
1024 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, JUNE 2006

Energy-Aware Task Scheduling With Task
Synchronization for Embedded Real-Time Systems

Ravindra Jejurikar, Student Member, IEEE, and Rajesh Gupta, Fellow, IEEE

Abstract—Slowdown factors determine the extent of slowdown
that a computing system can experience based on functional and
performance requirements. Dynamic voltage scaling (DVS) of a
processor based on slowdown factors can lead to considerable
energy savings. This paper addresses the problem of DVS in the
presence of task synchronization. Tasks synchronize to enforce
mutually exclusive access to the shared resources and can be
blocked by lower priority tasks. Task slowdown factors that guar-
antee meeting all task deadlines are computed. Both static and
dynamic priority scheduling viz. rate monotonic (RM) schedul-
ing and earliest deadline first (EDF) scheduling, respectively, are
studied.

Index Terms—Frequency inheritance, low power, processor
scheduling, real-time systems, task synchronization.

I. INTRODUCTION

POWER is one of the important metrics for optimization
in the design and operation of embedded systems. The

two primary ways to reduce processor power consumption
are shutdown and slowdown. Slowdown using frequency and
voltage scaling is known to be more effective in reducing
the power consumption due to the quadratic dependence of
power on voltage. Note that scaling the frequency and voltage
of a processor leads to energy gains at the cost of increased
execution time for a job. In real-time systems, we want to
minimize energy consumption while adhering to task deadlines.
Power reduction and meeting deadlines are often contradictory
goals, and we have to judiciously manage power and time to
achieve our goal of minimizing energy.

In this paper, we focus on the system level power man-
agement via the computation of task slowdown factors. A
slowdown factor is the normalized operating frequency that
determines the processor speed at runtime. The computation
of slowdown factors can be classified into static slowdown,
computed off-line based on task characteristics, and dynamic
slowdown, computed using on-line task execution information.
This work focuses on the computation of static slowdown
factors under synchronization constraints. We consider a real-
time system where tasks arrive periodically and have deadlines.
The tasks are scheduled on a single processor system based on

Manuscript received December 3, 2002; revised August 7, 2003, March 11,
2004, October 10, 2004, and December 1, 2004. This work was supported in
part by the National Science Foundation under Award CCR-0098335 and in
part by the Semiconductor Research Corporation under Contract 2001-HJ-899.
This paper was recommended by Associate Editor M. F. Jacome.

R. Jejurikar is with the Department of Information and Computer Science,
University of California, Irvine, CA 92697 USA (e-mail: jezz@ics.uci.edu).

R. Gupta is with the Department of Computer Science and Engineering,
University of California, San Diego, La Jolla, CA 92093 USA.

Digital Object Identifier 10.1109/TCAD.2005.855964

a preemptive scheduling policy. Tasks synchronize to access
shared resources in a mutually exclusive manner. We address
both static and dynamic priority scheduling policies and study
the rate monotonic (RM) scheduling and the earliest deadline
first (EDF) [1], [2] scheduling, respectively.

Most of the earlier works on energy-aware scheduling
consider independent task sets. Among the earliest works,
Yao et al. [3] presented an optimal off-line algorithm to sched-
ule a job set with specified arrival times and deadlines on
a continuous voltage processor. The analysis and correctness
of the algorithm is based on an underlying EDF scheduler,
which is an optimal scheduling policy [1]. Kwon and Kim [4]
extend the algorithm proposed by Yao et al. to compute optimal
slowdown factors for the case of discrete voltage levels. The
same problem, under fixed priority scheduling, is addressed
by Quan and Hu [5], [6] and shown to be non-polynomial-
hard (NP-hard) [7]. Low power scheduling in the context of
real-time systems has also been addressed. Shin et al. [8]
have computed uniform slowdown factors for an independent
periodic task set. In this technique, RM analysis is performed
to compute a constant static slowdown factor for the processor.
Gruian [9] observed that performing more iterations can result
in better slowdown factors for the individual task types. Under
the EDF scheduling policy, a constant slowdown to maximize
the processor utilization is known to be a feasible solution
[10]. The computation of optimal slowdown factors for tasks
with different power consumption characteristics is addressed
by Aydin et al. [11]. Dynamic slowdown techniques, which
reclaim the slack arising from early completion of tasks (com-
pared to the worst case) is addressed in [10], [12], and [13].
Energy-aware scheduling of periodic and aperiodic tasks based
on sporadic servers is presented in [14] and [15]. The problem
of maximizing the system value for a given energy budget,
as opposed to minimizing the total energy, is addressed in
[16] and [17].

