
Energy-Aware Server Provisioning and Load Dispatching for
Connection-Intensive Internet Services

Gong Chen∗, Wenbo He?, Jie Liu†, Suman Nath†, Leonidas Rigas‡, Lin Xiao†, Feng Zhao†

∗Dept. of Statistics, University of California, Los Angeles, CA 90095
?Dept. of Computer Science, University of Illinois, Urbana-Champaign, IL 61801

‡Microsoft †Research, One Microsoft Way, Redmond, WA 98052
gchen@stat.ucla.edu, webohe@uiuc.edu

{liuj, sumann, leonr, lixiao, zhao}@microsoft.com

Abstract
Energy consumption in hosting Internet services is be-
coming a pressing issue as these services scale up. Dy-
namic server provisioning techniques are effective in
turning off unnecessary servers to save energy. Such
techniques, mostly studied for request-response services,
face challenges in the context of connection servers that
host a large number of long-lived TCP connections. In
this paper, we characterize unique properties, perfor-
mance, and power models of connection servers, based
on a real data trace collected from the deployed Windows
Live Messenger. Using the models, we design server
provisioning and load dispatching algorithms and study
subtle interactions between them. We show that our al-
gorithms can save a significant amount of energy without
sacrificing user experiences.

1 Introduction

Internet services such as search, web-mail, online chat-
ting, and online gaming, have become part of people’s
everyday life. Such services are expected to scale well,
to guarantee performance (e.g., small latency), and to be
highly available. To achieve these goals, these services
are typically deployed in clusters of massive number of
servers hosted in dedicated data centers. Each data cen-
ter houses a large number of heterogeneous components
for computing, storage, and networking, together with an
infrastructure to distribute power and provide cooling.

Viewed from the outside, a data center is a “black box”
that responds to a stream of requests from the Internet,
while consuming power from the electrical grid and pro-
ducing waste heat. As the demand on Internet services
drastically increases in recent years, the energy used by
data centers, directly related to the number of hosted
servers and their workload, has been skyrocketing [8].
In 2006, U.S. data centers consumed an estimated 61 bil-
lion kilowatt-hours (kWh) of energy, enough to power
5.8 million average US households.

Data center energy savings can come from a number
of places: on the hardware and facility side, e.g., by de-
signing energy-efficient servers and data center infras-
tructures, and on the software side, e.g., through resource
management. In this paper, we take a software-based
approach, consisting of two interdependent techniques:
dynamic provisioning that dynamically turns on a mini-
mum number of servers required to satisfy application-
specific quality of service, and load dispatching that dis-
tributes current load among the running machines. Our
approach is motivated by two observations from real data
sets collected from operating Internet services. First, the
total load of a typical Internet service fluctuates over a
day. For example, the fluctuation for the number of users
logged on to Windows Live Messenger can be about 40%
of the peak load within a day. Similar patterns were
found in other studies [3, 20]. Second, an active server,
even when it is kept idle, consumes a non-trivial amount
of power (> 66% of the peak from our measurements,
similar to other studies [9]). The first observation pro-
vides us the opportunity to dynamically change the num-
ber of active servers, while the second observation im-
plies that shutting down machines during off-peak period
provides maximum power savings.

Both dynamic provisioning and load dispatching have
been extensively studied in literature [20, 3, 6]. How-
ever, prior work studies them separately since the main
foci were on request-response type of services, such as
Web serving. Simple Web server transactions are typi-
cally short. There is no state to carry over when the total
number of servers changes. In that context, first the min-
imum number of servers sufficient to handle the current
request rate is determined. After the required number
of servers are turned on, incoming requests are typically
distributed evenly among them [3].

Many Internet services keep long-lived connections.
For example, HTTP1.1 compatible web servers can op-
tionally keep the TCP connection after returning the ini-
tial web request in order to improve future response per-

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 337

formance. An extreme case is connection-oriented ser-
vices like in instant messaging, video sharing, Internet
games, and virtual life applications, where users may
be continuously logged in for hours or even days. For
a connection server, the number of connections on a
server is an integral of its net login rate (gross login rate
minus logout rate) over the time it has been on. The
power consumption of the server is a function of many
factors such as number of active connections and login
rate. Unlike request-response servers that serve short-
lived transactions, long-lived connections in connection
servers present unique characteristics:

1. The capacity of a connection server is usually con-
strained by both the rate at which it can accept new
connections and the total number of active connec-
tions on the server. Moreover, the maximum toler-
able connection rate is typically much smaller than
the total number of active connections due to several
reasons such as expensive connection setup proce-
dure and conservative SLA (Service Level Agree-
ment) with back-end authentication services or user
profiles. This implies that when a new server is
turned on, it cannot be fully utilized immediately
like simple web servers. The load, in terms of how
many users it hosts, can only increase gradually.

2. If the number of server is under provisioned, new lo-
gin requests will be rejected and users receive “ser-
vice not available” (SNA) errors. When a connec-
tion server with active users is turned off, users may
experience a short period of disconnection, called
“server initiated disconnections” (SID). When this
happens, the client software typically tries to recon-
nect back, which may create an artificial surge on
the number of new connections, and generate un-
necessary SNAs. Both errors should be avoided to
perserve user experiences.

3. As we will see in Section 3.5, the energy cost
of maintaining a connection is orders of magni-
tude smaller than processing a new connection re-
quest. Thus, a provisioning algorithm that turns off
a server with a large number of connections, which
in turn creates a large number of reconnections, may
defeat the purpose of energy saving.

Due to these unique properties, existing dynamic pro-
visioning and load dispatching algorithms designed for
request-response services may not work well with con-
nection services. For example, consider a simple strategy
that dynamically turns on or off servers based on current
number of users and then balances load among all ac-
tive servers [3]. Since a connection server takes time,
say T , to be fully utilized, provisioning X new servers
based on current users may not be sufficient. Note that

newly booted servers will require T time to take the tar-
get load, and during this time the service will have fewer
fully utilized servers than needed, causing poor service.
Moreover, after time T of turning on X new servers,
workload can significantly change, making these X new
servers either insufficient or unnecessary. Consider, on
the other hand, that a server with N connections is turned
off abruptly when the average connected users per server
is low. All those users will be disconnected. Since
many disconnected clients will automatically re-login,
currently available servers may not be able to handle the
surge. In short, a reactive provisioning system is very
likely to cause poor service or create instability. This can
be avoided by a proactive algorithm that takes the tran-
sient behavior into account. For example, we can employ
a load prediction algorithm to turn on machines gradually
before they are needed and to avoid turning on unneces-
sary machines to cope with temporary spikes in load. At
the same time, the provisioning algorithm needs to work
together with load dispatching mechanism and anticipate
the side effect of changing server numbers. For example,
if loads on servers are intentionally skewed, instead of
balanced, to create “tail” servers with fewer live connec-
tions, then turning off a tail server will not generate any
big surge to affect login patterns.

In this paper, we develop power saving techniques
for connection services, and evaluate the techniques us-
ing data traces from Windows Live Messenger (formerly
MSN Messenger), a popular instant messaging service
with millions of users. We consider server provisioning
and load dispatching in a single framework, and evaluate
various load skewing techniques to trade off between en-
ergy saving and quality of service. Although the problem
is motivated by Messenger services, the results should
apply to other connection-oriented services. The contri-
butions of the paper are:

• We characterize performance, power, and user ex-
perience models for Windows Live Messenger con-
nection servers based on real data collected over a
period of 45 days.

• We design a common provisioning framework that
trades off power saving and user experiences. It
takes into account the server transient behavior and
accommodates various load dispatching algorithms.

