
Energy Aware Task Scheduling with Task Synchronization for
Embedded Real Time Systems

Ravindra Jejurikar Rajesh K. Gupta

Center for Embedded Computer Systems,
Department of Information and Computer Science,

University of California at Irvine,
Irvine, CA 92697

E-mail: jezz,rgupta @ics.uci.edu

CECS Technical Report #02-21

June 21, 2002

Abstract

Slowdown factors determine the extent of slowdown a computing system can experience based on
functional and performance requirements. Dynamic Voltage Scaling (DVS) of a processor based on
slowdown factors can lead to considerable energy savings. The problem of DVS in the presence of task
synchronization has not yet been addressed. We compute slowdown factors for tasks which synchronize
for access to shared resources. Tasks synchronize to enforce mutually exclusive access to these resources
and can be blocked by lower priority tasks. We compute static slowdown factors for the tasks which
guarantee meeting all the task deadlines. Our simulation experiments show on an average 25% energy
gains over the known slowdown techniques.

1

Contents

1 Introduction 1

2 Preliminaries 2
2.1 System Model . 2
2.2 Variable Speed Processors . 2
2.3 Motivating example . 3

3 Static Slowdown Factors 4
3.1 Critical Section at Maximum Speed (CSMS) . 5
3.2 Constant Static Slowdown (CSS) . 5
3.3 Examples . 6
3.4 Computation time . 6

4 Experimental Results 6
4.1 Static slowdown . 7

5 Conclusions and Future Work 10

A Appendix 12
A.1 Task Description Format (TDF) . 12

List of Figures

1 Motivation for Static slowdown techniques (a) Task arrival times and deadlines (pe-
riod=deadline) with critical sections. (b) Constant slowdown of 11

15 0 733, job
1 3 misses deadline. (c) Slowdown of 1 2 0 5 with critical section at maximum

speed. (d) Uniform constant slowdown of 7
8 0 875, meets deadlines while observ-

ing blocking. 3
2 Generic simulator . 7
3 Power function f s vs. s2 . 8
4 Normalized energy consumption for the slowdown methods 9

List of Tables

1 Energy Consumption . 9

2

1 Introduction

Power is one of the important metrics for optimization in the design and operation of embedded
systems. There are two primary ways to reduce power consumption in embedded computing systems:
processor shutdown and processor slowdown. Slowdown using frequency or voltage scaling is more
effective in power consumption. Scaling the frequency and voltage of a processor leads to an increase
in the execution time of a job. In real-time systems, we want to minimize energy while adhering to
the deadline of the tasks. Power and deadlines are often contradictory goals and we have to judiciously
manage time and power to achieve our goal of minimizing energy. DVS (Dynamic Voltage Scaling)
techniques exploit the idle time of the processor to reduce the energy consumption of a system. We deal
with computing the voltage schedule for a periodic task set.

In this paper, we focus on the system level power management via computation of static slowdown
factors. We assume a real-time system where the tasks run periodically in the system and have deadlines.
These tasks are to be scheduled on a single processor system based on a preemptive scheduler such as
the Earliest Deadline First (EDF) [12] or Rate Monotonic Scheduler (RMS) [11]. The tasks access
the shared resources in a mutually exclusive manner. Tasks need to synchronize to enforce mutual
exclusion. We compute static slowdown factors in the presence of task synchronization to minimize the
energy consumption of the system.

Shin et al. [20] have computed uniform slowdown factors for an independent task set. In this tech-
nique, rate monotonic analysis is performed on the task set to compute a constant static slowdown factor
for the processor. Gruian [4] observed that performing more iterations gives better slowdown factors for
the individual task types. Yao, Demers and Shanker [22] presented an optimal off-line speed schedule
for a set of N jobs. The running time of their algorithm is O N2 and can be reduced to O(N log2N)
by the use of segment trees [15]. The analysis and correctness of the algorithm is based on an under-
lying EDF scheduler, which is an optimal scheduler [12]. An optimal schedule for tasks with different
power consumption characteristics is considered by Aydin, Melhem and Mossé [1]. The authors [2] have
proven that the utilization factor is the optimal slowdown when the deadline is equal to the period. Quan
and Hu [?] [17] discuss off-line algorithms for the case of fixed priority scheduling.

