ratios of SPM areas. The time

complexity of the algorithm is polynomial, depending on

the product SPM size squared times the size of the graph.

The practical running times can be significant, though, for

benchmarks with a large memory address space and/or

a large SPM (while typically faster than the full explo-

ration with backtracking [5], we also encountered exam-

ples where this technique was slower, due in part to the

fact that the number of banks is unconstrained).

Table 2 Experimental results for energy-aware assignment of signals to the on- and off-chip memory layers

Application Scalars Memory Data memory SPM DRAM Energy Energy CPU

(array elem.) accesses after mapping size size [μJ] savings [sec]

Motion detection 2,632,615 5,229,378 13,124 4802 8320 334.81 28.42% 24.7

Motion estimation 265,633 1,053,089 4513 256 4257 138.31 22.12% 2.8

Gaussian blur filter 53,615 77,619 14803 5003 9800 6.13 26.66% 3.6

Durbin algorithm 252,499 1,005,993 1,998 500 1498 123.62 20.40% 39.1

SVD updating algorithm 3,045,447 29,500,000 34,950 4096 30854 1601.52 24.81% 47.5

Voice coding kernel 33,835 47,416 14,634 2032 12602 2.56 18.76% 4.8
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Table 3 Experimental results for energy-aware SPM banking

Application Address CPUfull
expl. [5] CPU Alg.3 CPU

dyn
prog. CPU Alg.4 Energy savings vs.

space M=4 [s] M=8 [s] [6] [s] M=8 [s] [5] (M=4) [6] [s] monolithic

Motion detection 6370 3163 2.0 1592 1.4 7.2% 2.9% 41.2%

Motion estimation 1024 736 0.8 1.8 0.6 5.1% 2.3% 36.5%

Durbin’s algorithm 500 247 2.8 3.2 1.7 5.0% 3.9% 26.5%

SVD updating alg. 4096 2405 10.7 3048 8.2 6.4% 3.6% 28.4%

Voice coding kernel 2032 1297 1.5 336 1.1 7.8% 5.4% 31.4%

Column 6 reports the computation times for our bank-

ing algorithm using dynamic programming: this tech-

nique proves to be faster than Algorithm 3, which was

expected due to the polynomial complexity ofAlgorithm 4.

The additional exploration constraint—that no disjoint

lattice assigned to the SPM can cross a bank boundary—

ensures the effectiveness of our basic approach whenM ≥

4: this constraint significantly reduces the search space,

typically yielding near-optimal results.

The data structures of our our dynamic programming

approach (see Section 5.B) are significantly smaller in

size and the computation of energy costs (the elements

of array C) allows portability from the back-end tool

CACTI to othermemorymodels. In contrast, the dynamic

programming approach from [6] uses a heuristic index

increase (based on ratios of SPM areas) in the array of

the energy profits, which is dependent on the memory

model employed.7 Our dynamic programming technique

can optimize die area instead of energy consumption (or

a weighted combination of the two) by redesigning the

function SPM_energy from Algorithm 4.

Not only the computation times of our tool were far

better, but our tool found partitions of more than 4

banks which were superior in terms of energy consump-

tion than the four-bank solutions found by the previous

technique [5]: column 7 reports the energy savings ver-

sus the full exploration for M = 4. Column 8 shows

the savings of energy consumption of our algorithm ver-

sus the dynamic programming approach similar as [6].

Note that this dynamic programming technique yielded

better results than [5] since it found energetically-better

solutions that had more than four banks. On the other

hand, our algorithm found even better solutions since it

could exploit the idleness intervals of the memory banks

(which [6] does not do). Column 9 displays the energy sav-

ings obtained by our tool, with respect to the case of a

monolithic SPM.

We also tested the algorithms from this EDA framework

on a larger code of about 900 lines (mentioned also

in [22]), containing 113 loop nests three-level deep and

906 array references—many having complex indexes.

Algorithm 1 ran in about 2.4 minutes, building the DAG

of inclusions (like the one illustrated in Fig. 6) with

3159 nodes (LBLs), and preparing the polyhedral data

structures required by the memory management tasks.

Algorithm 2 was fast, running in less than 10 s. (Note that

there was a preliminary step, not taken here into account,

when our CACTI interface obtained data on power and

access times by running CACTI 6.5 for a range of DRAM

and SPM sizes: afterwards, these data can be used in

other benchmarks as well). The signal-to-memory map-

ping step was more computationally-expensive (almost

4 min) since many LBLs from the specification code

were produced and consumed in the same loop nests,

and the number of canonical linearizations of 3-D

arrays is 48. Algorithm 3—the recursive algorithm with

backtracking, ran in 3.7 min for a maximum number

of SPM banks of M = 5, while Algorithm 4 was even

faster: 2.3 min.

7 Conclusions
This paper has presented an EDA framework for the

high-level design of hierarchical memory architectures,

targeting embedded data-intensive signal processing

applications. The methodology presented in this paper

is focused on the reduction of the energy consumption

is the memory subsystem. The data assignment to the

storage layers, the signal-to-memory mapping, as well as

the on-chip memory banking, are all efficiently addressed

within a common polyhedral framework. The steering

assignment mechanism is based on the identification

of the intensely-accessed regions within the array space

of the multidimensional signals. The added flexibility of

this assignment model led to superior energy savings in

comparison to earlier approaches.

Endnotes
1That is, the execution ordering is induced by the loop

structure and, hence, it is fixed. The research on code

transformation is orthogonal to our methodology, but it

could be used as a preliminary step.
2Solving a linear Diophantine system was proven to be

of polynomial complexity, the various methods being typ-

ically based on bringing the system matrix to Hermite

Normal Form [26].
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3CACTI 6.5 is an analytical tool that takes a set of SPM,

cache, or DRAM parameters as inputs and calculates

memory data – like access time, static power, dynamic

energy spent per access, and area [28].
4The computation method employed by De Greef

et al. consists of a sequence of integer linear programming

(ILP) optimizations for each canonical linearization [10].
5This is based on the computation of the

lexicographically- minimum and maximum iterator vec-

tors of the lattice elements in normalized loops, operation

described in [22].
6Memory generators do not allow all possible values

for memory sizes or for bank boundaries: for instance, a

memory generator may yield storage blocks with only a

multiple of 16 bytes. Although our framework can take

into account such kind of constraints, these tests aim to

illustrate the algorithms, so no such constraint is imposed.
7This is a key reason why a comparison with the results

on the benchmarks in [6] is difficult to achieve without

insider knowledge.
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