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Abstract. The Graphics Processor Unit (GPU) has expanded its role
from an accelerator for rendering graphics into an efficient parallel pro-
cessor for general purpose computing. The GPU, an indispensable com-
ponent in desktop and server-class computers as well as game consoles,
has also become an integrated component in handheld devices, such as
smartphones. Since the handheld devices are mostly powered by bat-
tery, the mobile GPU is usually designed with an emphasis on low-power
rather than on performance. In addition, the memory bus architecture of
mobile devices is also quite different from those of desktops, servers, and
game consoles. In this paper, we try to provide answers to the following
two questions: (1) Can a mobile GPU be used as a powerful accelerator
in the mobile platform for general purpose computing, similar to its role
in the desktop and server platforms? (2) What is the role of a mobile
GPU in energy-optimized real-time mobile applications? We use face
recognition as an application driver which is a compute-intensive task
and is a core process for several mobile applications. The experiments
of our investigation were performed on an Nvidia Tegra development
board which consists of a dual-core ARM Cortex A9 CPU and a Nvidia
mobile GPU integrated in a SoC. The experiment results show that, uti-
lizing the mobile GPU can achieve a 4.25x speedup in performance and
3.98x reduction in energy consumption, in comparison with a CPU-only
implementation on the same platform.

1 Introduction

It has been an active research subject to explore the use of Graphics Processor
Unit (GPU), an indispensable component in desktop computers, as a general
purpose coprocessor to accelerate the compute-intensive part of an algorithm.
The research directions include (1) to identify algorithms’ parallelism or redesign
algorithms to be suitable running on a GPU, and (2) to extend the fixed graphics
pipeline into programmable pipelines with a more flexible memory manipulation
by high-level APIs, such as CUDA[1]. Depending on the algorithms’ inherent
parallelism, the number of cores, and the available memory bandwidth of the
GPU hardware, a speedup of tens to hundreds has been reported in the liter-
atures for various applications. Computer vision is one of the areas for which
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the GPU has demonstrated significant performance improvement, such as image
registration [2] and feature tracking [3].

The programmable GPU is now moving its way from desktop and server com-
puters into handheld devices, such as smartphones and portable game consoles.
While the GPUs inside mobile devices and desktop computers have similar high-
level functionality, there are many differences under the hood. For example, a
GPU inside a smartphone is usually integrated in a single chip with CPU, DSP,
and other application-specific accelerators (e.g. [4]). Instead of having its own
graphics memory, an embedded GPU shares the system bus with other com-
puting components to access the external memory and therefore has much less
available bus bandwidth than those of laptop and high-performance desktop sys-
tems [5]. Also, the only available APIs for current mobile GPUs are OpenGL
ES [6], which is a graphics API and does not provide some essential compo-
nents of GPGPU, such as ”scatter” (i.e. write to an arbitrary memory location)
and thread-level synchronization. As most existing CPU-GPU optimizations are
based on, and optimized for, desktop and server platforms, it is highly desirable
to characterize the mobile CPU-GPU platform and revisit the GPGPU strategies
in order to better utilize the computational power of a mobile GPU. A study of
comparing the use of a mobile CPU (ARM) and a mobile GPU (PowerVR SGX)
for executing an image processing pipeline (adjusting geometry, Gaussian blur,
and adjusting color) reports that the mobile GPU achieves 3.58x speedup (8.6
seconds per frame for CPU and 2.4 seconds per frame for GPU) [7]. Their in-
vestigation is conducted with an emulated version of OpenCL embedded profile
[8], which is not available on current commodity smartphones and development
boards. Also, the target task of their study is low-level image processing, not
high-level vision tasks.

Power and energy efficiency is another critical design considerations when
design applications on a battery-powered mobile platform. A mobile handheld
device is typically limited by a power ceiling of less than 1 watt, while the power
ceilings for the desktop processors alone range from 30 to 150 Watts. In addition
to explore the utilization of mobile GPU to speedup time-consuming tasks, it is
also important to characterize the power consumption of the mobile GPU and
CPU. The overall objective of developing an application on a mobile platform
should be to optimize the total energy consumption while meeting the real-time
constraint.

