
Energy-Aware Partitioning for Multiprocessor Real-Time Systems

Hakan Aydin, Qi Yang
Computer Science Department

George Mason University
Fairfax, VA 22030

(aydin, qyang1)@cs.gmu.edu

Abstract

In this paper, we address the problem of partitioning peri-
odic real-time tasks in a multiprocessor platform by consid-
ering both feasibility and energy-awareness perspectives: our
objective is to compute the feasible partitioning that results in
minimum energy consumption on multiple identical processors
by using variable voltage Earliest-Deadline-First scheduling.
We show that the problem is NP-Hard in the strong sense on
m ≥ 2 processors even when feasibility is guaranteed a priori.
Then, we develop our framework where load balancing plays
a major role in producing energy-efficient partitionings. We
evaluate the feasibility and energy-efficiency performances of
partitioning heuristics experimentally.

1 Introduction

Multiprocessor scheduling of periodic tasks is one of
the most extensively studied areas in real-time systems re-
search. In general, the approaches fall into either global or
partitioning-based scheduling categories. In global scheduling
[1, 7, 11], there is a single ready queue and task migrations
among processors are allowed. In contrast, partitioning-based
approach [4, 9, 13, 16] allocates each task to one processor per-
manently (thus, task migrations are not allowed) and resorts to
well-established single-processor scheduling policies to guar-
antee the feasibility.

In recent years, we witnessed the emergence of low-power
computing as a prominent research area in many Computer Sci-
ence/Engineering disciplines. The main low-power comput-
ing technique in real-time systems has been variable voltage
scheduling (or, dynamic voltage scaling) [2, 3, 10, 17, 19]. The
technique hinges upon the speed/voltage adjustment capabil-
ity of state-of-the-art microprocessors and exploits the convex
relationship between CPU speed and power consumption. In
principle, it is possible to obtain striking (usually, quadratic)
energy savings by reducing CPU speed. On the other hand, the
feasibility of the schedule must be preserved even with reduced
speed and this gives rise to the problem of minimizing energy

consumption while meeting the deadlines.
In [3], three complementary dimensions of real-time vari-

able voltage scheduling were identified: At static level, task-
level optimal speed assignments are computed assuming a
worst-case workload. Since tasks usually complete earlier than
what is predicted in the worst-case scenario, on-line adjust-
ments on pre-computed static speeds can provide additional
savings. Thus in addition, we have dynamic and speculative di-
mensions: These dimensions address how to reclaim and pre-
dict/provision for unused computation time, respectively. As
one recent study shows [15], the near-optimal performance of
various techniques proposed for single processor variable volt-
age real-time scheduling demonstrate a level of maturity for
the area.

A few multiprocessor power-aware scheduling techniques
have been recently proposed by research community. How-
ever, these usually consider aperiodic task sets: Gruian [9]
addressed non-preemptive scheduling of tasks on multiproces-
sor systems. Zhu et al. proposed a run-time slack reclama-
tion scheme for tasks sharing a single, global deadline [20].
This was followed by another paper [21] where the same au-
thors extend the model to aperiodic tasks with precedence con-
straints. Yang et al. proposed a two-phase scheduling scheme
for system-on-chip with two processors [18]. To the best of
our knowledge, the only research effort that combines periodic
multiprocessor real-time scheduling with energy-awareness is
a study by Funk, Goossens and Baruah: in [6], the authors ad-
dress the problem of determining optimal speed/voltage level
selection for global Earliest Deadline First (EDF) scheduling.

In this paper, we address the problem of energy-
minimization through dynamic voltage scaling in the context of
partitioning-based approaches. Global and partitioning-based
approaches are known to have their own advantages and disad-
vantages in traditional (i.e. non-power-aware, constant-speed)
multiprocessor real-time scheduling [13, 7]. From energy-
awareness perspective, the immediate advantage of concen-
trating on partitioning-based approaches is the ability to ap-
ply well-established uniprocessor variable voltage scheduling
techniques in all three (i.e. static, dynamic and speculative)
levels once task-to-processor assignments are determined. In

particular, our task assignment strategies will make their de-
cisions using worst-case workload information and therefore
will determine the optimal static speed assignments on each
processor. After this point, dynamic and speculation reclama-
tion strategies [3] can be applied on each processor to further
exploit energy-saving opportunities at run-time.

Partitioning-based multiprocessor real-time scheduling
considers feasibility as the main objective. The problem is in-
variably NP-Hard [8, 13] and appears in two variations: Mini-
mizing the number of processors needed to guarantee the fea-
sibility of the task set, or alternatively, given a fixed multipro-
cessor platform, finding sufficient schedulability (usually, uti-
lization) bounds. Our work opts for the second setting, thus we
assume the existence of a given number of processors. Consid-
ering the intractable nature of the problem, several heuristics
and their performance analysis were subject of many research
papers, including First-Fit, Best-Fit, Next-Fit and Worst-Fit
[13, 4, 16]. In fact, when using Earliest Deadline First schedul-
ing, the problem has a close affinity with Bin-Packing [8, 5],
and the results/heuristics available in this widely-studied area
provide insights for partitioning-based scheduling.