Since the worst case execution time (WCET) of a task is not usually reached, there is dynamic slack
in the system. Pillai and Shin [14] recalculate the slowdown when a task finishes before its worst case
execution time. They use the dynamic slack while meeting the deadlines. Low-power scheduling using
slack estimation heuristic [6] is studied by Kim et al.

All the above techniques assume the tasks to be independent in nature. Scheduling of task graphs on
multiple processors has also been considered. Luo and Jha [13] have considered scheduling of periodic
and aperiodic task graphs in a distributed system. Non-preemptive scheduling of a task graph on a multi
processor system is considered by Gruian and Kuchcinski [5]. Zhang et al. [23] have given a framework
for task scheduling and voltage scheduling of dependent tasks on a multi-processor system. They have
formulated the voltage scheduling problem as an integer programming problem. They prove the voltage
scheduling problem for the continuous voltage case to be polynomial time solvable.

However the effect of task synchronization on slowdown factors has not yet been addressed. In real
life applications, tasks access the shared resources in the system. We consider a uniprocessor system
where tasks synchronize for access to shared resources. Due to this task synchronization, tasks can get
blocked for a shared resource. In this paper, we compute static slowdown factors in the presence of task
synchronization. We gain as much as 40% to 60% energy savings over known techniques.

1

The rest of the paper is organized as follows: Section 2 formulates the problem with a motivating
example. In Section 3, we give the slowdown algorithms in the presence of task synchronization. The
implementation and experimental results are given in Section 4. Section 5 concludes the paper with
future directions.

2 Preliminaries

In this section, we introduce the necessary notation and formulate the problem. We first describe the
system model followed by an example to motivate the problem.

2.1 System Model

A periodic task set of n periodic real time tasks is represented as 1 n . Each task i is
represented by a 3-tuple Ti Di Ci where Ti is the period of the task, Di is the relative deadline, and
Ci is the WCET for the task, given it is the only task running in the system. The system has a set of
shared resources. Access to the shared resources are mutually exclusive in nature and the accesses to
the resource have to be serialized. Common synchronization primitives include semaphores, locks and
monitors [21]. We assume that semaphores are used for task synchronization. All tasks are assumed to
be preemptive, however the access to the shared resources need to be serialized. Due to the resource
sharing, task can be blocked by lower priority tasks.

When a task has granted access to a shared resource, it is said to be executing in its critical section.
The jth critical section of task i is represented as zi j. Each task specifies the access to the shared
resources and the worst case execution time of each critical section. With the specified information we
can compute the maximum blocking time for a task. The blocking time for tasks depends upon the
resource access protocol being used. Let Bi be the maximum blocking time for task i under the given
resource access protocol. We assume critical sections of a task are properly nested.

Each invocation of the task is called a job and the jth invocation of task i is denoted as i j. The
tasks are scheduled on a single processor which supports multiple frequencies. Every frequency level
has a power consumption value and is also referred to as power state of the processor. Our aim is to
schedule the given task set and the processor speed such that all tasks meet their deadlines and the
energy consumption is minimized. The processor speed can be varied to minimize energy usage. The
slowdown factor at a given instance is the ratio of the scheduled speed to the maximum speed. If the
processor speed is a constant value over the entire time interval, it is called a constant slowdown. The
execution time of a job is proportional to the processor speed. The goal is to have a speed schedule for
the processor which minimizes the energy consumption while meeting deadlines.

2.2 Variable Speed Processors

A wide range of processors support variable voltage and frequency levels. Voltage and frequency
levels are in a way coupled together. When we change the speed of a processor we change its operat-
ing frequency. We proportionately change the voltage to a value which is supported at that operating
frequency. The important point to note is when we perform a slowdown we change both the frequency
and voltage of the processor. We use the terms slowdown state and power state interchangeably. We
assume that the speed can be varied continuously from Smin to the maximum supported speed Smax.