• We design load skewing algorithms that allow sig-
nificant amount of energy saving (up to 30%) with-
out sacrificing user experiences, i.e., maintaining
very small number of SIDs.

The rest of paper is organized as follows. Section 2
discusses related work. In Section 3, we give a brief
overview of the Messenger connection server behavior
and characterize connection server power, performance,

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association338

and user experience models. We present the load pre-
diction and server provisioning algorithms in Section 4,
and load dispatching algorithms in Section 5. Using data
traces from deployed Internet services, we evaluate vari-
ous algorithms and show the results in Section 6. Finally,
we conclude the paper with discussions in Section 7.

2 Related Work

In modern CPUs, P-states and clock modulation mecha-
nisms are available to control CPU power consumption
according to the load at any particular moment. Dy-
namic Voltage/Frequency Scaling (DVFS) has been de-
veloped as a standard technique to achieve power effi-
ciency of processors [19, 13, 17]. DVFS is a power-
ful adaptation mechanism, which adjusts power provi-
sioning according to workload in computing systems.
A control-based DVFS policy combined with request
batching has been proposed in [7], which trades off sys-
tem responsiveness to power saving and adopts a feed-
back control framework to maintain a specified response
time level. A DVFS policy is implemented in [21] on a
stand-alone Apache web server, which manages tasks to
meet soft real-time deadlines. Flautner et al. [10] adopts
performance-setting algorithms for different workload
characteristics transparently, and implements the DVFS
policy on per-task basis.

A lot of efforts have been made to address power ef-
ficiency in data centers. In [11], Ganesh, et al. pro-
posed a file system based solution to reduce disk array
energy consumption. The connection servers we study
in this paper have little disk IO load. Our focus is
on provisioning entire servers. In [20], Pinheiro et al.
presented a simple policy to turn cluster nodes on and
off dynamically. Chase et al. [3] allocated computing
resources based on an economic approach, where ser-
vices “bid” for resources as a function of required per-
formance, and the system continuously monitors load
and allocates resources based on its utility. Heath et
al. [14] studied Web service on-off strategies in the con-
text of heterogeneous server types, although focusing on
only short transactions. Various other work using adap-
tive policies to achieve power efficiency have been pro-
posed. Abdelzaher et al. in [1] employed a Proportional-
Integration (PI) controller for an Apache Web server
to control the assigned processes (or threads) and to
meet soft realtime latency requirements. Other work
based on feedback and/or optimal control theory includes
[6, 5, 23, 22, 16, 15], which attempt to dynamically op-
timize for energy, resources and operational costs while
meeting performance-based SLAs.

In contrast to previous work, we consider and de-
sign load dispatching and dynamic provisioning schemes
together since we observe that, in the context of con-

� � �� � � �� � �� � � 	 � � � � �� � � � � � �� � � 	 � � � � � � � � � � � �� � � 	 � �

 � � � � � � � � � 	 � � �� � �
 � � � � � � � � � � � �� � � � � � �� � � 	 � � � � � � � � �� � � � � � � � � 	 � � �� � � � � � � � � 	 � � �

Figure 1: Connection service architecture.

nection servers, they have subtle interaction with each
other. These two components work together to control
power consumption and performance levels. Moreover,
we adopt forecast-based and hysteresis-based provision-
ing to bear with slow rebooting of servers.

3 Connection Servers Background

Connection servers are essential for many Internet ser-
vices. In this paper, we consider dedicated connection
servers, each of which runs only one connection service
application. However, the discussion can be generalized
to servers hosting multiple services as well.

3.1 Connection Service
Figure 1 shows an example of the front door architecture
for connection intensive Internet applications. Users,
through dedicated clients, applets, or browser plug-ins,
issue login requests to the service cloud. These login re-
quests first reach a dispatch server (DS), which picks a
connection server (CS) and returns its IP address to the
client. The client then directly connects to the CS. The
CS authenticates the user and if succeeded, a live TCP
connection is maintained between the client and the CS
until the client logs off. The TCP connection is usually
used to update user status (e.g. on-line, busy, off-line,
etc.) and to redirect further activities such as chatting
and multimedia conferencing to other back-end servers.

At the application level, each CS is subject to two ma-
jor constraints: the maximum login rate and the maxi-
mum number of sockets it can host. The new user lo-
gin rate L is defined as the number of new connection
requests that a CS processes in a second. A limit on
login rate Lmax is set to protect CS and other back-
end services. For example, Messenger uses Windows
Live ID (a.k.a. Passport) service for user authentication.
Since Live ID is also shared by other Microsoft and non-
Microsoft applications, a service-level agreement (SLA)

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 339

0 20 40 60 80 100 120 140 160
200

400

600

800

1000

1200

1400

Time in hours

Lo
gi

n
ra

te
 (p

er
 s

ec
on

d)

Login Rate
Connections

0

1

2

3

4

5

Nu
m

be
r o

f c
on

ne
ct

io
ns

 (m
illi

on
s)

Figure 2: One week of load pattern (Monday to Sunday)
from Windows Live Messenger connection servers

is set to bound the number of authentication requests that
Messenger can forward. In addition, a new user login is
a CPU intensive operation on the CS, as we will show
in Section 3.5. Having Lmax protects the CS from being
overloaded or entering unsafe operation regions.

In terms of concurrent live TCP connections, a limit
Nmax is set on the total number of sockets for each CS
for two reasons: the memory constraints and the fault tol-
erance concerns. Maintaining a TCP socket is relatively
cheap for the CPU but requires a certain amount of mem-
ory. At the same time, if a CS crashes, all its users will
be disconnected. As most users set their clients to auto-
matically reconnect when disconnected, a large number
of new login requests will hit the servers. Since there is a
limit on new login rate, not all reconnect requests can be
processed in a short period of time, creating undesirable
user experiences.

3.2 Load Patterns
Popular connection servers exhibit periodic load patterns
with large fluctuation, similar to those reported in [6].

Figure 2 shows a pattern of the login rates and total
number of connections to the Messenger service over the
course of a week. Only a subset of the data, scaled to 5
million connections on 60 connection servers, is reported
here. It is clear that the number of connections fluctu-
ates over day and night times. In fact, for most days, the
amount of fluctuation is about 40% of the correspond-
ing peak load. Some geo-distributed services show even
larger fluctuation. The login rates for the same time pe-
riod are scaled similarly. It is worth noting that the login
rate is noisier than the connection count.

Since the total number of servers must be provisioned
to handle peak load to guarantee service availability, it
is a “overkill” when the load is low. If we can adapt
server resource utilization accordingly, we should be able
to save substantial energy. In addition, the smooth pat-
tern indicates that the total number of connections is pre-
dictable. In fact, if we look at the pattern over weeks, the

similarity is more significant. Since turning on servers
takes time, the prediction will help us act early.

3.3 Power Model
Understanding how power are consumed by connection
servers provides us insights on energy saving strategies.
Connection servers are CPU, network, and memory in-
tensive servers. There is almost no disk IO in normal op-
eration, except occasional log writing. Since memory is
typically pre-allocated to prevent run-time performance
hit, the main contributor to the power consumption vari-
ations of a server is the CPU utilization.

We measured power consumption of typical servers
while changing the CPU utilization by using variable
workloads. Figure 3 shows the power consumption on
two types of servers, where the horizontal axis indicates
the average CPU utilization reported by the OS, and the
vertical axis indicates the average power consumption
measured at the server power plug.