In this paper, we investigate the computational capability and energy effi-
ciency of current mobile CPU-GPU system for an exemplar computer vision
application, automatic face annotation. We use Nvidia’s Tegra SoC/platform
[9], which is specifically designed for smartphones and tablets, as the target
platform in our study. Running the face recognition algorithm on Tegra’s CPU,
on average, takes 8.5 seconds to detect and recognize a face. When utilizing
Tegra’s GPU by OpenGL ES 2.0 to offload the most compute-intensive task,
face feature extraction, in the face recognition pipeline, the execution time as
well as the total energy consumption can be significantly reduced. This paper
is organized as follow: In Section 2 we first review the recent research of mobile



Energy-Aware Real-Time Face Recognition System 413

computer vision and energy efficiency of desktop CPU-GPU systems. Section 3
provides an overview of the face annotation system and its runtime profile. Then
in Section 4, we show the experimental setup of our study. The experimental re-
sults are presented in Section 5. Finally we conclude our study and the future
exploration directions.

2 Related Works

While state-of-the-art face recognition algorithms can achieve a high accuracy
to support automatic face annotation, their implementations on an embedded
platform cannot achieve real-time performance due to the demanding compu-
tational requirement. Applications targeted for mobile platforms usually re-
move the compute-expensive operations, or rely on the clouds to do most of
the computation. For example, a real-time face annotation system on PDA was
demonstrated in [10]. Although it achieves real-time performance, the intensity-
comparison based method is not sufficiently robust to handle the luminance vari-
ation or pose changes. Hence it could not achieve the level of accuracy needed
for real-life applications.

As a sophisticated hardware component with massive parallelism, running
tasks on a GPU consumes significant power. The Nvidia 8800GTS graphics card
is measured consuming 210W before the kernel launches, and 310W while the
kernel is running [12]. On the other hand, the CPU employs several advanced
low-power design techniques and power management strategies, thus making it
more power efficient. The measured standby power and active power of Intel i7 is
33.03W and 102.2W (for one core) respectively [12]. For applications where the
GPU can finish the task in a significantly shorter period of time, in comparison
with its CPU counterpart, the performance gain results in energy savings as well,
making the GPU a preferred choice from both performance and energy points of
view. However, when the GPU speedup is not as pronounced, the choice becomes
less obvious. The cost/performance investigation of an Intel Core 2 Duo CPU and
a Nvidia CUDA enabled GPU in [11] shows, despite an increase in total system
power, using a GPU is more energy efficient when the performance improvement
is 5x or greater.

3 Face Recognition System

Face recognition enables easy sharing and better management of digital photos
and videos. Fig. 1 shows an exemplar face annotation application on
smartphones. Given a newly taken photo, or one from the photo gallery in a
smartphone, the face regions are identified, recognized and tagged with names
automatically. The tagged face(s) could be added to the face database, linked
to the user’s address book, and/or uploaded the annotated photo to a photo-
sharing or social networking websites such as Picasa or Facebook in real-time
using the smartphone’s Wi-Fi or 3G network connectivity. The face recognition
process can be divided into four steps: (1) Face detection, which scans the whole
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image to identify face regions. (2) Face landmark localization, which identifies
the face landmark locations such as eyes, nose and mouth within a detected face
region, and then resize and register the face region accordingly. (3) Face feature
extraction, which represents a face region by its features that are invariant or
robust to the variations of illumination, pose, expression, and occlusion. (4) Face
feature classification, which compares the face feature to the training face set
and assigns a name of the most similar identity to the query face.