When we add the energy dimension to the problem, we may
need to modify/expand performance metric accordingly. In
fact, as we show later in the paper, some heuristics have very
good (albeit not optimal) feasibility performances even at high
utilizations, but result in poor energy performance. Yet some
others have excellent energy performance at low utilizations,
but their feasibility performances degrade rapidly with increas-
ing load. Thus, we propose a metric to capture both dimensions
of power-aware multiprocessor real-time scheduling: Timeli-
ness/Energy metric favors in general the heuristics with high
feasibility and low energy consumption performances, giving
a more accurate measure of overall performance.

After giving the system model in Section 2, we formal-
ize the problem and justify our decision to commit to EDF at
each processor from both feasibility and energy points of view,
for any task-to-processor assignment in Section 3. We estab-
lish that the problem is NP-Hard in the strong sense. Given
many intractability results regarding multiprocessor real-time
scheduling, this is only to be expected; but we show that
the problem of minimizing energy-consumption on partitioned
systems remains NP-Hard even when the feasibility is guaran-
teed a priori (by focusing on task sets that can be scheduled on
a single processor in a feasible manner).

Then in Section 4, we characterize the energy-efficient task-
to-processor assignment problem as a load balancing prob-
lem. We introduce the concepts of balanced and unbalanced
task assignments as a way of addressing/assessing the energy-
efficiency issues in multiprocessor platforms. Thanks to this
characterization, we prove that a partitioning that yields per-
fectly balanced load necessarily minimizes the total energy
consumption. Further, we show that “heavy” tasks with large
utilization values must be allocated to separate processors in
the optimal solution. In Section 5, we present and comment

on the performance of heuristics for the problem. Our analysis
distinguishes two cases: In the first one, the scheduler is al-
lowed to order tasks according to (non-increasing) utilization
values before running the heuristic, while it is not allowed to do
so in the second. It is known that worst-case and average-case
performance of algorithms improve when this pre-ordering
is allowed [5, 14]. We experimentally show that Worst-Fit-
Decreasing (WFD) algorithm dominates other techniques. Fi-
nally, for the case where tasks are not ordered according to the
utilization values, we show that none of the well-known heuris-
tics offers a clear advantage. We present an efficient heuristic
called RESERVATION that combines ideas and results devel-
oped in previous sections. The performance of RESERVA-
TION is justified experimentally against other heuristics, be-
fore concluding the paper.

2 System Model

We consider the scheduling of a periodic real-time task set
T = {T1, . . . , Tn} on a set of processorsM= {M1, . . . , Mm}.
The period of Ti is denoted by Pi, which is also equal to the rel-
ative deadline of the current invocation. All tasks are assumed
to be independent and ready simultaneously at t = 0.

We assume that all m processors are identical from both
processing power and speed/energy consumption relationship
aspects. Each processor Mi has variable voltage/speed fea-
ture, hence its speed Si (in terms of processor cycles per unit
time) can vary between 0 and an upper bound Smax. For con-
venience, we normalize the CPU speed with respect to Smax,
that is, we assume that Smax = 1.0.

The power consumption of the processor under the speed
S is given by g(S). In current variable-voltage processor
technologies, the function g(S) is assumed to be a strictly
convex and increasing function on non-negative real numbers
[10, 2, 3, 17]. Further, it is usually represented by a polyno-
mial of at least second degree [10, 3]. If the speed of the pro-
cessor Mi during the time interval [t1, t2] is given by S(t),
then the energy consumed during this interval is E(t1, t2) =∫ t2

t1
g(S(t))dt.

In variable voltage/speed settings, the indicator of task-level
worst-case workload is the worst-case number of processor cy-
cles required by the task Ti and it is denoted by Ci [3]. Thus,
under a constant speed S, the (worst-case) execution time of
one instance of Ti is Ci

S
.

The (worst-case) utilization of task Ti under maximum
speed Smax = 1 is ui = Ci

Pi
. We define Utot as the total utiliza-

tion of the task set T under maximum speed Smax = 1, that
is, Utot =

∑n

i=1
ui =

∑n

i=1

Ci

Pi
. Note that a necessary con-

dition to have a feasible schedule on m processors is to have
Utot ≤ m, and we will make this assumption throughout the
paper.

Finally, given a task-to-processor assignment1 Π, we will

1We use the terms “task(-to-processor) assignment” and “partitioning” in-
terchangeably throughout the paper.

denote the utilization of processor Mi under Smax = 1.0 by
Ui(Π) (or simply Ui when the context is clear). Since each
task must be assigned to exactly one processor, it is clear that
Utot =

∑n

i=1
ui =

∑m

i=1
Ui, for any task assignment.

3 Energy Minimization with Partitioning

Our aim in this research effort is to address the follow-
ing energy-aware real-time scheduling problem (denoted by
POWER-PARTITION)

Given a set T of periodic real-time tasks and a set M
of m identical processors, find a task-to-processor
assignment and compute task-level speeds on each
processor such that:

1. the tasks assigned to each processor can be
scheduled in a feasible manner, and

2. the total energy consumption of M is mini-
mum (among all feasible task allocations)

At this point, it can be observed that POWER-PARTITION
is NP-Hard in the strong sense: Suppose that there exists a
polynomial time algorithm that produces a feasible assignment
of real-time tasks with minimum energy consumption, and NIL
if no feasible partitioning exists. Since checking the feasibility
of a set of real-time tasks on a multiprocessor platform even
with a single, overall deadline (and by using the maximum
speed Smax) is NP-Hard in the strong sense and the suppos-
edly polynomial-time algorithm would solve this problem as
well, POWER-PARTITION is NP-Hard in the strong sense.