Sleep Idle 20% 40% 60% 80% 100%
0

20

40

60

80

100

120

140

160

180

CPU Utilization

Po
we

r C
on

su
mp

tio
n (

Wa
tts

)

Intel(R) 2CPU 2.4GHz
Intel(R) 2CPU 3GHz

Figure 3: Power consumption v.s. CPU utilization

We observe two important facts. First, the power con-
sumption increases almost linearly with CPU utilization,
as reported in other studies [9]. Second, an idle server
consumes up to 66% of the peak power, because even
when a server is not loaded with user tasks, the power
needed to run the OS and to maintain hardware peripher-
als, such as memory, disks, master board, PCI slots, and
fans, is not negligible. Figure 3 implies that if we pack
connections and login requests to a portion of servers,
and keep the rest of servers hibernating (or shutting-
down), we can achieve significant power savings. How-
ever, the consolidation of login requests results in high
utilization of those servers, which may downgrade per-
formance and user experiences. Hence, it is important to
understand the user experience model before we address
power saving schemes for large-scale Internet service.

3.4 User Experiences
In the context of connection servers, we consider the fol-
lowing factors as user experience metric.
1. Service Not Available (SNA) Error. Service unavail-
able is an error message returned to the client software
when there is not enough resource to handle user login.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association340

This happens when DS cannot find a CS that can take
the new login request, or when a CS receives a login re-
quest, it observes that its login rate or number of existing
sockets exceeds corresponding limits.
2. Server-Initiated Disconnection (SID). A disconnec-
tion happens when a live user socket is terminated be-
fore the user issues a log off request. This can be caused
by network failures between the client and the server, by
server crash, or by the server sending a “reconnect” re-
quest to the client. Since network failure and server crash
are not controlled by the server software, we use server-
initiated disconnection (SID) as the metric for short term
user experience degradation. SID is usually a part of con-
nection server protocol, like MSNP [18], so that a server
can be shut down gracefully (for software update for ex-
ample). SID can be handled transparently by the client
software so that it is un-noticeable to users. Neverthe-
less, some users, if they disable automated reconnect or
are in active communication with their buddies, may ob-
serve transient disconnections.
3. Transaction Latency. Research on quality of ser-
vices, e.g. [21, 6], often uses transaction delays as a met-
ric for user experiences. However, after we examined
connection server transactions, including user login, au-
thentication, messaging redirection, etc., we observe no
direct correlation between transaction delays and server
load (in terms of CPU, number of connection, and login
rate). The reason is that connection services are not CPU
bounded. The load of processing transactions is well un-
der control when the number of connection and the login
rates are bounded. So, we will not consider transaction
delays as a quality of service metric in this paper.

From this architectural description, it is clear that the
DS and its load dispatching algorithm play a critical role
in the shape of the load in connection servers. This moti-
vates us to focus on the interaction between CS and DS,
the provisioning algorithms and load dispatching algo-
rithms to achieve power saving while maintaining user
experiences in terms of SNA and SID.

3.5 Performance Model
To characterize the effect of load dispatching on service
loads, it is important to understand the relationship be-
tween application level parameters such as user login and
physical parameters such as CPU utilization and power
consumption. In other words, we need to identify the
variables that significantly affect CPU and power. This
would enable us to control CPU usage and power con-
sumption of the servers by controlling these variables.

We use a workload trace of Messenger service to iden-
tify the key variables affecting CPU usage and power.
The trace contains 32 different performance counters
such as login rate, connection count, memory usage,
CPU usage, connection failures, etc. of all production

residuals

Fr
eq
ue
nc
y

−5 0 5 10 15

0
10
00

30
00

50
00

Figure 4: Residual distribution of performance model.

Messenger servers, over a period of 45 days. To keep
the data collection process lightweight, aggregated val-
ues over 1 second are recorded every 30 seconds.

Given time series data of all available variables, we
intend to identify important variables affecting the re-
sponse variable (CPU utilization) and build a model of
the response variable. Our statistical modeling method-
ology includes various exploratory data analysis, bi-
direction model selection, diagnostic procedures and per-
formance validation. Readers can refer to our technical
report [4] for details.

The final model obtained from our methodology is:

Û = 2.84 × 10−4 · N + 0.549 · L − 0.820 (1)

where Û denotes the estimate of the CPU utilization
percentage—the conditional mean in linear models, N is
the number of active connections, and L is login rate. For
example, given 70,000 connections and 15 new logins
per second, the model estimates the CPU utilization to
be 27.3%. The residual (error) distribution of this model
can be seen from Figure 4. It shows that for 91.4% per-
cent of cases, the observed values are within the range
from −5 to 5 of the estimates from the model. Refer-
ring to the previous example, the actual CPU utilization
falls in between 22.30 and 32.30 with probability 0.914.
About 7.6% cases for which the model makes underesti-
mation have larger residuals from 5 to 15. The remaining
1% cases have residuals less than -5.

We use 2 weeks of data to train the model, and an-
other 4 weeks for validation. The validation demon-
strates that the distributions of testing errors are consis-
tent with the distribution of training errors, concluding
that CPU usage (and hence power consumption) of Mes-
senger servers can reasonably be modeled with login rate
(L) and number of active connections (N). Moreover,
for a given maximum tolerable CPU utilization (defined
by the Messenger operations group), the model also pro-
vides Nmax and Lmax, maximum tolerable values for N
and L. Our provisioning and load dispatching algorithms
therefore consider only these two variables and try to en-
sure that N < Nmax and L < Lmax, while minimizing
total energy consumption.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 341

4 Energy-Aware Server Provisioning

As we explained in the previous section, there are two
aspects of the connection load, namely the login rate and
number of connections. Performance modeling in Sec-
tion 3.5 validates the operation practice of setting lim-
its Lmax and Nmax on individual servers for purposes of
server provisioning and load dispatching. In this section,
we discuss server provisioning methods that take into ac-
count of these two hard limits.

Let Ltot(t) and Ntot(t) denote the total login rate and
total number of connections at any given time t. Ideally
we would calculate the number of servers needed as

K(t) = max

{⌈

Ltot(t)

Lmax

⌉

,

⌈

Ntot(t)

Nmax

⌉}

. (2)

Here the notation dxe denotes the smallest integer that is
larger than or equal to x. The number K(t) is calculated
on a regular basis, for example, every half an hour.

There are two problems with this simple formula.
First, K(t) usually needs to be calculated ahead of time
based on forecasted values of Ltot(t) and Ntot(t), which
can be inaccurate. This is especially the case if we need
to turn on (cool start) servers to accommodate anticipated
load increase. The lead time from starting the server to
getting it ready is considered significant, with new lo-
gins arriving at a fast rate. Waking up servers in stand-by
mode takes less time, but uncertainty still exists because
of short-period fluctuation of the load.

Another problem of this simple calculation is less ob-
vious but more critical. Using Equation (2) assumes that
we can easily dispatch load to fill each server’s capac-
ity, say, almost instantaneously. However, this is not the
case here because of the dynamic relationship between
login rate and number of connections. For example,
when a new server is turned on, we cannot expect it to
take the full capacity of Nmax connections in short time.
The number of connections on a server can only increase
gradually, constrained by the bound Lmax on login rate.
(For Messenger connection servers, it takes more than an
hour to fill a server from empty.) The dynamic behavior
of the system, when coupled with a load dispatching al-
gorithm, requires additional margin in calculating K(t).