2

We normalize the speed to the maximum speed to have a continuous operating range of smin 1 , where
smin Smin Smax.

2.3 Motivating example

Consider a simple real time system with two periodic tasks having the following parameters :

1 8 8 2 2 15 15 7 (1)

critical section

non critical section

T1

T2

0 4 8 10 12 14 16 18 202 6 22 24

task

(a)

time

T2

T1

T2

T1

0 4 8 10 12 14 16 18 202 6 22 24

T2

T1

0 4 8 10 12 14 16 18 202 6 22 24

task

task

0 4 8 10 12 14 16 18 202 6 22 24

missed
deadline

(b)

time

n1 = 0.73

n2=0.73

task

(c)

time

n1 = 0.5

n2 = 0.5

(d)

time

n1 = 0.875

n2 = 0.875

deadline

Figure 1. Motivation for Static slowdown techniques (a) Task arrival times and deadlines (period=deadline) with critical

sections. (b) Constant slowdown of 11
15 0 733, job 1 3 misses deadline. (c) Slowdown of 1 2 0 5 with

critical section at maximum speed. (d) Uniform constant slowdown of 7
8 0 875, meets deadlines while observing

blocking.

Both tasks access a shared resource though a semaphore S. The critical section for task 1 is z1 1
1 2 and that for 2 is z2 1 0 5 5 5 . This task set is shown in Figure 1(a). The jobs for each task

are shown at their arrival time with their workload. The jobs are to be scheduled on a single processor

3

by a rate monotonic scheduler. The task set is schedulable at full speed. We cannot compute slowdown
factors ignoring the blocking factors. To keep the task set schedulable at least 11 units of computation is
needed in 15 time units, allowing for a uniform slowdown of 11

15 0 733. However job 1 3 misses
its deadline, as it is blocked by task 2 2 for 6 5 time units. This is shown in Figure 1(b). Thus we need
to consider the blocking times to compute the slowdown factors for the task.

We consider executing the critical sections at no slowdown and compute the slowdown for the task
set. Upto time t 15, there is 7 time units of critical section and 4 time units of non-critical section.
Executing the non critical section as a slowdown of 1 2

4
15 7 0 5, meets all deadlines. This

schedule is shown in Figure 1(c). Having a uniform slowdown for the entire task can be more energy
efficient. Since task 1 can be blocked for up to 5 time units and C1 2, a constant slowdown of

7
8 0 875 guarantees 1 meeting the deadlines. At this slowdown 2 also meets all deadlines and is

shown in Figure 1(d).
We use the simplistic power model of P 2 to compare the energy consumption. We compute

the energy consumed up to time t 15. From Figure 1(d) energy consumed up to time t 15 is E
11 8

7
7
8

2 9 625. The energy consumed from Figure 1(c) is E 7 4 2
1

1
2

2 9. In this case the
constant slowdown consumes more energy. However as we show later that the constant static slowdown
is more energy efficient in practice.

3 Static Slowdown Factors

We compute static slowdown factor for a system with an underlying rate monotonic scheduler. In this
section, we give an algorithm to compute the static slowdown factors for tasks which share the resources
in the system. We assume that the access to the shared resources is granted in mutual exclusion [21] by
the use of semaphores [21]. The schedulability test of independent tasks is given by Lehoczky et al. [10].
Using this schedulability test, static slowdown factors have been computed by Shin [20] and Gruian [4].
They consider the case where all tasks are independent of each other. However in real-life, tasks share
the resources in the system. The access to the resources are mutually exclusive in nature. This could lead
to tasks being blocked for a particular resource. Blocking of tasks can cause priority inversion [19] and
result in deadline misses. Resource access protocols such as priority inheritance protocol [19], priority
ceiling protocol [19], priority limit protocol [19], stack resource protocol and minimal stack resource
protocol [3] have been studied to minimize the blocking time of tasks. Any resource management
protocol can be used to manage the access to the resource. Let Bi be the maximum blocking time for
task i under the given resource management protocol.