Given any task assignment Π, consider the scheduling pol-
icy and speed assignments to be adopted on each processor.
The classical result by Liu and Layland [12] implies that Ear-
liest Deadline First (EDF) scheduling policy is optimal from
the feasibility point of view. In addition, the following result
(adapted from [3]) establishes that EDF is also optimal from
energy consumption point of view when used with a constant
speed equal to the utilization of the task set assigned to that
processor.

Proposition 1 (from [3]) Consider a single processor sys-
tem and a set of periodic real-time tasks with total utilization
Utot ≤ 1.0. The optimal speed to minimize the total energy
consumption while meeting all the deadlines is constant and
equal to S̄ = Utot. Moreover, when used along with this speed
S̄, any periodic hard real-time scheduling policy which can
fully utilize the processor (e.g., Earliest Deadline First) can be
used to obtain a feasible schedule.

In short, for a given task assignment, we can safely commit
to EDF with constant speed S̄ = Ui on processor Mi without
compromising feasibility or energy-efficiency, where Ui ≤ 1.0
is the total utilization (load) of tasks assigned to Mi. Note that
if Ui exceeds 1.0 for a given processor, it is impossible to meet

the deadlines even with the maximum CPU speed, hence the
task assignment under consideration is infeasible.

Also, note that we need to specify the interval of time during
which we aim to minimize energy consumption. In accordance
with [3] and considering that the schedules on all processors
can be repeated at every hyperperiod P without hurting fea-
sibility or energy-efficiency, we focus on minimizing energy
consumption during P = lcm(P1, . . . , Pn). The energy con-
sumption of task Tj running on processor M in interval [0, P]

when executed with constant speed S is given by: g(S)· P
Pj

·
Cj

S
.

The energy consumption of all tasks allocated to the processor
Mi is therefore:

E(Mi) =
∑

Tj assigned to Mi

g(S) ·
P

Pj

·
Cj

S
(1)

When we substitute the optimal speed expression S̄ =∑
Tj assigned to Mi

Cj

Pj
= Ui (from Proposition 1 and the def-

inition of Ui) for S above, we find the minimum energy con-
sumption on processor Mi as

E∗(Mi) = P · g(S̄) ·
Ui

S̄
= P · g(Ui) (2)

Considering that P is a constant, independent of assignment
and scheduling algorithm, we can now present the optimization
problem which is equivalent to POWER-PARTITION:

Given a set T of periodic real-time tasks and a set
M of m identical processors, allocate tasks to pro-
cessors so as to:

minimize
m∑

i=1

g(Ui) (3)

subject to 0 ≤ Ui ≤ 1.0 i = 1, . . . , m(4)
m∑

j=1

Uj = Utot (5)

where Ui is the total utilization (load) of the proces-
sor Pi after task allocation and g() is the power con-
sumption function (convex and strictly increasing).

Definition 1 The task assignment (partitioning) that yields the
minimum overall energy consumption is called the power-
optimal assignment (partitioning).

Motivational Example: Consider three tasks with u1 =
0.5, u2 = 0.25 and u3 = 0.15 to be executed on m = 2
identical processors2. Assume the power consumption func-
tion g(S) = S2. It is not difficult to see that any assignment of
these tasks to two processors yields a feasible schedule under
EDF. If we ignore symetrical allocations, we have only four
possible partitionings:

2For simplicity, assume that all the periods are equal to 1.

1. All three tasks are allocated to one processor (Figure 1,
left): Energy consumption= 0.92 = 0.81.

2. T1 and T2 are allocated to one processor and T3 is al-
located to the other processor (Figure 1, right): Energy
consumption = 0.752 + 0.152 = 0.585.

3. T1 and T3 are allocated to one processor and T2 is allo-
cated to the other processor (Figure 2, left): Energy con-
sumption = 0.652 + 0.252 = 0.485.

4. T2 and T3 are allocated to one processor and T1 is al-
located to the other processor (Figure 2, right): Energy
consumption = 0.42 + 0.52 = 0.41.

2M

T1 T2 T3
1M

0.9

0

T1 T2
1M

2M
3 T

0.75

0.15

Figure 1. Task Assignment Options 1 (left) and 2 (right)

3 T

T2

T1
1M

0.65

2M
0.25

T2 3 T
2M

T1
1M

0.5

0.4

Figure 2. Task Assignment Options 3 (left) and 4 (right)

This simple example with two processors illustrates that en-
ergy characteristics of feasible partitions can differ greatly: the
most energy efficient task assignment consumes just half of the
energy consumed by the first partition. In addition, we observe
that the best choice in this example turns out to be the one
which yields the most “balanced” partitioning (load) on two
processors. In fact, it is possible to show the following:

Proposition 2 A task assignment that evenly divides the total
load Utot among all the processors, if it exists, will minimize
the total energy consumption for any number of tasks.

Proof: Follows from the strictly convex nature of power
consumption function g(): the function

∑m

i=1
g(Ui) is also

strictly convex and minimizing it subject to 0 ≤ Ui ≤ 1.0
and

∑m

j=1
Uj = Utot would yield Ui = Utot

m
. Further, this is

the unique global minimum. Hence, if there exists a task as-
signment resulting in a perfectly balanced load, this achieves
minimum overall energy consumption.