A natural idea to fix both problems is to add extra mar-
gins in server provisioning:

K(t) = max

{⌈

γL

Ltot(t)

Lmax

⌉

,

⌈

γN

Ntot(t)

Nmax

⌉}

, (3)

where the multiplicative factors satisfy γL > 1 and
γN > 1. It remains the problem of how to determine
these two factors. If they are chosen too big, we have
over provisioning, which leads to inefficiency in saving
energy; if they are chosen too small, we end up with un-
der provisioning, which compromises quality of service.

Choosing the right margin factors requires careful
evaluation of the forecasting accuracy, as well as detailed
analysis of the dynamic behavior of the load dispatching
algorithm. We will split the factors as

γL = γfrc
L γdyn

L , γN = γfrc
N γdyn

N

where the superscript “frc” denotes forecasting factors
that are used to compensate for forecasting errors; the
superscript “dyn” denotes dynamic factors to compen-
sate for dynamic behaviors caused by the load dispatch-
ing algorithm used. In the rest of this section, we focus
on determining the forecasting factors. The dynamic fac-
tors will be discussed in detail in Section 5, along with
the description of different load dispatching algorithms.

4.1 Hysteresis-based provisioning

We first consider a simple provisioning method based on
hysteresis switching, without explicit forecasting.

At the beginning of each scheduling interval, say
time t, we need to calculate K(t + 1), the number of
servers that will be needed at time t + 1, and sched-
ule servers to be turned on or off accordingly. The in-
formation we have at time t are the observed values of
Ltot(t) and Ntot(t). Using Equation (2) (or (3), but only
with the dynamic factors), we can estimate the number
of servers needed at time t. Call this estimated number
K̂(t). By comparing it with the actual number of active
servers K(t), we determine K(t + 1) as follows:

K(t+1) =

K(t), if γlowK̂(t) ≤ K(t) ≤ γhighK̂(t)
⌈

1
2 (γlow + γhigh) K̂(t)

⌉

, otherwise.

Here the two hysteresis margin factors γlow and γhigh

satisfy γhigh > γlow > 1.
This method does not use load forecasting explicitly.

However, in order to choose appropriate values for the
two hysteresis parameters γlow and γhigh, we need to
have good estimate of how fast the load ramps up and
down based on historical data. This method is especially
useful when the load variations are hard to predict, for
example, when special events happen or for holidays that
we do not have enough historical data to give accurate
forecast.

4.2 Forecast-based provisioning

The load of connection servers demonstrates a so-called
seasonal characteristic that is common for many Internet
services, electrical power networks, and many economic
time series. In particular, it has periodic components in
days, weeks, and even months, as well as a long-term
growth trend. For the purpose of server provisioning, it

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association342

suffices to consider short-term load forecasting — fore-
casting over a period from half an hour to several hours.
(Midterm forecasting is for days and weeks, and long-
term forecasting is for months and years.)

There is extensive literature on short-term load fore-
casting of seasonal time series (see, e.g., [12, 2]). We de-
rive a very simple and intuitive algorithm in Section 4.3,
which works extremely well for the connection server
data. To the best of our knowledge, it is a new addition
to the literature of short-term load forecasting. On the
other hand, however, the following discussion applies no
matter which forecasting algorithm is used, as long as its
associated forecast factors are determined, as we will do
in Section 4.3 for our algorithm.

If the forecasting algorithm anticipates increased load
Ltot(t + 1) and Ntot(t + 1) at time t + 1, we can simply
determine K(t+1), the number of servers needed, using
equation (3). The only thing we need to make sure is that
new servers are turned on early enough to take the in-
creased load. This usually is not a problem, for example,
if we do forecasting over half an hour into the future.

More subtleties are involved in turning off servers. If
the forecasted load will decrease, we will need less num-
ber of servers. Simply turning off one or more servers
that are fully loaded will cause a sudden burst of SIDs.
When disconnected users try to re-login at almost the
same time, an artificial surge of login requests is created,
which will stress the remaining active servers. When
the new login requests on the remaining servers exceed
Lmax, SNA errors will be generated.

A better alternative is to schedule draining before turn-
ing a server off. More specifically, the dispatcher iden-
tifies servers that have the least amount of connections,
and schedules them to connect to other servers at a con-
trolled much slower pace that will not generate any sig-
nificant burden for remaining active servers.

In order to reduce the number of SIDs, we can also
starve the servers (simply not feeding it any new logins)
for a period of time before doing scheduled draining or
shutting it down. For Messenger servers, the natural de-
parture rate caused by normal user logoffs results in an
exponential decay of the number of connections, with a
time constant slightly less than an hour, meaning that the
number of connections on a server decreases by half ev-
ery hour. A two-hour starving time leads to number of
SIDs less than a quarter of that without starving. The
trade-off is that adding starving time reduces efficiency
in saving energy.

4.3 Short-term load forecasting

Now we present our method for short-term load forecast-
ing. Let y(t) be the stochastic periodic time series under
consideration, with a specified time unit. It can repre-

sent Ltot(t) or Ntot(t) measured at regular time inter-
vals. Suppose the periodic component has a period of T
time units. We express the value of y(t) in terms of all
previous measurements as

y(t) =
n

∑

k=1

aky(t − kT) +
m

∑

j=1

bj∆y(t − j),

∆y(t − j) = y(t − j) −
1

n

n
∑

k=1

y(t − j − kT).

There are two parts in the above model. The part with
parameters ak does periodic prediction — it is an autore-
gression model for the value of y over a period of T .
The assumption is that the values of y at every T steps
are highly correlated. The part with parameters bj gives
local adjustment, meaning that we also consider corre-
lations between y(t) and the values immediately before
it. The integers n and m are their orders, respectively.
We call this a SPAR (Sparse Periodic Auto-Regression)
model. It can be easily extended to one with multiple
periodic components.

For the examples we will consider, short-term fore-
casting is done over half an hour, and we let the period T
be a week, which leads to T = 7 × 24 × 2 = 168 sam-
ples. In this case, the autoregression part (with parame-
ters ak) of the SPAR model means, for example, the load
at 9am this Tuesday is highly correlated and can be well
predicted from the loads at 9am of previous Tuesdays.
The local adjustment part (with parameters bj) reflects
the immediate trends predicted from values at 8:30am,
8:00am, and so on, on the same day.

We have tried several models with different orders n
and m, but found that the coefficients ak, bj are very
small for k > 4 and j > 2, and ignoring them does not
reduce the forecasting accuracy by much. So we choose
the orders n = 4 and m = 2 to do load forecasting in
our examples. We used five weeks of data to estimate the
parameters ak and bj (by solving a simple least-squares
fitting problem). Then we use these data and estimated
parameters to forecast loads for the following weeks.

Figure 5 shows the results of using this forecasting
model. The figures show the forecasted values (every 30
minutes) plotted against actually observations (measured
every 30 seconds). Note that the observed login rates
(measured every second and recorded every 30 seconds)
appear to be very noisy and have lots of spikes. Using
this model, we can reasonably forecast the smooth trend
of the curve. The spikes are hard to predict, because they
are mostly caused by irregular server unavailability or
crashes that result in re-login bursts.

We computed the standard deviations of the relative
errors (L̂(t) − L(t))/L(t) and (N̂(t) − N(t))/N(t):

σL = 0.039, σN = 0.006.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 343

0 20 40 60 80 100 120 140 160
2

2.5

3

3.5

4

4.5

5
x 106

Observed value
Forecasted value

Time (hours)

N
t
o
t
(t

)

(a) Number of connections over a week.

0 5 10 15 20
2

2.5

3

3.5

4

4.5

5
x 106

Observed value
SPAR model forecast
1st−derivative forecast

Time (hours)

N
t
o
t
(t

)

(b) Number of connections on Monday.