Scheduling of task graphs on multiple processors has also
been considered. Luo et al. [18]–[20] have addressed the
scheduling of periodic and aperiodic task graphs in a distributed
system. Nonpreemptive scheduling of a task graph on a multi-
processor system is considered by Gruian and Kuchcinski [21].
A framework for task scheduling and voltage assignment of
dependent tasks on a multiprocessor system based on integer
programming is presented in [22] and [23]. Energy-aware
scheduling in distributed systems using static and dynamic
slowdown is addressed by Zhu et al. [24]–[26].

Though DVS is well studied, very few works address slow-
down in the presence of task synchronization. Most real-life
applications have shared resources in the system and mutually

0278-0070/$20.00 © 2006 IEEE

JEJURIKAR AND GUPTA: ENERGY-AWARE TASK SCHEDULING FOR EMBEDDED REAL-TIME SYSTEMS 1025

exclusive access to shared resources can lead to priority inver-
sion. If a lower priority job has access to a resource, a higher
priority job requesting the resource is blocked and can miss its
deadline. Scheduling in the presence of task synchronization
is NP-hard [27]–[29], and sufficient feasibility tests [30], [31]
have been studied. Based on these feasibility test, the compu-
tation of a constant slowdown is addressed in [32] and [33].
In a similar work, Zhang and Chanson have addressed the
slowdown of task with nonpreemptive sections and presented
the dual-speed (DS) algorithm [34]. We show that the DS
algorithm only permits nonpreemptive sections within tasks
and is not applicable to scheduling with task synchronization.
In this work, we propose an algorithm to compute slowdown
factors for individual tasks under synchronization constraints.
Note that any known resource access protocol can be used with
the proposed slowdown algorithm.

The rest of the paper is organized as follows: Section II for-
mulates the problem with motivating examples. In Section III,
we present a generic algorithm to compute slowdown factors.
Computation of slowdown factors for EDF and RM scheduling
is discussed in Sections III-B and III-C, respectively. Experi-
mental results are given in Section IV, and Section V concludes
the paper with future directions.

II. PRELIMINARIES

This section describes the system model and formulates the
problem. We motivate the problem by showing that earlier
proposed algorithms cannot be used under task synchronization
constraints.

A. System Model

A task set of n periodic real-time tasks is represented as
Γ = {τ1, . . . , τn}. A three-tuple τi = {Ti,Di, Ci} represents
each task, where Ti is the period of the task, Di is the relative
deadline with Di ≤ Ti, and Ci is the worst case execution time
(WCET) of the task at the maximum processor speed, given
that it is the only task running in the system. Each invocation
of the task is called a job and the kth invocation of task τi is
denoted as τi,k. A task set is said to be feasible if all jobs meet
their deadline. The processor utilization for the task set U =∑n

i=1 Ci/Ti ≤ 1 is a necessary condition for the feasibility
of any schedule [1]. The system has a set of shared resources
that are accessed by the tasks in a mutually exclusive manner.
Common synchronization primitives to enforce exclusive ac-
cess include semaphores, locks, and monitors [35]. We assume
that semaphores are used for task synchronization. All tasks are
assumed to be preemptive with the constraint that the access to
the shared resources must be serialized. When a task has been
granted access to a shared resource, it is said to be executing
in its critical section [35]. We assume that critical sections of a
task are properly nested [31], wherein if two critical sections
intersect, then one lies completely within the other. The kth
critical section of task τi is represented as zi,k. We say that a
task is blocked if the task has to wait for a lower priority task
to release a shared resource and the task holding the resource
is called the blocking task. Note that the amount of time that

a task is blocked is referred to as the task blocking time. Each
task specifies the access to the shared resources and the WCET
of each critical section. With the specified task information and
a given resource access protocol, the maximum blocking time
for a task can be computed. Let Bi be the maximum blocking
time for task τi under a specified resource access protocol.

The tasks are scheduled on a single processor that supports
variable frequency and voltage levels. The processor slowdown
results in energy reduction and the slowdown factor can be
viewed as the normalized frequency. At a given instance, it is
the ratio of the scheduled frequency to the maximum frequency
of the processor. In this paper, we consider assigning slowdown
factors to tasks as opposed to a constant slowdown to better
exploit the slack in the system. We assume the same slowdown
factor for all instances of a task and is referred to as a uniform
task slowdown. The speed of the processor can be varied over
a discrete range with the execution time of a job inversely
proportional to the processor speed. Our aim is to determine
the processor speed for each task such that all tasks meet their
deadlines and the energy consumption is minimized. The time
and energy required to change the processor speed are very
small compared to that of a task. We assume that the voltage
change overhead, similar to the context switch overhead, is
incorporated in the task execution time.