Lehoczky et al. [10] showed that the schedulability analysis is needed only at discrete points, called
the scheduling points. It is assumed that the tasks are sorted in descending order of their priority. The
set of scheduling points for task i is defined by

Si kTj j 1 i;k 1
Ti

Tj
(2)

when the period is the same as the deadline, Ti Di.
If Di is different from Ti, Equation 2 can be modified to a set of scheduling point Si as follows :

Si t Si t Di Di (3)

4

The schedulability test in the presence of blocking time is given by Sha et al. [19]. i can be scheduled
without violating its deadline, if there exists one or more scheduling points Si j Si, which satisfy

Bi

i

k 1
Ck

Si j

Tk
Si j (4)

where Bi is the blocking time for task i.
We give two methods to compute static slowdown factors for periodic task set. One method computes

slowdown factors for the tasks with the critical sections being executed at maximum speed. The other
method computes a constant slowdown for the entire task set.

3.1 Critical Section at Maximum Speed (CSMS)

We compute the static slowdown factors for the tasks with all critical sections being executed at full
speed. We make a distinction between the critical and non-critical section of a task. Let Cncs

i and Ccs
i

be the non-critical section and critical section of task i respectively Cncs
i Ccs

i Ci . Using Equation
4, we compute static slowdown factors for all the tasks. Tasks are ordered in descending order of their
deadline (priority). We compute the slowdown factors in an iterative manner, from the higher to the
lower priority tasks. An index q points to the latest task that has been assigned a slowdown factor.
Initially, q 0. Each of the task i, q i n has to be assigned a slowdown factor. For each scheduling
point Si j, task i exactly meets its deadline if:

Bi
1 r q

Cncs
r

r
Ccs

r
Si j

Tr q p i

Cncs
p

i j
Ccs

p
Si j

Tp
Si j (5)

Note that the tasks r, 1 r q have already been assigned a slowdown factor r. For the rest of
the tasks we assume that they will use the same and yet to be computed slowdown factor, i j, which
is dependent on the scheduling point. For the task i the best scheduling choice, from the energy point
of view, is the smallest of its i j. At the same time from Equation 5, this has to be equal for all tasks

p, q p i. There is a task with index m for which the best slowdown factor is the largest among all
other tasks: min j m j maxi min j i j . Note that this is not necessarily the last task, n. Having the
index m, all tasks between q and m can be slowed down by a factor equal to the slowdown factor of task

m min m j . Thus, we assign them slowdown factor of m min j i j , q r m. The algorithm
terminates when all tasks have been assigned a slowdown factor.

3.2 Constant Static Slowdown (CSS)

A constant slowdown for the processor is a desired feature. There is an overhead associated with
changing power states and a constant slowdown eliminates this overhead. A constant slowdown is
desired especially if the resource does not support run time change in the operating speed. For each
scheduling point Si j, task i exactly meets its deadline if:

1

i j
Bi

0 p i
Cp

Si j

Tp
Si j (6)

A slowdown of maxi min j i j gives a constant static slowdown for all the tasks.

5

3.3 Examples

We compute the slowdown factors for the example in Section 2. The task set is 1 8 8 2 2

15 15 7 and their blocking factors are B1 5 and B2 0.
We compute the uniform constant slowdown:

min 1 j min 2 5
8

7
8 0 875 and

min 2 j min 2 7 0
8

2 2 7 0
15

11
15 0 733

This gives a constant static slowdown of 0 875.
The slowdown factors with critical sections at maximum speed are:

min 1 j min 1
8 5 1

1
2 0 5 and

min 2 j min 1
8 1 5

2 1 0 5 1 5
15 5 2 1

1
2 0 5

This gives a slowdown of 1 2 0 5 for the non-critical section.