0 20 40 60 80 100 120 140 160
200

300

400

500

600

700

800

900

1000

Observed value
Forecasted value

Time (hours)

L
t
o
t
(t

)

(c) Login rates over a week.

0 5 10 15 20
200

300

400

500

600

700

800

900

1000

Observed value
SPAR model forecast
1st−derivative forecast

Time (hours)

L
t
o
t
(t

)
(d) Login rates on Monday.

Figure 5: Short-term load forecasting.

We also compared it with some simple strategies for
short-term load forecasting without using periodic time
series models. For example, one idea is to predict the
load at the next observation point based on the first-order
derivative of the current load and the average load at the
previous observation point (e.g., Heath et al. [14]). This
approach leads to the standard deviations σL = 0.079
and σN = 0.012, which are much worse than the results
of our SPAR model (see Figure 5 (b) and (d)). We expect
that such simple heuristics would work well for smooth
trend and very short forecasting intervals. Here our time
series can be very noisy (especially the login rates), and a
longer forecasting interval is prefered because we do not
want to turn on and off servers too frequently. In particu-
lar, the SPAR model will work reasonably well for fore-
casting intervals of a couple of hours (and even longer),
for which derivative-based heuristics will no longer make
sense.

Given the standard deviations of the forecasting errors
using the SPAR model, we can assign the forecasting fac-
tors as

γfrc
L = 1 + 3σL ≈ 1.12,

γfrc
N = 1 + 3σN ≈ 1.02.

(4)

These forecast factors will be substituted into Equa-
tion (3) to determine the number of servers required. To
do so, we also need to specify a load dispatching algo-
rithm and its associated dynamic factors, which we ex-
plain in the next section.

5 Load Dispatching Algorithms

In this section, we present algorithms that decide how
large a share of the incoming login requests should be
given to each server. We describe two different types
of algorithms — load balancing and load skewing, and
determine their corresponding dynamic factors γdyn

L and
γdyn

N . These two algorithms lead to different load distri-
butions on the active servers, and have different impli-
cations in terms of energy saving and number of SIDs.
In order to present them, we first need to establish a dy-
namic model of the load-dispatching system.

5.1 Dynamic system modeling

We consider a discrete-time model, where t denotes time
with a specified unit. The time unit here is usually much
smaller than the one used for load forecasting; for ex-
ample, it is usually on the order of a few seconds. Let
K(t) be the number of active servers during the interval
between time t and t + 1. Let Ni(t) denote the number
of connections on server i at time t, and Li(t) and Di(t)
be the number of logins and departures, respectively, be-
tween time t and t+1 (see Figure 5.1). The dynamics of
the individual servers can be expressed as

Ni(t + 1) = Ni(t) + Li(t) − Di(t)

for i = 1, . . . ,K(t). This first-order difference equation
captures the integration relationship between the login

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association344

Ltot(t)

Li(t)

Ni(t)

Di(t)

1 2 i K(t)

load dispatcher

t t+1time

Ni(t) Ni(t+1)

Li(t), Di(t)

Figure 6: Load balancing of connection servers.

rates Li(t) and the number of connections Ni(t). The
number of departures Di(t) usually is a fraction of Ni(t),
which varies a lot from time to time.

The job of the dispatcher is to dispatch the total incom-
ing login request, Ltot(t), to the available K(t) servers.
In other words, it determines Li(t) for each server i. In
general, a dispatching algorithm can be expressed as

Li(t) = Ltot(t)pi(t), i = 1, . . . ,K(t)

where pi(t) is the portion or fraction of the total login
requests assigned to the server i (with

∑

i pi(t) = 1). For
a randomized algorithm, pi(t) stands for the probabilities
with which the dispatcher distributes the load.

5.2 Load balancing

Load balancing algorithms try to make the numbers of
connections on the servers the same, or as close as possi-
ble. The simple method of round-Robin load-balancing,
i.e., always letting pi(t) = 1/K(t), apparently does not
work here. By setting a uniform login rates for all the
servers, regardless of the fluctuations of departure rates
on individual servers (an open-loop strategy), it leaves
the number of connections on the servers diverge with-
out proper feedback control.

There are many ways to make load balancing work for
such a system. For example, one effective heuristic is to
apply round-Robin only to a fraction of the servers that
have relatively small number of connections. In this pa-
per we describe a proportional load-balancing algorithm,
where the dispatcher assigns the following portion of to-
tal loads to server i:

pi(t) =
1

K(t)
+ α

(

1

K(t)
−

Ni(t)

Ntot(t)

)

(5)

where α > 0 is a parameter that can be tuned to influ-
ence the dynamic behavior of the system. Intuitively,
this algorithm assigns larger portions to servers with rela-
tively small number of connections, and smaller portions
to servers with relatively large number of connections.
Using the fact Ntot(t) =

∑K(t)
i=1 Ni(t), we always have

∑K(t)
i=1 pi(t) = 1. However, we notice that pi(t) can be

negative. In this case, the dispatcher actually take load
off from server i instead of assigning new load to it. This
can be done by either migrating connections internally,
or by going through the loop of disconnecting some users
and automatic re-login onto other servers.

This algorithm leads to a very interesting property of
the system: every server has the same closed-loop dy-
namics, only with different initial conditions. All the
servers will behave exactly the same as time goes on. The
only exceptions are the newly turned-on servers which
have zero initial number of connections. Turning off
servers does not affect others if the load are reconnected
according to the same proportional rule in Equation (5).
Detailed analysis of the properties of this algorithm is
given in [4].

Now let’s examine carefully the effect of the param-
eter α. For small values of α, the algorithm maintains
relatively uniform login rates to all the servers, so it can
be very slow in driving the number of connections to uni-
form. The extreme case of α = 0 (which is disallowed
here) would correspond to round-Robin. For large val-
ues of α, the algorithm tries to drive the number of con-
nections quickly to uniform, by relying on disparate lo-
gin rates across servers. In terms of determining γdyn

L ,
we note that the highest login rate is always assigned to
newly turned-on servers with Ni(t) = 0. In this case,
pi(t) = (1 + α)/K(t). By requiring pi(t)Ltot(t) ≤
Lmax, we obtain K(t) ≥ (1 + α)Ltot(t)/Lmax. Com-
paring with Equation (3), we have γdyn

L = 1 + α.

The determination of γdyn
N is more involved. The de-

tails are omitted due to space constraints (but can be
found in [4]). Here we simply list the two factors:

γdyn
L = 1 + α, γdyn

N =
1 + α

r + α
(6)

where r = mint Dtot(t)/Ltot(t), the minimum ratio
among any time t between Dtot(t) and Ltot(t) (the total
departures and total logins between time t and t + 1). In
practice, r is estimated based on historical data.

In summary, tuning the parameter α allows us to trade-
off the two terms appearing in the formula (3) for de-
termining number of servers needed. Ideally, we shall
choose an α that makes the two terms approximately
equal for typical ranges of Ltot(t) and Ntot(t), that is,
makes the constraints tight simultaneously for both max-
imum login rate and maximum number of connections.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 345

5.3 Load skewing

The principle of load skewing is exactly the opposite of
load balancing. Here new login requests are routed to
busy servers as long as the servers can handle them. The
goal is to maintain a small number of tail servers that
have small number of connections . When user login
requests ramp up, these servers will be used as reserve to
handle login increases and surge, and give time for new
servers to be turned on. When user login requests ramp
down, these servers can be slowly drained and shut down.
Since only tail servers are shut down, the number of SIDs
can be greatly reduced, and no artificial surge of re-login
requests or connection migrations will be created.