Fig. 1. A face annotation system on smartphones

3.1 Gabor-Based Face Feature Extraction

The Gabor-based feature descriptor [13] has been demonstrated as one of the
most suitable local representation for face recognition. The Gabor wavelet rep-
resentation of an image is the convolution of the image with a family of Gabor
kernels as defined in the following:

Ψμ,v(z) =
||kμ,v||
σ2

e(−||kµ,v||2||z||2/2σ2)[eikµ,vz − e−σ2/2] (1)

Where μ and v define the orientation and scale of the Gabor filters, z = (x, y),
||.|| denotes the norm operator, and the wave vector kμ,v = kve

iφµ , where
kv = kmax/f

v gives the frequency, φμ = μπ/8 gives the orientation. This repre-
sentation captures the local structure corresponding to spatial frequency (scale),
spatial localization, and orientation selectivity. As a result, it is robust to illu-
mination and facial expression variations. A typical Gabor-based face descriptor
uses 40 different Gabor kernels which include 5 different scales and 8 different
orientations. After that, it is further processed by Principle Component Analysis
(PCA) and Linear Discriminant Analysis (LDA) to reduce its dimensionality and
forms the final face feature descriptor. The use of Gabor feature combined with
the PCA-LDA method is reported to achieve 93.83% accuracy on the traditional
face recognition dataset FERET [14] and 71.69% on a more challenging photo
dataset LFW [15].
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3.2 System Profiling

In order to understand the complexity of the face recognition system and the
performance of such application on modern smartphones, we have implemented
a Gabor-based face recognition system on an Android-powered [16] smartphone
platform. The details of this platform are revealed in the next section. In our
system, we use Android facedetector API [17] to identify face regions in a given
photo, and an AdaBoost-based eye localization method to identify the land-
mark regions. Face feature classification is performed by the K-Nearest-Neighbor
method. All the tasks, except the face detection (which is an Android API and
the implementation details are not easy to obtained), are implemented in C and
compiled using the tool chain provided by Android Native Development Kit r3
(NDK).

Table 1 shows the execution time breakdown of face recognition system run-
ning on a 1GHz ARM Cortex A9 CPU. The picture size in this study is 480x1000.
The total number of training images is 15. The identified face region is aligned
and scaled to 64x80 before extract face feature. The profiling results show that,
feature extraction is the most time-consuming part. It takes 6.1 seconds to pro-
cess one face, which is about 71.8% of the total computing time. Without any
optimization, the overall execution time of the face recognition too long to be
considered as a real-time mobile applications.

Table 1. Execution time breakdown of face recognition system running on Tegra
platform’s CPU

Task Time (sec) %

Face detection 1.5 17.6
Landmark detection 0.7 8.2
Feature extraction: Gabor wavelet 5.1 60.0
Feature extraction: PCA-LDA 1.0 11.8
Feature classification 0.2 2.4

Total 8.5 100

Since the Gabor wavelet in the face feature extraction is the most dominant
component, optimization of this aspect will result in the most improvement.
In the following, we examine using the mobile GPU to accelerate this part.
The experimental setup is first described in Section 4, and then we discuss the
implementation details and the experimental results in Section 5.

4 Experimental Setup

Our experiments were performed on a Nvidia Tegra SoC platform with the fol-
lowing specifications: a 1GHz dual-core ARM Cortex A9 CPU, 1GB of RAM,
a Nvidia GeForce GPU, and 512MB of Flash memory. This chip is one of the
representative heterogeneous processors designed for handheld devices such as
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smartphones and tablets. A Nvidia Tegra developer kit [9] is available for de-
veloping software running on the Tegra chip. Fig. 2 shows our experimental
setting: the Tegra board is connected to a VGA monitor and a keyboard and
a mouse are also connected. The operating system running on this platform is
Android.

Fig. 2. Tegra development board and the experimental setup

The Tegra board is powered by a 15V DC input which is then converted into
3.3V, 5V, 1.8V and 1.05V for various components on the board by a regulator.
It is difficult to precisely measure the power consumption because it requires
isolating the traces on the board that provide power to the Tegra chip and
measuring the current values. Also, because the CPU and the GPU respectively
are integrated in a single chip, it’s hard to measure exactly the current drawn by
each individual component in the chip. Therefore, we approximate the current
used by the CPU and the GPU by measuring the current consumed by the entire
board. The average idle current is about 0.2A which is considered as the offset
current.