B. Variable-Speed Processors

A wide range of processors such as the Intel StrongARM
processors [36], Intel XScale [37], and Transmeta Crusoe [38]
support variable voltage and frequency levels. Voltage and fre-
quency levels are tightly coupled and a change in the processor
speed includes a change in the operating frequency as well as a
proportionate change in the voltage level. The important point
to note is that, when we perform a slowdown, we change both
the frequency and voltage of the processor. We assume that the
processor supports discrete voltage and frequency levels with
the minimum and maximum frequency represented by fmin and
fmax, respectively. We normalize the speed to the maximum
speed to have discrete slowdown factors in the range [ηmin, 1],
where ηmin = fmin/fmax.

C. Motivating Example

Consider a simple real-time system with two periodic tasks
having the parameters

τ1 = {5, 5, 2} τ2 = {40, 40, 4}. (1)

The two tasks have a shared resource, and access to the
shared resource is granted through a semaphore S. The critical
section for task τ1 is z1,1 = [1.5, 2] (within the task execution
interval) and that for τ2 is z2,1 = [0, 3.0]. The critical sections
can block tasks, and the maximum blocking time for the tasks
is B1 = 3 and B2 = 0 at full speed. Fig. 1(a) shows the tasks
at their arrival time with their workload at maximum speed.
We consider the case where the lower priority task τ2 arrives
at time t = 0 and the higher priority task τ1 arrives at time
t = 1. The task set, scheduled on a single processor, is feasible
at the maximum speed under both EDF and RM scheduling

1026 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, JUNE 2006

Fig. 1. Motivation for static slowdown with task synchronization. (a) Task arrival times and deadlines (period = deadline) with critical sections. (b) EDF
schedule: Processor utilization as the static slowdown factor η = (2/5) + (4/40) = 0.5, and job τ1 misses the deadline. (RM scheduling also results in the same
slowdown factors and a similar task schedule.)

policies. We show that the blocking time cannot be ignored
while computing slowdown factors.

An independent task set scheduled by the EDF policy is
feasible at a slowdown equal to the processor utilization, U =
(2/5) + (4/40) = 0.5. Though an independent task set would
allow a uniform slowdown of η = 0.5, the same slowdown can-
not be used with task synchronization. As seen in Fig. 1(b), the
blocking time increases with slowdown, and task τ2 blocks τ1
for 5.0 time units, which results in task τ1 missing the deadline.
RM scheduling also results in the same task slowdown factors
for the example task set. To keep the task set feasible under
RM scheduling, 20 units of computation is needed in 40 time
units, allowing for a uniform slowdown of η = (20/40) = 0.5,
for an independent task set. This results in a similar schedule
as shown in Fig. 1(b), where task τ1 is blocked by task τ2 for
5.0 time units and misses its deadline. Thus, we need to
consider the blocking time in the computation of task slowdown
factors.

D. Dual-Speed (DS) Algorithm

Zhang and Chanson [34] have addressed task slowdown in
the presence of nonpreemptive critical sections, whereby a
critical section blocks all higher priority tasks. The authors have
proposed the DS algorithm, which computes two speeds for the
task system. A low speed L is computed based on an analysis
for an independent task set, and a high speed H is computed
taking into account the worst case blocking time for each task.
The system begins execution at speed L and switches to speed
H when tasks are blocked. The details of the transition between
speeds H and L are described in [34]. Note that the correctness

of the DS algorithm requires that the critical sections be nonpre-
emptive (to ensure the appropriate speed transitions). We show
that the DS algorithm can lead to tasks missing the deadline,
if used with task synchronization (protocols). Also note that
nonpreemption (within critical sections) is not desirable since
this can increase the task blocking time [31] and result in a
higher speed than that required with task synchronization.

Consider that the task set described in (1) is scheduled by
the DS algorithm under the EDF scheduling policy. Under the
DS algorithm, the processor utilization (at maximum speed) is
used as speed L and speed H is derived from the feasibility
analysis with blocking, as described in [34]. Speeds L and
H for the given task set, based on EDF scheduling, are L =
(2/5) + (4/40) = 0.5 and H = (2/5) + (3/5) = 1.0. The task
arrival times are shown in Fig. 2(a). The lower priority task (τ2)
arrives earlier (time t = 0) than the higher priority task τ1
(arrival time t = 1). At time t = 0, the system begins task
execution at the lower speed L, and task τ2 enters the critical
section. Task τ1 arrives at time t = 1, which is blocked due to
the nonpreemptive nature of the critical section. When a task
is blocked, the system enters the high speed (H = 1.0) and
the blocking critical section and the entire blocked task execute
at the high speed (H) to meet all task deadlines. The feasible
schedule under the DS algorithm is shown in Fig. 2(b).