2

As discussed previously, looking for a feasible task-to-
processor assignment is NP-Hard in the strong sense, which
implies the same for POWER-PARTITION given by (3), (4)
and (5). Interestingly, with the help of Proposotion 2 it is pos-
sible to prove a stronger result: the problem remains NP-Hard
in the strong sense even if the task set is guaranteed to be fea-
sible with a total utilization not exceeding 1.0. In this case, any
reasonable [13, 14] task allocation algorithm (such as First-Fit,
Best-Fit, Worst-Fit or even Random-Fit) would produce a fea-
sible partitioning in linear time, but computing the partitioning
that minimizes overall energy consumption is intractable.

Theorem 1 POWER-PARTITION is NP-Hard in the strong
sense on m ≥ 2 processors for trivially-schedulable task sets
with Utot ≤ 1.0.

Proof: We will reduce 3-PARTITION problem which is
known to be NP-Hard in the strong sense [8] to POWER-
PARTITION problem.
3-PARTITION: Given a set A = {a1, . . . , a3m} of 3m in-
tegers, a bound B, a size s(ai) ∈ Z+ for each ai where
B/4 < s(ai) < B/2 and

∑3m

i=1
s(ai) = mB, can A be par-

titioned into m disjoint subsets A1, . . . , Am such that the sum
of elements in each subset is exactly B?

Suppose that there exists a polynomial-time algorithm to
solve an instance of POWER-PARTITION problem on m ≥ 2
processors for task sets with Utot ≤ 1.0. Given an instance of
3-PARTITION problem, we construct the following instance
of POWER-PARTITION: we have m processors and the task
set T = {T1, . . . , T3m} where Ci = s(ai) and Pi = mB for
each task Ti. Observe that Utot =

∑3m

i=1

Ci

Pi
= mB

mB
≤ 1.0.

The power consumption function g() is strictly convex and in-
creasing on non-negative real numbers.

Now, invoke POWER-PARTITION problem and compute
(by assumption, in polynomial-time) the energy consumption
E∗ of power-optimal partitioning. We claim that the answer to
the corresponding instance of 3-PARTITION problem is “yes”
if and only if E∗ = mg(1

m
).

The 3-PARTITION instance admits a “Yes” answer if and
only if the summation of elements in each subset Ai is ex-
actly B, in other words if and only there if exists a “perfectly
balanced” partitioning of elements in A into m disjoint sub-
sets. Proposition 2 implies that E∗ ≥ mg(Utot

m
), and further

E∗ = mg(Utot

m
) if and only if there exists a perfectly bal-

anced partitioning of tasks to m processors with Ui = Utot

m
i =

1, . . . , m. Since Utot = 1.0 in our problem, if E∗ = mg(1

m
),

then there exists a perfectly balanced partitioning. But if this
is the case, in the corresponding 3-PARTITION problem, the
sum of elements at each subset Ai (matching the processor Mi

in POWER-PARTITION) is exactly B and the instance admits
a “Yes” answer. Conversely, if E∗ > mg(Utot

m
) in POWER-

PARTITION instance, then there exists no perfectly balanced
partitioning with Ui = 1

m
= B

mB
, and 3-PARTITION instance

has a “No” answer. 2

4 Load Balancing For Energy Efficiency

Given the inherent intractability of the problem, we must
look for heuristics. However, before giving the performance
evaluation of heuristics, we present balanced and unbalanced
partitioning (or, task assignment) concepts as instruments to
understand and address energy-efficiency issues in multipro-
cessor platforms.

Definition 2 A task-to-processor assignment Π is said to be
unbalanced if the total energy consumption can be reduced by
moving one task from one processor to another. Otherwise, it
is said to be balanced.

It is clear that the power-optimal task-to-processor assign-
ment must be balanced, since by definition its total energy
consumption cannot be reduced. In the motivational exam-
ple of Section 3, the first three task assignments are unbal-
anced, while the fourth(optimal) one is balanced. However,
a balanced partitioning (as defined above) is not necessarily
optimal. Consider the task assignment Π1 which allocates
four tasks to 2 processors as follows: T1(u1 = 0.5) and
T2(u2 = 0.4) are assigned to M1, while T3(u3 = 0.4) and
T4(u4 = 0.3) are assigned to M2. Π1 is a balanced parti-
tioning, but we can obtain another balanced (in fact, power-
optimal) partitioning by swapping T2 and T4.

Nevertheless, the unbalanced/balanced partitioning con-
cepts prove to be useful in understanding and evaluating the
performance of partitioning heuristics: as we will see, some
well-known heuristics from traditional (non power-aware)
scheduling theory tend to produce feasible yet unbalanced task
assignments, with poor energy performance. In addition, it
will also allow us to establish that any task whose utiliza-
tion exceeds a certain threshold must be allocated to a sepa-
rate processor, exclusively. We can now formally characterize
(un)balanced task assignments:

Proposition 1 A task-to-processor assignment Π is unbal-
anced if and only if there exist two processors Mi, Mj and a
task Ta assigned to Mi such that Ui(Π) − Uj(Π) > ua.