The Tegra GPU has fully programmable unified vertex and fragment shaders.
The shaders are programed through OpenGL ES 2.0 [6] which is the primary
graphics library for handheld and embedded devices with a programmable GPU.
The commonly used high-level API for a desktop environment, such as CUDA
or OpenCL, is not supported in this, and any other embedded, platform yet.

5 Execution Efficiency and Energy Efficiency Study

Gabor wavelet can be implemented by convolution or the Fast Fourier Transform
(FFT). The GPU implementation of the convolution method is suitable only for
small-size kernels due to the memory limitation. However, a small-size kernel is
not realistic for object and pattern recognition [18]. Therefore, our GPU-based
Gabor face feature extraction is based on the FFT method: first transforming
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both face image and the Gabor kernel into the Fourier space, multiplying them
together, and then inverse-transforming the result back to the space domain.
In our study, we first take FFT as a benchmark program to investigate the
computational and energy efficiency of mobile GPU, and then extend the result
to the Gabor face feature extraction processing.

5.1 FFT Benchmark on Mobile CPU and GPU

Fig. 3 shows the pseudo code of our FFT benchmark program. The CPU im-
plementation is written in C. In the GPU implementation, the GPU shaders,
which are launched by the host CPU, perform FFT and IFFT computation.
The data needs to first transfer from the CPU domain to the GPU domain and
then transfer back after the GPU finishes its computation. The shader program
is compiled on the Tegra GPU. After the execution is completed, the resulting
image is displayed on the screen.

Fig. 3. FFT benchmark used in our study

A GPU-acceleration method in [21] is used in our study. Although some other
GPU-accelerated FFT methods have been proposed [19][20][22], they were pro-
posed for dedicated hardware and could not be applied to an embedded GPU
which has significantly less resources due to the power constraint. The approach
used in our study relies on the fragment shader to do the per-pixel (i.e. each sam-
ple of the 2D array) computation. The input index and weighting factor which
are used for the calculation of the each sample are pre-computed and stored in
the texture memory.

We ran a FFT benchmark program, which performs FFT and IFFT 50 times,
on Tegra’s CPU and GPU respectively for comparison. The measured power
consumption results are shown in Figure 5. Both CPU and GPU start running
roughly at reference time 0.6 second. After CPU starts running, it takes about
0.4 second for the CPU to initialize the GPU and to transfer data from the CPU
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to the GPU before the GPU runs at its full capacity. After the FFT and the
IFFT computations are completed, the application program is still running (but
does nothing). Therefore, the power consumption level is still higher than the
level of the idle stage before the application was launched.

The measurement results show that, for this FFT benchmark, the GPU is 3x
faster and consumes 8% more power than the CPU (1 second vs. 3.1 seconds,
and 4.0 watts vs. 3.7 watts). The slightly higher power when using GPU is
because the CPU is not idle when the GPU is running and is standing by for
the completion of GPU. As a result, the ratio of the total energy consumption
of the CPU version vs. the GPU version for this FFT benchmark is 2.86 to 1.

Fig. 4. Power consumption of our FFT benchmark on mobile CPU and GPU

5.2 GPU Accelerated Gabor-Based Face Feature Extraction

The FFT benchmark result demonstrates that using a mobile GPU is not only
more computationally efficient but also more energy efficient. We then extend
the GPU-accelerated FFT and IFFT to compute the Gabor-based face feature
extraction, and compare the results with the CPU implementation. The left side
of Fig. 5 shows the pseudo code of the Gabor-based face feature extraction.
In the GPU implementation, the FFT and IFFT are the same shader program
with different input arguments in order to perform either forward or inverse
transform, and the MULTIPLY is a separate shader program. In other words,
different shader programs have to be swapped back and forth repeatedly to
complete the task. The execution time of both CPU and GPU implementation
are shown in the first two rows of Table 2. The GPU implementation runs
4.25x faster than the CPU implementation (1.2 seconds vs. 5.1 seconds) while
consuming slightly more power (3.75 Watt vs. 3.52 Watt).
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Since the computation of convolving 40 different Gabor kernels with a face
image can be computed concurrently and independently, processing multiple Ga-
bor kernels in a batch mode may further improve the performance by reducing
overall time spent on swapping shader programs. Three different configurations
are examined in our study: The first configuration (Fig. 6(a)) is the original
method which performs 40 Gabor wavelets with 40 different kernels. The sec-
ond configuration (Fig. 6 (b)) combines four kernels in a batch, and the shader
program is configured to draw a 256x256 quad but performs four 128x128 FFTs
while each FFT tile has a different texture access address. This could be easily
performed by loading another texture to lookup the index. The third configura-
tion (Fig. 6 (c)), similar to the second one, combines nine Gabor kernels in a
batch and performs nine 128x128 FFTs at a time.