However, the DS algorithm can result in a deadline miss with
task synchronization. Under task synchronization, a critical
section can be preempted as long as the critical sections (using
the same resource) are serialized. We show a task schedule
based on the priority ceiling protocol (PCP), where a task can
preempt a critical section and is not blocked until it tries to enter
a critical section. Fig. 2(c) shows the task schedule under PCP.

JEJURIKAR AND GUPTA: ENERGY-AWARE TASK SCHEDULING FOR EMBEDDED REAL-TIME SYSTEMS 1027

Fig. 2. Motivation for static slowdown with task synchronization. (a) Task arrival times and deadlines (period = deadline) with critical sections. (b) EDF
schedule: DS schedule with nonpreemptive critical sections, and all tasks meet the deadline. (c) EDF schedule: DS schedule under the PCP, and task τ1 misses
the deadline.

Task τ2 arrives at time t = 0 and enters the critical section. The
higher priority task τ1 arrives at t = 1 and preempts task τ2
to execute its noncritical section. Since no task is blocked, the
system continues execution at speed L. At time t = 4, task τ2
is blocked as it tries to enter the critical section that is in use
by task τ2, and the system switches to speed H . The blocking
critical section of task τ2 and the remaining execution of task
τ1 is executed at speed H . However, it can be seen that task
τ2 completes only at time t = 7 and misses its deadline of
t = 6. Thus, we see that the correctness of the DS algorithm
is dependent on the critical sections being nonpreemptive. In
this work, we present an energy-efficient slowdown algorithm
that is applicable to scheduling with any task synchronization
protocol.

III. COMPUTATION OF TASK SLOWDOWN FACTORS

In this work, we compute task level slowdown factors in the
presence of task synchronization with a uniform slowdown for
each task. We first present a generic slowdown algorithm that is
used to compute slowdown factors under different scheduling
policies.

A. Generic Slowdown Algorithm

The slowdown factors for the tasks are based on the feasi-
bility analysis and differ with the scheduling policy. For the
scheduling policies considered in this paper, the algorithms
are similar, and we present a generic slowdown algorithm to
compute static slowdown factors. The order in which tasks are
assigned slowdown factors is identical and is captured by the
generic slowdown algorithm. The algorithm is similar to the
work by Gruian [9], which considers slowdown of independent
tasks scheduled by the RM scheduling policy. Our work is an
extension of [9], and we address task slowdown with synchro-
nization under both fixed and dynamic priority scheduling.

Algorithm 1. Compute static slowdown factors (τ1, . . . , τn)
1: {Given tasks are in nonincreasing order of their relative

deadline}
2: q = 1; {initialization}
3: WHILE (q ≤ n) DO

4: FOR (i = q; i ≤ n; i + +) DO

5: Compute the candidate slowdown factor ηi based
on feasibility analysis;

6: END FOR

1028 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, JUNE 2006

7: ηm = maxn
i=q(ηi) {Compute the maximum candidate

slowdown factor}
8: FOR (i = q; i ≤ m; i + +) DO

9: ηi = ηm;
10: END FOR

11: q = m + 1;
12: END WHILE

The generic slowdown algorithm to compute task slowdown
factors is described in Algorithm 1. The algorithm assumes that
tasks are in nondecreasing order of their relative deadline, thus,
j > i implies Dj ≥ Di. The slowdown factors are computed
iteratively from tasks with the smallest to the largest index
(relative deadline). An index q points to the first task that
has not been assigned a slowdown factor. Initially, q = 1 and
the slowdown factor for all tasks is unassigned. Based on the
scheduling analysis, a slowdown factor is computed for each
unassigned task and is referred to as the candidate slowdown
factor for the task. The candidate slowdown factor for each
unassigned task is computed in line 5. There is a task with index
m for which the candidate slowdown factor is the largest among
all tasks. This maximum is computed in line 7. Note that this is
not necessarily the last task with index n. Unassigned tasks up
to index m are assigned a slowdown factor of ηm as shown
in lines 8–10. This completes one iteration of the algorithm,
and we set q = m + 1 for the next iteration. The algorithm
terminates when all tasks have been assigned a slowdown
factor. Note that the computation of candidate slowdown factors
is based on the feasibility analysis. The rest of the algorithm
is independent of the scheduling policy. The computation of
the candidate slowdown factor for each scheduling policy is
presented next.