Proof: If part: Suppose that there exists a task assignment
Π that contradicts the statement. Then there must be two pro-
cessors Mi and Mj such that Ui(Π) − Uj(Π) = K > 0 and
at least one task Ta assigned to Mi with ua < K. Consider
the new partitioning Π′ obtained from Π by transferring Ta

from Mi to Mj . Since the function g() is strictly convex and
0 < ua < K, g(Ui − ua) + g(Uj + ua) < g(Ui) + g(Uj),
thus the total energy consumption of partitioning Π′ given by
(3) is definitely smaller. Further, Uj + ua < Ui ≤ 1.0 and the
feasibility is preserved in the new partitioning.
Only if part: Suppose that the condition given in the propo-
sition is not satisfied, yet it is possible to reduce the energy
consumption by moving only one task Ta from Mi to Mj in
partitioning Π. There are two possibilities:

i. Ui − Uj = K > 0. In this case, to be consistent with
the assumptions, ua must be equal to K +D with D > 0.
But, in the new partitioning, U ′

j−U ′

i = K+2D > K+D.
Hence, the new partitioning is unbalanced and by moving
back Ta to Mi (and thereby returning to the original parti-
tioning Π) we should be able to reduce energy consump-
tion once again with respect to Π, clearly a contradiction.

ii. Uj − Ui = K ≥ 0. That is, we are moving the task
from the lightly loaded processor to the heavily loaded
one. The resulting partitioning can be easily seen to be
unbalanced, and just like the case of (i.) we should be
able to further improve the energy savings by returning to
the original partitioning; a contradiction.

2

In a partitioning Π, any pair of processors (Mi, Mj) for
which the condition stated in Proposition 1 is satisfied is said to
form an unbalanced pair. Now, consider the average load per

processor defined as A =

∑
n

j=1
uj

m
= Utot

m
. With the help of

load balancing approach, we can prove the following property
of power-optimal partitionings.

Theorem 2 In power-optimal partitioning, a separate proces-
sor is assigned exclusively to each task Ta such that ua > A.

Proof: Suppose the contrary, that is, there exists a power-
optimal partitioning where another task Tb is allocated to a
machine Mj in addition to Ta where ua > A. Clearly,
Uj > A + ub. Now there must be at least one processor Mi

with load Ui < A (otherwise the total load on all the proces-
sors would be at least (m−1)A+A+uj = mA+uj > mA).
But if this is the case, the supposedly power-optimal partition-
ing is unbalanced (Uj − Ui > ub and Tb is assigned to Uj).
Since an unbalanced partitioning cannot be power-optimal, we
reach a contradiction.

2

5 Heuristics for POWER-PARTITION

A wealth of efficient heuristics are already available for the
feasibility aspect of the problem from Multiprocessor Real-
Time Scheduling: these include First-Fit (FF), Best-Fit (BF),
Next-Fit(NF), Worst-Fit(WF), among others [5, 13, 4]. These
algorithms process the tasks one by one, assigning each task
to a processor according to the heuristic function that decides
how to break ties if there are multiple processors that can ac-
comodate the new task.

If the characteristics of the task set are available a-priori,
then it is known that ordering the tasks according to non-
increasing utilizations (or in bin-packing, ordering the items
according to their sizes) improves the performance [5]. A re-
cent and particularly important result for our investigation is
due to Lopez [14]: Any reasonable task allocation algorithm

which first orders tasks according to utilization values is opti-
mal in the sense that the minimum achievable utilization bound
of no other reasonable allocation algorithm can provide a bet-
ter bound [14].

If the algorithm is allowed to preorder the task set accord-
ing to utilizations, the term decreasing is added to its name
[5]: for example, we have Best-Fit Decreasing (BFD) version
of Best-Fit (BF) algorithm. Following [14], we call this class
Reasonable Allocation Decreasing (or RAD, for short). Our
simulation results support the expectation that the average case
performance of this class of heuristics improves as well when
they are first allowed to preorder tasks.

However, if tasks arrive dynamically and the scheduler is
expected to assign each task to a processor without having in-
formation about the characteristics of tasks that may arrive in
the future, then the decreasing version of heuristics cannot be
applied. For this reason, we will also provide an analysis of the
case where the scheduler is not allowed to re-order task set.

Besides feasibility, our problem has an equally important
goal: minimizing the energy consumption. That is, we have to
explore the energy consumption characteristics of each heuris-
tic (in addition to feasibility performance). As we will see,
when considered together, in some cases the feasibility and en-
ergy performances do not point to a “clear winner”; to deal
with such scenarios, we propose an additional metric called
Timeliness/Energy that combines performances in both dimen-
sions.

Simulation Settings: We have generated a total of 1000000
task sets by varying the number of processors m, the total uti-
lization of the task set U = Utot and the number of tasks n.
In addition to these, the individual task utilization factor α
[13] has been another key parameter: Having a task set with
individual task utilization factor α means that the utilization
of no single task exceeds α. Clearly, for a given task set,
Utot

n
≤ α ≤ 1.0 must hold. We note that having no con-

straints (or information) about the individual task utilizations
is equivalent to setting α to 1.0. When focusing on a multipro-
cessor platform with m processors, we modified U between m

10

(lightly loaded system) and m (heavily loaded system). For a
given total utilization value U , we modified α between Utot

n

and 1.0 to explore the effect of individual task utilization fac-
tor. We considered systems with 2, 4, 8, 16 and 32 processors
while generating task sets with 50, 100 and 150 tasks. Due to
lack of space, we present our results only in the context of 100-
task sets that are to be scheduled on 16 processors, however
we must underline that the trends and relative performances of
techniques are similar in other settings as well.