There are many possibilities to do load skewing. Here
we describe a very simple scheme. In addition to the hard
bound Nmax on the number of connections a server can
take, we specify a target number of connections Ntgt,
which is slightly smaller than Nmax. When dispatching
new login requests, servers with loads that are smaller
than Ntgt and closest to Ntgt are given priority. Once a
server’s number of connections reaches Ntgt, it will not
be assigned new connections for a while, until it drops
again below Ntgt due to gradual user departures.

More specifically, let 0 < ρ < 1 be a give parame-
ter. At each time t, the dispatcher always distributes new
connections evenly (round-Robin) to a fraction ρ of all
the available servers. Let K(t) be the number of servers
available, it will choose the dρK(t)e servers in the fol-
lowing way. First, the dispatcher partitions the set of
servers {1, 2, . . . ,K(t)} into two subsets:

Ilow(t) = {i | Ni(t) < Ntgt}

Ihigh(t) = {i | Ni(t) ≥ Ntgt}

Then it chooses the top dρK(t)e servers (those with the
highest number of connections) in Ilow(t) . If the num-
ber of servers in Ilow(t) is less than dρK(t)e, the dis-
patcher has two choices. It can either distribute load
evenly only to servers in Ilow(t), or it can include the
bottom dρK(t)e − |Ilow(t)| servers in Ihigh(t). In the
second case, the number Ntgt is set further away from
Nmax to avoid number of connections exceeding Nmax

(i.e., SNA errors) within a short time.
This algorithm will lead to a skewed load distribution

across the available servers. Most of the active servers
should have number of connections close to Ntgt, except
a small number of tail servers. Let the desired number of
tail servers be Ktail. The dynamic factors for this algo-
rithm can be easily determined as

γdyn
L =

1

ρ
, γdyn

N = 1 +
Ktail

mint Ntot(t)/Ntgt
. (7)

These factors can be substituted into equation (3) to cal-
culate the number of servers needed K(t), where it can

be combined with either hysteresis-based or forecast-
based server provisioning.

5.3.1 Reactive load skewing

The load skewing algorithm is especially suitable to re-
duce the number of SIDs when turning off servers. To
best utilize load skewing, we also develop a heuristic
called reactive load skewing (RLS). In particular, it is
a hysteresis rule to control the number of tail servers.
For this purpose, we need to specify another number
Ntail. Servers with number of connections less than
Ntail are called tail servers. Let Ktail(t) be the num-
ber of tail servers, and Klow < Khigh be two thresh-
olds. If Ktail(t) < Klow, then d(Khigh − Klow)/2e −
Ktail(t) servers are turned on. If Ktail(t) > Khigh, then
Ktail(t) − Khigh servers are turned off. The tail servers
have very low active connections, so turning off one or
even several of them will not create artificial reconnec-
tion spike. This on-off policy is executed at the server
provisioning time scale, for example, every half an hour.

6 Evaluations

In this section, we compare the performance of differ-
ent provisioning and load dispatching algorithms through
simulations based on real traffic traces.

6.1 Experimental setup
We simulate a cluster of 60 connection servers with real
data traces of total connected users and login rates ob-
tained from production Messenger connection servers (as
described in Section 3.5). The data traces are scaled ac-
cordingly to fit on 60 servers; see Figure 2. These 60
servers are treated as one cluster with a single dispatcher.

The server power model is measured on an HP server
with two dual-core 2.88GHz Xeon processors and 4G
memory running Windows Server 2003. We approxi-
mate server power consumption (in Watts) as

P =

{

150 + 0.75 × U, if active
3, if stand-by

(8)

where U is the CPU utilization percentage from 0 to 100
(see Figure 3). The CPU utilization is modeled using the
relationship derived in Section 3.5, in particular equa-
tion (1). CPU utilization is bounded within 5 to 100 per-
cent when the server is active.

The limits on connected users and login rate are set by
Messenger stress testing:

Nmax = 100, 000, Lmax = 70/sec.

Also through testing, the server’s wake-up delay, defined
as the duration from a message is sent to wake up the
server till the server successfully joins the cluster, is 2

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association346

minutes. The draining speed, defined as the number of
users disconnected once a server decide to shut down, is
100 connections per second. This implies that it takes
about 15 minutes to drain a fully loaded server.

6.2 Forecast vs. hysteresis provisioning
We first compare the performance of no provisioning,
forecast-based and hysteresis-based provisioning, with a
common load balancing algorithm.

• No provisioning with load balancing (NB). NB
uses all the 60 servers. It implements the load bal-
ancing algorithm in Section 5.2 with α = 1.

• Forecast provisioning with load balancing (FB).
FB uses the load balancing algorithm in Section 5.2
with α = 1 and the load forecasting algorithm in
Section 4.3. The number of servers K(t) are calcu-
lated using equation (3) with the factors

γfrc
L = 1.12, γfrc

N = 1.02 from equation (4),

γdyn
L = 2, γdyn

N = 1.05 from equation (6).

In calculating γdyn
N , we used the estimation r = 0.9

obtained from historical data.

• Hysteresis provisioning with load balancing
(HB). HB uses the same load balancing algorithm,
but with the hysteresis-based provisioning method
in Section 4.1. In calculating K(t), it uses the same
dynamic factors as FB. There is no forecast factors
for HB. Instead, we tried three pairs of hysteresis
margins (γlow, γhigh):

(1.05, 1.10), (1.04, 1.08), (1.04, 1.06).

denoted as HB(5/10), HB(4/8) and HB(4/6).

The simulation results based on two days of real data
(Monday and Tuesday in Figure 2) are listed in Table 1.
The number of servers used are shown in Figure 7. These
results show that forecast-based provisioning leads to
slightly more energy savings than hysteresis-based pro-
visioning. With the hysteresis margins getting tight,
the difference in energy savings becomes even smaller.
However, this comes with a cost of service quality degra-
dation, as shown by the increased numbers of SNA errors
caused by smaller hysteresis margins.

Algorithm Energy (kWh) Saving SNA
NB (α = 1) 478 — 0
FB (α = 1) 331 30.8% 0
HB(5/10) 344 28.0% 0
HB(4/8) 341 28.6% 7,602
HB(4/6) 338 29.2% 512,531

Table 1: Comparison of provisioning methods. Energy
savings are reduced percentages with respect to NB.

0 8 16 24 32 40 48
25

30

35

40

45

50

55

60

FB (α=1)
HB(5/10)
HB(4/8)

Time (hours)

N
um

be
r

of
ac

tiv
e

se
rv

er
s

Figure 7: Number of servers used by FB and HB.

6.3 Load balancing vs. load skewing

In addition to energy saving, the number of SIDs is a
another important performance metric. We evaluate both
aspects on FB and the following algorithms:

• Forecast provisioning with load balancing and
Starving (FBS). FBS uses the same parameters as
FB, with the addition of a period of starving time
before turning off servers. We denote the starving
time by S. For example, S = 2 means starving for
two hours before turning off.

• Forecast provisioning with load skewing (FS). FS
uses the same forecast provisioning method as be-
fore, combined with the load skewing algorithm in
Section 5.3 with parameters ρ = 1/2 and Ntgt =
98, 000. Its associated dynamic factors are obtained
from Equation (7): γdyn

L = 2 and γdyn
N = 1.2,

where Ktail = 6 is used in calculating γdyn
N .

• Forecast provisioning with load skewing and
starving (FSS). FSS uses the same algorithms and
parameters as FS, with the addition of a starving
time S hours before turning off servers.