3.4 Computation time

The CSMS algorithm has the same time complexity as that of the slowdown computation algorithm
for independent tasks by Gruian [4]. The CSS algorithm has the same complexity as that of the algorithm
by Shin et al. [20]. Theoretically, all algorithms have a pseudo polynomial time complexity. The is due
to the fact that the total number of scheduling points arising in the exact rate monotonic has a pseudo
polynomial complexity. However, in practice the number of scheduling points is not large and the
algorithms are efficient. The computation time on an average takes a fraction of a second. We conducted
the experiments on a sparc SUNW, Sun-Blade-100 running SunOS.

4 Experimental Results

We have written a simulator in parsec [8], a C based discrete event simulation language. We have
implemented the scheduler and the slowdown algorithms in this simulator. The simulator block diagram
is shown in Figure 2. It consists of two main entities, the Task Manager and the Real Time Operating
System(RTOS). The task manager has the information of the entire task set. It generates jobs for each
task type depending on its period and sends it to the RTOS entity.

The RTOS is the heart of the simulator. It schedules the jobs on the resource(processor) and checks
for deadline misses. The jobs access the shared resource by the resource access protocol. The static
speed regulator changes the speed of the processor at run-time. The profile manager profiles the energy
consumed by each task and calculates the total energy consumption of the system. It keeps track of all
the relevant parameters viz. energy consumed, missed deadlines, voltage changes and context switches.

We use the power model as given in [18] [7] to compute the energy usage of the system. The power
P as a function of slowdown is given by

P f s 0 248 s3 0 225 s2 0 0256 s

311 16 s2 282 24 s 0 0064 s 0 014112 s2 (7)

6

jobjobjob

Resource
(processor)

SC
H

E
D

U
L

E
R

T1

Tn

PARSEC Simultion Platform

- k1 cycles

- k2 cycles
- V(s)

- P(s)

RTOS

Regulator
resource
shared

resource
shared

resource
shared

R
es

ou
rc

e
A

cc
es

s
Pr

ot
oc

ol

resource
shared

Task

Task

Task Mamanger

Static speed
Task Execution Time

Profile
Manager

Figure 2. Generic simulator

The above equation is obtained by substituting Vdd 5V and Vth 0 8V and equating the power and
speed equations given below. The speed s is the inverse of the delay.

Pswitching Ce f fV
2
dd f (8)

Delay
kVdd

Vdd Vth
2

1
f

(9)

The plot of the power function in shown in Figure 3. It is seen that it tracks s2 closely. The switching
capacitance and the relation between gate delay and the operating speed are used to accurately derive
the power function.

4.1 Static slowdown

We compare the processor energy usage for the following techniques:

Critical Section at Maximum Speed (CSMS): The algorithm to compute the slowdown fac-
tors for each task is discussed in Section 3. The static factors are computed by performing Rate
Monotonic Analysis (RMA) with no slowdown for the critical sections. The case of D p is also
considered.

7

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
ow

er
(P

)

slowdown factor(s)

P=f(s)
P=s2

Figure 3. Power function f s vs. s2

Constant Static Slowdown (CSS): A constant static slowdown is computed for all the tasks in-
cluding the critical sections. The algorithm is given in the Section 3.

We compare the results of our algorithm to the static slowdown algorithm for independent tasks by
Shin et al. [20]. A constant static slowdown is computed for the task set. Since all tasks have the
same slowdown, the blocking time will increase by the same factor and we guarantee deadlines.
(If tasks have different slowdown factors, the blocking time can increase more than expected and
lead to deadline misses.) We transform the task set to an independent task set.

Transformation I (T1): For each task i, the execution time Ci is increased by its blocking time Bi.
Since a task can experience a maximum blocking time of Bi, it is guaranteed to meet its deadline
in the presence of blocking (provided all blocking tasks have the same or higher slowdown). The
transformed task set is 1 n where i Ti Di Ci Bi . The transformed tasks
can be considered independent and we compute slowdown factors. A constant slowdown for all
tasks guarantees deadlines.