For each heuristic H , we present:

• The feasibility performance (FPH), given as the percent-
age of task sets that are feasibly scheduled by H .

• The energy consumption performance (ECH), given as
average energy consumption of task sets that are sched-
uled by H in feasible manner.

• The timeliness/energy metric, given as FPH

ECH
.

Note that the last metric favors the heuristics with high fea-
sibility performance and low energy consumption.

5.1 Performance of Algorithms with Utiliza-
tion Ordering

By examining the performance of heuristics when they are
allowed to order tasks according to utilization values, we ob-
serve that Worst-Fit-Decreasing is by far the best heuristic in
terms of overall performance: Although its feasibility perfor-
mance is not the best, it is comparable to other heuristics’ per-
formances even at high utilizations and high α values(Figures 3
and 4). However, its energy consumption performance clearly
dominates all others, throughout the entire utilization and α
spectrum (Figures 5 and 6). This fact is even more emphasized
by the timeliness/energy curves of heuristics (Figures 7 and 8).

Albeit good in terms of feasibility performance, First-Fit-
Decreasing and Best-Fit-Decreasing heuristics’ performances
suffer from energy point of view: These algorithms greedily
schedule the tasks on one processor to the extent it is possible
while keeping other processors idle, and this results in unbal-
anced partitionings in many cases. It is also interesting to note
that FFD and BFD are hardly distinguishable in both energy
and feasibility dimensions in this set of experiments.

0

0.2

0.4

0.6

0.8

1

12 12.5 13 13.5 14 14.5 15 15.5 16

Fe
as

ib
ilit

y
Pe

rfo
rm

an
ce

 (F
P)

Utilization

Best-Fit-Dec
Worst-Fit-Dec

First-Fit-Dec
Next-Fit-Dec

Figure 3. Feasibility Performance for α = 1.0

0

0.2

0.4

0.6

0.8

1

12 12.5 13 13.5 14 14.5 15 15.5 16

Fe
as

ib
ilit

y
Pe

rfo
rm

an
ce

 (F
P)

Utilization

Best-Fit-Dec
Worst-Fit-Dec

First-Fit-Dec
Next-Fit-Dec

Figure 4. Feasibility Performance for α = 0.5

In fact, it is possible to give a formal explanation of WFD’s
good performance through the following theorem.

Theorem 3 Worst-Fit Decreasing (WFD) heuristic never pro-
duces an unbalanced partitioning.

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

En
er

gy
 C

on
su

m
pt

io
n

(E
C

)

Utilization

Best-Fit-Dec
Worst-Fit-Dec

First-Fit-Dec
Next-Fit-Dec

Figure 5. Energy Performance for α = 1.0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

En
er

gy
 C

on
su

m
pt

io
n

(E
C

)

Utilization

Best-Fit-Dec
Worst-Fit-Dec

First-Fit-Dec
Next-Fit-Dec

Figure 6. Energy Performance for α = 0.5

Proof: Consider a set T of n periodic tasks (labeled according
to non-increasing utilizations) that are to be scheduled on m
processors. We will prove the statement by induction. Clearly,
the partitioning after assigning the first task T1 to an arbitrary
idle processor is balanced. Suppose that the statement holds
after assigning T1, . . . , Tk(1 ≤ k < n) to the processors ac-
cording to WFD heuristic. Call the partitioning after assigning
the kth task Πk. For convenience, processors are indexed ac-
cording to non-increasing load values in Πk in the following
manner: M1 is the processor with the highest load value, M2

is the processor with second highest load, and so on.
WFD chooses Mm to allocate Tk+1. Observe that any pair

(Mi, Mj) such that i 6= m and j 6= m cannot be the source of
an unbalanced partitioning; because their loads did not change
and Πk is supposed to be balanced by induction assumption.
Any pair (Mm, Mi) such that Ui = 0 cannot be unbalanced
either: Only Tk+1 must be assigned to Mm (otherwise WFD

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16

Ti
m

el
in

es
s/

En
er

gy
 P

er
fo

rm
an

ce
 (T

E)

Utilization

Best-Fit-Dec
Worst-Fit-Dec

First-Fit-Dec
Next-Fit-Dec

Figure 7. Timeliness/Energy Performance for α = 1.0

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16

Ti
m

el
in

es
s-

En
er

gy
 P

er
fo

rm
an

ce
 (T

E)

Utilization

Best-Fit-Dec
Worst-Fit-Dec

First-Fit-Dec
Next-Fit-Dec

Figure 8. Timeliness/Energy Performance for α = 0.5

would not choose Mm) and such a pair is clearly balanced. So,
we need to focus only on pairs (Mm, Mi) such that Ui > 0.
We distinguish two cases:

i. After assignment of Tk+1 to Mm, Um < Ui for each pro-
cessor such that Ui > 0. In this case, the new assignment
cannot result in an unbalanced “pair” (Mm, Mi), because
if it were, then the same pair would be balanced in Πk

as well (we only reduced the difference between Mm and
other processors with non-zero load).

ii. After assignment of Tk+1 to Mm, Um ≥ Ui for some
processors Mi with non-zero load. We do not need the
consider Mm and any other processor with higher load
for potential “balance analysis” (the same reasoning as in
i.) Consider a pair (Mm, Mi) such that Um ≥ Ui > 0
in Πk+1. Observe that in Πk, Um ≤ Ui and thanks to
the pre-ordering of tasks according to utilizations uk+1 ≤
Ui. Furthermore, in Πk+1, Tk+1 must be the task with
smallest utilization on Mm. Thus, after allocation, Um −
Ui ≤ uk+1 and in fact, Um − Ui ≤ ux for any task Tx

allocated to Mm (x ≤ k + 1). Under such conditions, the
pair (Mm, Mi) cannot be unbalanced. 2

It can be shown that the previously mentioned property of
power-optimal partitioning in Theorem 2 holds in all partition-
ings produced by WFD:

Proposition 2 WFD always generates a partitioning where a
separate processor is exclusively assigned to any task Ta with

utilization greater than A =

∑
n

j=1
uj

m
= Utot

m
.