Fig. 5. Doing 40 Gabor filter in the single mode and batch mode

Fig. 6. Combine various number of Gabor kernels to perform larger size FFT to-
gether. (a) Perform a 128x128 FFT for one kernel at a time. (b) Perform four 128x128
FFTs for four kernels at a time. (c) Perform nine 128x128 FFT for nine kernels at
a time.

The measurement results show that, however, the batch mode does not reduce
the computation time as we expected. As shown in Table 2, GPU 1x1, GPU 2x2,
and GPU 3x3 take 1.2, 1.4, and 1.5 seconds respectively to complete the assigned
tasks. This could be explained that a larger amount of data is required for the
computation when running a larger number of concurrent tasks. If the GPU
cache size is not large enough, it takes more time to store and load data from
the main memory.
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Table 2. The execution time and energy consumption of different implementation
configurations

configuration # of batch Time (sec) Power (Watt) Energy (J)

CPU (1x1) 40 5.1 3.52 17.95

GPU (1x1) 40 1.2 3.75 4.50
GPU (2x2) 10 1.4 3.59 5.02
GPU (3x3) 5 1.5 3.63 5.44

5.3 Overall Performance

Computing Gabor representation of a face image is the most time consuming
part of the whole face recognition system. It takes about 5.1 seconds for a 1
GHz ARM processor to complete this task. The mobile GPU takes only 1.2
seconds to complete the same task, which represents a 4.25x speedup. As shown
in Fig. 7, with the GPU successfully offloading the computational burden from
CPU, the overall computation time for recognizing a person on a smartphone is
reduced from 8.5 seconds to 4.6 seconds. As for the total energy consumption,
the mobile CPU-GPU implementation consumes 16.3 J while the CPU only
implementation consumes 29.8 J. After the Gabor wavelet is accelerated by
the GPU, the face detection and face feature dimension reduction by PCA-
LDA become the most time-critical parts. We will further explore in the future
the opportunity of utilizing mobile GPU to remove these new computational
bottlenecks to achieve better performance and energy consumption level.

Fig. 7. Comparison of face recognition system running on Tegra’s CPU and
CPU+GPU. (a) Execution time (b) Total energy consumption.

6 Conclusion and Future Works

In this paper, we investigate the computing power and energy consumption of a
mobile CPU-GPU platform for mobile computer vision applications. Compared
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to a CPU-only implementation, our preliminary GPU-accelerated Gabor face
feature extraction, the most compute-intensive task in a face annotation system
can achieve a 4.25x speedup and 3.94x reduction in energy consumption. This
experimental investigation confirms that a mobile GPU, although is designed pri-
marily for low-power rather than maximum performance, can provide significant
performance speedup for vision tasks on a mobile platform, similar to the role of
its high-performance counterparts in the desktop and server systems. Therefore,
the performance improvement achieved by GPU-based computing also results in
overall energy reduction, which is a tremendous benefit for mobile devices.

Due to the lack of a higher level programming environment, such as CUDA,
for mobile GPUs, it is difficult to port existing GPU-optimized algorithms to the
mobile SoCs, even for those already designed for generic GPU architectures. It is
worthwhile to further explore low-power architectures and extend them toward
a more programmable, general-purpose architecture. While increasing the pro-
grammability may somewhat compromise the execution efficiency or increase the
power consumption, exploring the tradeoffs between energy efficiency and the
programmability and identifying a solution for easier programming without cost-
ing too much degradation in performance and energy consumption are necessary
steps for improving the productivity for programming for mobile GPUs.
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