Transformation II (T2): We add a new task called the blocking task b in the system. Let
Cb maxi Bi and Tb maxi Ti , then the blocking task b Tb Tb Cb . This task is assigned
the highest priority task in the system (regardless of its period). Given the sorted list of tasks
in in descending order of priority, b is added at the head of the list. By adding task b with
highest priority, Cb will be added in the computation of the slowdown at each scheduling point
Si j. Satisfying the schedulability task for this transformed task set satisfies the schedulability test
given in Equation 4. A constant slowdown for all tasks guarantee deadlines. Thus the computed
slowdown factors will guarantee meeting all deadlines.

The above algorithms were used for three application sets given in the Prototyping Environment for
Embedded Real Time Systems [9] (PERTS) software. The application sets are from various domains
and comprise of Flight Control System (FCS), End to End Scheduling (EES), and Multiple Resource
Scheduling (MRS), A task set on multiple resources is converted to an equivalent task set by scaling the
execution period.

Each system (example) has resources which are shared by the tasks in a mutually exclusive manner.
We have used the priority ceiling protocol (PCP) to manage the resource access and have computed the

8

Table 1. Energy Consumption

example CSS CSMS T1 T2

FCS 3254.08 3395.18 4362.43 3463.57

EES 1163.78 1443.13 1634.14 1209.54

MRS 1731.69 2325.60 2802.53 1754.80

Figure 4. Normalized energy consumption for the slowdown methods

blocking times for each task under this protocol. The slowdown factors have been computed using the
various algorithms and the task set is simulated for a time period equal to the hyper-period of the task
set. The energy consumption is shown in Table 1. It is seen that the CSS algorithm performs better than
the other algorithms in all the examples. It does better than the CSMS where a slowdown is computed
for their non critical sections of all the tasks. A uniform slowdown is more energy efficient if an equal
amount of slack is utilized (due to slowdown). The amount of slack utilized by the CSMS algorithm
is not much than the the slack utilized by the CSS algorithm. So an uniform slowdown is more energy
efficient. Figure 4 shows the energy consumption of each method normalized to the energy consumption
of the CSS algorithm.

The slowdown factors computed by T1 are worse compared to CSS as the blocking factors are added
to each task. Thus we add up the blocking factors of higher priority tasks for every instance of the higher
priority task. This adds up to an additional (unnecessary) blocking time in the analysis, leading to a
higher(worse) slowdown factor. This results in a lot of slack in the system and T1 has the worst energy
consumption. Energy consumption of T2 is the closest to that of CSS. It uses the maximum over the
blocking factors of each task. Since the blocking time is only a small fraction of the total execution time,
the difference is small. Energy consumption of CSMS is also greater than that of T2. Thus running the
critical section at full speed is not energy conserving. However we have to note that in the transformation
T2, the blocking task needs to have the highest priority. This task violates the rate monotonic property
and special care needs to be taken to enforce its priority. This may not be easy to apply and changes in
existing algorithm might be needed.

9

5 Conclusions and Future Work

In this paper, we have given algorithms to compute static slowdown factor for a periodic task set.
We take into consideration the effect of blocking that arises due to task synchronization. Experimental
results show that the computed slowdown factors save on an average 25%-30% energy over the known
techniques. The algorithms have the same computational complexity as that of the slowdown algorithms
in literature [4] [20]. The techniques are practically fast and very energy efficient. These techniques can
be easily implemented in a RTOS. This will have a great impact on the energy utilization of portable and
battery operated devices.

We plan to further exploit the static and dynamic slack in the system to make the system more energy
efficient. We have computed slowdown factor for a rate monotonic scheduler. As a future work, we
plan to compute the slowdown factors for other scheduling policies like earliest deadline first (EDF) and
fixed priority scheduling. We will be implementing the techniques in a RTOS like eCos and measure the
power consumed on a real processor.

Acknowledgments

I would like to thank my colleagues Manjari Chhawchhari and Christiano Pereira at the Center for
Embedded Computing Systems (CECS), for the useful discussions in understanding and implementing
the resource access protocols. I would also like to thank the reviewers for their useful comments.