Proof: Justified by the fact that partitionings where other tasks
are allocated to the same processor as Ta would be necessarily
unbalanced (see the proof of Theorem 2) and Theorem 3 (WFD
never produces unbalanced partitionings). 2

5.2 Performance of Algorithms without Uti-
lization Ordering

If the scheduler algorithm does not have full information
about individual tasks, then we will have to assign tasks as they
are submitted to the system without being able to pre-order
according to utilization values.

If we restrict our analysis to traditional heuristics First-Fit,
Best-Fit, Next-Fit and Worst-Fit, we observe that we no longer
have a clear winner that offers good performance in all utiliza-
tion values in terms of both feasibility and energy consump-
tion(Figures 9-12). FF, NF and BF all offer good performances
in terms of feasibility, but their energy consumption character-
istics are poor, especially at low utilizations. WF offers good
performance at low utilizations, though its feasibility perfor-
mance degrades rapidly with increasing utilization.

In fact, one can see that if WF is not allowed to order tasks
according to utilizations before proceeding, its worst-case per-
formance in terms of achievable utilization is extremely bad:
Consider m + 1 tasks that are to be executed on m processors,
where u1 = u2 = . . . um = ε and um+1 = 1.0. Utot = 1+mε
(arbitrarily close to 1.0) and the total available computational
capacity is m, yet WF produces an infeasible partitioning.

0

0.2

0.4

0.6

0.8

1

6 8 10 12 14 16

Fe
as

ib
ilit

y
Pe

rfo
rm

an
ce

 (F
P)

Utilization

Best-Fit
Worst-Fit

First-Fit
Next-Fit

Reservation

Figure 9. Feasibility Performance for α = 1.0

0

0.2

0.4

0.6

0.8

1

6 8 10 12 14 16

Fe
as

ib
ilit

y
Pe

rfo
rm

an
ce

 (F
P)

Utilization

Best-Fit
Worst-Fit

First-Fit
Next-Fit

Reservation

Figure 10. Feasibility Performance for α = 0.5

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

En
er

gy
 C

on
su

m
pt

io
n

(E
C

)

Utilization

Best-Fit
Worst-Fit

First-Fit
Next-Fit

Reservation

Figure 11. Energy Performance for α = 1.0

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

En
er

gy
 C

on
su

m
pt

io
n

(E
C

)

Utilization

Best-Fit
Worst-Fit

First-Fit
Next-Fit

Reservation

Figure 12. Energy Performance for α = 0.5

To overcome these difficulties, we present an algorithm
called RESERVATION. The idea of the algorithm is to reserve
half (more accurately, bm/2c processors) of processor set for
“light” tasks, and the other half for “heavy” tasks. A light task
is defined to be a task with utilization not exceeding A = Utot

m
,

average utilization per processor. Otherwise, the task is said to
be heavy. When presented a task Ti, the algorithm tries to al-
locate it to the corresponding subset of processors (if there are
multiple candidates in the corresponding subset, again Worst-
Fit rule is used to break ties). Only when the corresponding
subset is not able to accomodate the new task the other subset
is tried (again, ties are broken using Worst-Fit).

RESERVATION algorithm is in fact a trade-off between
the good feasibility performance of First/Best-Fit algorithms
and the good energy performance of Worst-Fit algorithms. Fig-
ures 13 and 14 show that RESERVATION algorithm achieves
a more or less consistent performance throughout the utiliza-
tion spectrum. Further, its Timeliness/Energy performance is
consistent with varying α parameter (Figure 15).

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

Ti
m

el
in

es
s/

En
er

gy
 P

er
fo

rm
an

ce
 (T

E)

Utilization

Best-Fit
Worst-Fit

First-Fit
Next-Fit

Reservation

Figure 13. Timeliness/Energy Performance for α = 1.0

6 Conclusion

To the best of our knowledge, this work is the first attempt
to incorporate variable voltage scheduling of periodic task sets
(hence, energy awareness issues) to partitioned multiproces-
sor real-time systems. We showed that finding the partitioning
with minimum energy consumption is NP-Hard in the strong
sense, even when the feasibility of the task set is guaranteed
a priori. Then we developed our load balancing framework,
showing that some partitionings are unbalanced in that moving

0

0.5

1

1.5

2

4 6 8 10 12 14 16

Ti
m

el
in

es
s/

En
er

gy
 P

er
fo

rm
an

ce
 (T

E)

Utilization

Best-Fit
Worst-Fit

First-Fit
Next-Fit

Reservation

Figure 14. Timeliness/Energy Performance for α = 0.5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1

Ti
m

el
in

es
s/

En
er

gy
 P

er
fo

rm
an

ce
 (T

E)

Individual Task Utilization Factor

Best-Fit
Worst-Fit

First-Fit
Next-Fit

Reservation

Figure 15. Effect of α on Timeliness/Energy performance for

U = 12 on m = 16 processors

just one task from one processor to another can immediately
improve energy savings. Our experimental evaluation shows
that Worst-Fit-Decreasing heuristic is a clear winner in time-
liness/energy performance. However, for the case where the
algorithms are not allowed to preorder tasks according to uti-
lizations, we proposed a new algorithm RESERVATION that
does not exhibit large variances observed in other heuristics.