• Reactive load skewing (RLS). RLS uses the load
skewing algorithm with the same ρ and Ntgt as FS.
Instead of load forecasting, it uses the hysteresis on-
off scheme in Section 5.3.1 with parameters Ntail =
Nmax/10 = 10, 000, Klow = 2 and Khigh = 6.

Simulation results of some typical scenarios, labeled
as (a),(b),(c),(d),(e),(f), are shown in Table 2 and Fig-
ure 8. Comparing FBS with FB and FSS with FS, we
see that adding a two-hour starving time before turning
off servers leads to significant reduction in the number of
SIDs, and mild increase in energy consumption.

The results in Table 2 show a clear tradeoff between
energy consumption and number of SIDs. With the same
amount of starving time, load balancing uses less energy
but generates more SIDs, and load skewing uses more
energy but generates less SIDs. In particular, load skew-
ing without starving has less number of SIDs than load

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 347

0 8 16 24 32 40 48
25

30

35

40

45

50

55

60

(b) FB
(c) FBS
(f) RLS

Time (hours)

N
um

be
r

of
ac

tiv
e

se
rv

er
s

(a) Number of servers used by FB, FBS and RLS.

0 8 16 24 32 40 48
25

30

35

40

45

50

55

60

(b) FB
(d) FS
(e) FSS

Time (hours)

N
um

be
r

of
ac

tiv
e

se
rv

er
s

(b) Number of servers used by FB, FS and FSS.

Figure 8: Number of servers by different algorithms.

balancing with starving for two hours. RLS with a rela-
tively small Ntail (say around 10, 000) has less number
of SIDs even without starving. To give a better perspec-
tive of the SID numbers, we note that the total number of
logins during these two days is over 100 millions (again,
this is the number scaled to 60 servers).

6.3.1 Load profiles

To give more insight into different algorithms, we show
their load profiles in Figure 9. Each vertical cut through
the figures represents the load distribution (sorted num-
ber of connections) across the 60 servers at a particular
time. For NB, all the loads are evenly distributed on the
60 servers, so each vertical cut has uniform load distri-
bution, and they vary together to follow the total load
pattern. Other algorithms use server provisioning to save
energy, so each vertical cut has a drop to zero at the num-
ber of servers they use. The contours of different number
of connections are plotted. The highest contour curves
show the numbers of servers used (those with nonzero
connections), cf. Figure 8.

For FB, the contour lines are very dense (sudden drop
to zero), especially when the total load is ramping down
and servers need to be turned off. This means servers
with almost full loads have to be turned off, which causes
lots of SIDs. Adding starving time makes the contour
lines of FBS sparser, which corresponds to reduced num-

Algorithms and Energy Saving Number
Parameters (kWh) of SIDs

(a) NB 478 — 0
(b) FB (α=1) 331 30.8% 3,711,680
(c) FBS (α=1, S=2) 343 28.2% 799,120
(d) FS (ρ=0.5) 367 23.3% 597,520
(e) FSS (ρ=0.5, S=2) 381 20.2% 115,360
(f) RLS (ρ=0.5, 375 21.5% 48,160

Ntail =10, 000)

Table 2: Comparison of load dispatching algorithms. All
algorithms in this table have zero SNA errors.

ber of SIDs. Load skewing algorithms (FS, FSS and
RLS) intentionally create tail servers, which makes the
contour lines much sparser. While they consume a bit
more energy, the number of SIDs are dramatically re-
duced by turning off only tail servers.

6.3.2 Energy-SID tradeoffs

To unveil the complete picture of the energy-SID trade-
offs, we did extensive simulation of different algorithms
by varying their key parameters.

Not all possible parameter variations give meaningful
results. For example, if we choose ρ too small for FSS
or RLS (e.g., ρ ≤ 0.4 for this particular data trace), sig-
nificant amount of SNA errors will occur because small
ρ limits the cluster’s capability of taking high login rates.
The number of SNA errors will also increase signifi-
cantly if we set Ntail ≥ 40, 000 in RLS. For fair com-
parison, all scenarios shown in Figure 10 give less than
1000 SNA errors (due to rare spikes in login rates).

For FBS, the three curves correspond to the param-
eters α = 0.2, 1.0, and 3.0. Each curve is generated
by varying the starving time S from 0 to 8 hours, evalu-
ated at every half-an-hour increment (labeled as crosses).
Within the figure, it only shows parts of the curves to al-
low better visualization of other curves. The right-most
crosses on each curve correspond to S = 2 hours, and
the number of SIDs decreases as S increases.

For FSS, the three curves correspond to the parameters
ρ = 0.4, 0.5, 0.9. Each curve is generated by varying the
starving time S from 0 to 5 hours, evaluated at every half
an hour (labeled as triangles). For example, scenario (d)
in Table 2 is the right-most symbol on the curve ρ = 0.5.
The plots for FBS and FSS show that the number of SIDs
roughly decreases by half for every hour of starving time
(every two symbols on the curves).

For RLS, the three curves correspond to the param-
eters ρ = 0.4, 0.5, and 0.6. Each curve is generated
by varying the threshold for tail servers Ntail from 1000
to 40, 000 (labeled as circles). The number of SIDs in-
creases as Ntail increases (the right-most circles are for

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association348

0 8 16 24 32 40 48

10

20

30

40

50

60

100k

80k

60k

40k

20k

0k

Time (hours)

So
rt

ed
se

rv
er

in
de

x

(a) Load profile of NB (α = 1).

0 8 16 24 32 40 48

10

20

30

40

50

60

100k

80k

60k

40k

20k

0k

Time (hours)

So
rt

ed
se

rv
er

in
de

x

(b) Load profile of FB (α = 1).

0 8 16 24 32 40 48

10

20

30

40

50

60

100k

80k

60k

40k

20k

0k

Time (hours)

So
rt

ed
se

rv
er

in
de

x

(c) Load profile of FBS (α = 1, S = 2 hours).

0 8 16 24 32 40 48

10

20

30

40

50

60

100k

80k

60k

40k

20k

0k

Time (hours)

So
rt

ed
se

rv
er

in
de

x

(d) Load profile of FS (ρ = 0.5).

0 8 16 24 32 40 48

10

20

30

40

50

60

100k

80k

60k

40k

20k

0k

Time (hours)

So
rt

ed
se

rv
er

in
de

x

(e) Load profile of FSS (ρ = 0.5, S = 2 hours).

0 8 16 24 32 40 48

10

20

30

40

50

60

100k

80k

60k

40k

20k

0k

Time (hours)

So
rt

ed
se

rv
er

in
de

x

(f) Load profile of RLS (ρ = 0.5, Ntail = 10, 000).

Figure 9: Load profile of different server scheduling and load dispatching algorithms shown in Table 2.

Ntail=40, 000). Decreasing the threshold Ntail for RLS
is roughly equivalent to increasing starving time S for
FBS and FSS.

In Figure 10, points near the bottom-left corner have
the desired property of both low energy and low num-
ber of SIDs. In this perspective, FSS can be completely
dominated by both FBS and RLS if their parameters are
tuned appropriately. For FBS, it takes a much longer
starving time than FSS to reach the same number of
SIDs, but the energy consumption can be much less if the
value of α is chosen around 1.0. Between FBS and RLS,
they have their own sweet spots of operation. For this
particular data trace, FBS with α = 1 and 4 to 5 hours of
starving time give excellent energy-SID tradeoff.