References

[1] H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez. Determining optimal processor speeds for
periodic real-time tasks with different power characteristics. In Euromicro Conference on Real-
Time Systems, Delft, Holland, June 2001.

[2] H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez. Dynamic and aggressive scheduling tech-
niques for power-aware real-time systems. In Real-Time Systems Symposium, London, England,
December 2001.

[3] T. P. Baker. Stack-based scheduling of realtime processes. In RealTime Systems Journal, pages
67–99, 1991.

[4] F. Gruian. Hard real-time scheduling for low-energy using stochastic data and dvs processors. In
International Symposium on Low Power Electronics and Design, pages 46–51, 2001.

[5] F. Gruian and K. Kuchcinski. Lenes: task scheduling for low-energy systems using variable supply
voltage processors. In Proceedings of the Asia South Pacific Design Automation Conference, 2001.

[6] W. Kim, J. Kim, and S. L. Min. A dynamic voltage scaling algorithm for dynamic-priority hard
real-time systems using slack time analysis. In Design Automation and Test in Europe, 2002.

[7] P. Kumar and M. Srivastava. Predictive strategies for low-power rtos scheduling. In Proceedings
of IEEE International Conference on Computer Design: VLSI in Computers and Processors, pages
343–348, 2000.

10

[8] P. C. Laboratory. Parsec: A c-based simulation language. University of Califronia Los Angeles.
http://pcl.cs.ucla.edu/projects/parsec.

[9] R. T. S. Laboratory. Prototyping environment for real-time systems (perts). University of Illinois
at Urbana Champaign (UIUC). http://pertsserver.cs.uiuc.edu/software/.

[10] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact characterization
and average case behaviour. In Real-Time Systems Symposium, pages 166–171, 1989.

[11] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard real time
environment. In Journal of the ACM, pages 46–61, 1973.

[12] J. W. S. Liu. Real-Time Systems. Prentice-Hall, 2000.

[13] J. Luo and N. Jha. Power-conscious joint scheduling of periodic task graphs and a periodic tasks in
distributed real-time embedded systems. In International Conference on Computer Aided Design,
2000.

[14] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded operating
systems. In Proceedings of 18th Symposium on Operating Systems Principles, 2001.

[15] F. P. Preparata and M. l. Shamos. Computational Geometry, An Introduction. Springer Verlag,
1985.

[16] G. Quan and X. Hu. Energy efficient fixed-priority scheduling for real-time systems on variable
voltage processors. In Proceedings of the Design Automation Conference, pages 828–833, June
2001.

[17] G. Quan and X. Hu. Energy efficient fixed-priority scheduling for real-time systems on variable
voltage processors. In Proceedings of the Design Automation Conference, pages 828–833, June
2001.

[18] V. Raghunathan, P. Spanos, and M. Srivastava. Adaptive power-fidelity in energy aware wireless
embedded systems. In IEEE Real-Time Systems Symposium, 2001.

[19] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach to real-time
synchronization. In IEEE Transactions on Computers, pages 1175–85, 1990.

[20] Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time embedded systems on variable
speed processors. In Proceeding of the International Conference on Computer-Aided Design, pages
365–368, 2000.

[21] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts. John Wiley and Sons,
Inc., 2001.

[22] F. Yao, A. J. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In IEEE
Symposium on Foundations of Computer Science, pages 374–382, 1995.

[23] Y. Zhang, X. S. Hu, and D. Z. Chen. Task scheduling and voltage selection for energy minimization.
In Proceedings of the Design Automation Conference, 2002.

11

A Appendix

We used the following examples in our experiments. They were used in the PERTS tool at UIUC.

Fight Control System

Multi Processor System

End to End Scheduling

Some of the examples used multiple processors. We scaled the execution periods to map them to a
single processor system. The examples are given on the next page.

A.1 Task Description Format (TDF)

We have defined a Task Description Format (TDF) to describe the tasks. We can define the semaphore
P and V opeations and the critical sections can be specified. It is used to specify all the task properties.
The format is intutive and easily readable. All the examples are given in TDF.

12