References

[1] B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling on
multiprocessors. In Proceedings of the 22nd IEEE International Real-
Time Systems Symposium, December 2001

[2] H. Aydin, R. Melhem, D. Mossé and P.M. Alvarez. Determining Optimal
Processor Speeds for Periodic Real-Time Tasks with Different Power
Characteristics. In Proceedings of the 13th EuroMicro Conference on
Real-Time Systems (ECRTS’01), June 2001.

[3] H. Aydin, R. Melhem, D. Mossé and P.M. Alvarez. Dynamic and Ag-
gressive Power-Aware Scheduling Techniques for Real-Time Systems. In
Proceedings of the 22nd IEEE Real-time Systems Symposium (RTSS’01),
December 2001.

[4] A. Burchard, J. Liebeherr, Y. Oh, and S. Son. New strategies for Assign-
ing Real-Time Tasks to Multiprocessor Systems. IEEE Transactions on
Computers, 44(12), 1995.

[5] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation Al-
gorithms for Bin Packing: A Survey. In Approximation Algorithms for
NP-Hard Problems, PWS Publishing, Boston (1997),

[6] S. Funk, J. Goossens and S. Baruah. Energy-minimization Tech-
niques for Real-Time Scheduling on Multiprocessor platforms. Techni-
cal Report 01-30, Computer Science Department, University of North
Carolina-Chapel Hill, 2001.

[7] J. Goossens, S. Baruah and S. Funk. Real-time Scheduling on Multipro-
cessors. In Proceedings of the 10th International Conference on Real-
Time Systems, 2002.

[8] M. Garey and D. Johnson. Computers and Intractability. W. H. Freman,
NewYork, 1979.

[9] F. Gruian. System-Level Design Methods for Low-Energy Architec-
tures Containing Variable Voltage Processors. In Power-Aware Comput-
ing Systems Workshop at ASPLOS 2000, 2000.

[10] I. Hong, G. Qu, M. Potkonjak and M. Srivastava. Synthesis Techniques
for Low-Power Hard Real-Time Systems on Variable Voltage Processors.
In Proceedings of 19th IEEE Real-Time Systems Symposium (RTSS’98),
Madrid, December 1998.

[11] S. Lauzac, R. Melhem and D. Mosse. An Efficient RMS Admission Con-
trol and its Application to Multiprocessor Scheduling. In Proceedings of
International Parallel Processing Symposium, 1998.

[12] C.L. Liu and J.W.Layland. Scheduling Algorithms for Multiprogram-
ming in Hard Real-time Environment. Journal of ACM 20(1), 1973.

[13] J. Lopez, J. Diaz, M. Garcia and D. Garcia. Worst-Case Utilization
Bound for EDF Scheduling on Real-Time Multiprocessor Systems. In
Proceedings of the 12th Euromicro Workshop on Real-Time Systems,
2000.

[14] J. Lopez. Utilization Based Schedulability Analysis of Real-time systems
Implemented on Multiprocessors with Partitioning Techniques. Ph.D.
Thesis, University of Oviedo, 2001.

[15] W. Kim, D. Shin, H.S. Yun, J. Kim and S.L. Min. Performance Compar-
ison of Dynamic Voltage Scaling Algorithms for Hard Real-Time Sys-
tems. In Proceedings of the 8th Real-Time and Embedded Technology
and Applications Symposium, 2002.

[16] D. Oh and T. P. Baker. Utilization Bounds for N-Processor Rate Mono-
tone Scheduling with Static Processor Assignment. Real-Time Systems,
15(2), 1998.

[17] Y. Shin and K. Choi. Power Conscious Fixed Priority Scheduling for
Hard Real-Time Systems. In Proceedings of the 36th Design Automation
Conference, DAC’99, pp. 134-139.

[18] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Kerkest
and R. Lauwereins. Energy-Aware Runtime Scheduling for Embedded-
Multiprocessor SOCs. In IEEE Design and Test of Computers, 18(5),
2001.

[19] F. Yao, A. Demers and S. Shankar. A Scheduling Model for Reduced
CPU Energy. IEEE Annual Foundations of Computer Science, pp. 374 -
382, 1995.

[20] D. Zhu, R. Melhem, and B. Childers. Scheduling with Dynamic Volt-
age/Speed Adjustment Using Slack Reclamation in Multi-Processor
Real-Time Systems. In Proceedings of the 22nd IEEE Real-time Systems
Symposium, 2001.

[21] D. Zhu, N. AbouGhazaleh, D. Mosse and R. Melhem. Power Aware
Scheduling for AND/OR Graphs in Multi-Processor Real-Time Sys-
tems. In Proceedings of International Conference on Parallel Process-
ing, 2002.