7 Discussions

From the simulation results in Section 6, we see that
while load skewing algorithms generate small number of
SIDs when turning off servers, they also maintain unnec-

0 2 4 6 8 10
x 105

330

340

350

360

370

380

390

400

410

420

430

440

(c)

α=0.2

α=1.0

α=3.0

(d)

(e)

ρ=0.4
ρ=0.5

ρ=0.9(f)

Number of SIDs

En
er

gy
 (K

W
H)

ρ=0.4, 0.5, 0.6

FBS
FSS
RLS

(a)

(b)S=5 S=4

Figure 10: Energy-SID tradeoff of different algorithms
with key arameters varied. The particular scenarios
(c),(d),(e),(f) listed in Table 2 are labeled with bold sym-
bols. The scenarios (a) and (b) are out of scope of this
figure, but their relative locations are pointed by arrows.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 349

essary tail servers when the load ramps up. So a hybrid
(switching) algorithm that employs load balancing when
load increases and load-skewing when load decreases
seems to be able to get the best energy-SID tradeoff. This
is what the FBS algorithm tries to do with a long starving
time, and its effectiveness is clearly seen in Figure 10. Of
course, there are regions in the energy-SID tradeoff plane
that favor RLS more than FBS. This indicates that there
are still room to improve by explicitly switching between
load balancing and load skewing, for example, when the
total number of connections reaches the peak and starts
to go down.

As mentioned in Section 3.4, SIDs can be handled
transparently by the client software so that they are un-
noticeable to users, and the servers can be scheduled to
drain slowly in order to avoid creating a surge of re-
connection requests. The transitions can also be done
through “controlled connection migration” (CCM) —
to migrate the TCP connection endpoint state without
breaking it. Depending on the implementation details,
CCM may also be a CPU- or networking-intensive activ-
ity. The number of CCMs could be a performance metric
similar to the number of SIDs, which we trade off with
energy saving. Depending on the cost of CCMs, they
might change the sweet spots on the energy-SID/CCM
tradeoff plane. If the cost is low, due to a perfect connec-
tion migration scheme, then we can be more aggressive
on energy saving. On the other hand, if the cost is high,
we have to be more conservative, as in dealing with SIDs.
We believe the analysis and algorithmic framework we
developed would still apply.

We end the discussions with some practical considera-
tions of implementing the dynamic provisioning strategy
at full scale. Implementing the core algorithms is rela-
tively straightforward. However, we need to add some
safeguarding outer loops to ensure they work in their
comfort zone. For example, if the load-forecasting al-
gorithm starts giving large prediction errors (e.g., when
there is not enough historical data to produce accurate
model for special periods such as holidays), we need to
switch to the more reactive hysteresis-based provision-
ing algorithm. To take the best advantage of both load
balancing and load skewing, we need a simple yet robust
mechanism to detect the up and down trends in the total
load pattern. On the hardware side, frequently turning on
and off servers may raise reliability concern. We want to
avoid always turning on and off the same machines. This
is where load prediction can help by looking ahead and
avoiding short term decisions. A better solution is to ro-
tate servers in and out of the active clusters deliberately.

Acknowledgments

We thank the Messenger team for their support, and
Jeremy Elson and Jon Howell for helpful discussions.

References
[1] ABDELZAHER, T. F., SHIN, K. G., AND BHATTI, N. Performance guar-

antees for web server end-systems: A control-theoretical approach. IEEE
Trans. Parallel Distrib. Syst., 1 (2002), 80 – 96.

[2] BROCKWELL, P. J., AND DAVIS, R. A. Introduction to Time Series and
Forecasting, second ed. Springer, 2002.

[3] CHASE, J., ANDERSON, D., THAKAR, P., VAHDAT, A., AND DOYLE,
R. Managing Energy and Server Resources in Hosting Centers. In SOSP
(2001).

[4] CHEN, G., HE, W., LIU, J., NATH, S., RIGAS, L., XIAO, L., AND ZHAO,
F. Energy-aware server provisioning and load dispatching for connection-
intensive internet services. Tech. rep., Microsoft Research, 2007.

[5] CHEN, Y., DAS, A., QIN, W., SIVASUBRAMANIAM, A., WANG, Q., AND

GAUTAM, N. Managing server energy and operational costs in hosting
centers. In In Proceedings of the International Conference on Measurement
and Modeling of Computer Systems (2005).

[6] DOYLE, R., CHASE, J., ASAD, O., JIN, W., AND VAHDAT, A. Model-
Based Resource Provisioning in a Web Service Utility. In In Proceedings of
the 4th USENIX Symposium on Internet Technologies and Systems (2003).

[7] ELNOZAHY, M., KISTLER, M., AND RAJAMONY, R. Energy conservation
policies for web servers. In USITS (2003).

[8] EPA Report on Server and Data Center Energy Efficiency. U.S. Environ-
mental Protection Agency, ENERGY STAR Program, 2007.

[9] FAN, X., WEBER, W.-D., AND BARROSO, L. A. Power Provisioning for
a Warehouse-sized Computer. In ISCA (2007).

[10] FLAUTNER, K., AND MUDGE, T. Vertigo: Automatic Performance-
Setting for Linux. In OSDI (2002).

[11] GANESH, L., WEATHERSPOON, H., BALAKRISHNAN, M., AND BIR-
MAN, K. Optimizing power consumption in large scale storage systems.
In Proceedings of the 11th USENIX Workshop on Hot Topics in Operating
Systems (HotOS ’07) (2007).

[12] GROSS, G., AND GALIANA, F. D. Short-term load forecasting. Proceed-
ings of The IEEE 75, 12 (1987), 1558–1573.

[13] GRUNWALD, D., LEVIS, P., FARKAS, K. I., III, C. B. M., AND

NEUFELD, M. Policies for Dynamic Clock Scheduling. In OSDI (2000).

[14] HEATH, T., DINIZ, B., CARRERA, E. V., JR., W. M., AND BIANCHINI,
R. Energy conservation in heterogeneous server clusters. In Proceedings
of ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP) (2005).

[15] KANDASAMY, N., ABDELWAHED, S., AND HAYES, J. P. Self-
optimization in computer systems via online control: Application to power
management. In IEEE International Conference on Autonomic Computing
ICAC (2004).

[16] KUSIC, D., AND KANDASAMY, N. Risk-aware limited lookahead control
for dynamic resource provisioning in enterprise computing systems. In
IEEE International Conference on Autonomic Computing ICAC (2006).

[17] LORCH, J. R., AND SMITH, A. J. Improving Dynamic Voltage Scaling
Algorithms with PACE. In SIGMETRICS/Performance (2001).

[18] MSN protocol documentation. http://msnpiki.msnfanatic.com/.

[19] M.WEISER, B.WELCH, DEMERS, A. J., AND SHENKER, S. Scheduling
for Reduced CPU Energy. In OSDI (1994).

[20] PINHEIRO, E., BIANCHINI, R., CARRERA, E. V., AND HEATH, T. Dy-
namic Cluster Reconfiguration for Power and Performance. In Proceed-
ings of the Workshop on Compilers and Operating Systems for Low Power
(2001).

[21] SHARMA, V., THOMAS, A., ABDELZAHER, T., SKADRON, K., AND LU,
Z. Power aware QoS management in web servers. In IEEE RTSS (2003).

[22] WANG, M., KANDASAMY, N., GUEZ, A., AND KAM, M. Distributed
cooperative control for adaptive performance management. IEEE Internet
Computing 11, 1 (2007), 31–39.

[23] ZHU, Q., CHEN, Z., TAN, L., ZHOU, Y., KEETON, K., AND WILKES,
J. Hibernator: Helping Disk Arrays Sleep Through the Winter. In SOSP
(2005).

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association350