B. Slowdown Factors and EDF Scheduling

Resource access protocols have been designed to bound
the blocking time, and sufficient feasibility tests have been
proposed. Resource access protocols such as dynamic priority
ceiling protocol (DPCP) [39], stack resource protocol, and
minimal stack resource protocol [30] have been designed to
handle tasks with dynamic priorities, which encompasses EDF
scheduling. Our slowdown algorithm is independent of the
resource access protocol and any given protocol can be used
to manage the access to the resources. The knowledge of the
maximum blocking time is important in testing the feasibility of
the task set and computing slowdown factors. Let Bi denote the
maximum blocking time (under no slowdown) for task τi under
a given resource access protocol. First, we state the feasibility
test which is then used to compute task slowdown factors.
1) Feasibility Test: Let Γ = {τ1, . . . , τn} be the tasks in the

system ordered in nondecreasing order of their relative deadline
and Bi be the maximum blocking time for task τi. The task set
is feasible under the EDF scheduling policy if it satisfies the
condition

∀i, i = 1, . . . , n,
Bi

Di
+

i∑
k=1

Ck

Dk
≤ 1. (2)

2) Slowdown Factor Computation: We first describe the
computation of candidate slowdown factor for a task that deter-
mines the task slowdown factors. Note that the task slowdown
factors are computed by the generic slowdown algorithm given
by Algorithm 1. The candidate slowdown factor for task τi,
used in line 5 of the algorithm, is computed using

(∑
1≤r<q

1
ηr

Cr

Dr

)
+

1
ηi

Bi

Di
+
∑

q≤p≤i

Cp

Dp

 = 1. (3)

This is an extension of the feasibility test considering task
slowdown factors. Tasks with index less than q have been
assigned a slowdown factor, and their contribution under slow-
down is considered. A uniform slowdown of ηi is computed for
the unassigned tasks and their blocking critical sections while
ensuring the feasibility of task τi.

C. Slowdown Factors and RM Scheduling

RM scheduling is an optimal fixed priority scheduling
scheme [40] and is well studied. RM scheduling assigns task
priorities based on the task period, with the priority inversely
proportional to task period. If the deadlines of the tasks are not
equal to their period, deadline monotonic (DM) scheduling is an
optimal fixed priority scheduling policy. Resource access pro-
tocols such as priority inheritance protocol and PCP [31] have
been proposed for fixed priority systems. First, we describe the
feasibility test under RM (and DM) scheduling policy, followed
by the computation of task slowdown factors.
1) Feasibility Test: Lehoczky et al. [41] have shown that the

feasibility analysis is needed only at discrete points, called the
scheduling points. Given a task set Γ = {τ1, . . . , τn} with tasks
in nonincreasing order of their priority, the set of scheduling
points for task τi is defined by

Si =
{
kTj |j = 1, . . . , i; k = 1, . . . ,

⌊
Ti

Tj

⌋}
(4)

when the period is the same as the deadline, i.e., Ti = Di for
each task τi. If Di is less than Ti for some task τi, we consider
only the scheduling points up to the task deadline Di. This set
of scheduling point S ′

i is defined as

S ′
i = {(t ∈ Si) ∧ (t < Di)} ∪ {Di}. (5)

The feasibility test in the presence of blocking time is given by
Sha et al. [31]. Each task τi can be scheduled without violat-
ing its deadline, if there exists one or more scheduling point
Sij ∈ Si that satisfies

Bi +
i∑

k=1

Ck

⌈
Sij

Tk

⌉
≤ Sij (6)

where Bi is the maximum blocking time (at full speed) for task
τi under a given resource access protocol.
2) Slowdown Factor Computation: The task slowdown fac-

tors are computed using the generic slowdown algorithm de-
scribed in Algorithm 1. In line 5 of the algorithm, a candidate

JEJURIKAR AND GUPTA: ENERGY-AWARE TASK SCHEDULING FOR EMBEDDED REAL-TIME SYSTEMS 1029

slowdown factor is computed for each task that is not yet
assigned a slowdown factor. The computation of the task can-
didate slowdown factor is based on the slowdown factor ηij ,
corresponding to each scheduling point Sij ∈ Si. The compu-
tation of ηij is given as

(∑
1≤r<q

Cr

ηr

⌈
Sij

Tr

⌉)
+

1
ηij

Bi +

∑
q≤p≤i

Cp

⌈
Sij

Tp

⌉ = Sij .

(7)

Note that the tasks τr, 1 ≤ r < q have an assigned slowdown
factor ηr, and their workload under slowdown is considered. We
compute a slowdown factor ηij for the unassigned tasks, which
results in Sij being a feasible scheduling point. For task τi, the
best scheduling point from the energy point of view is the one
that results in the smallest ηij . Thus, taking the minimum over
the slowdown factors corresponding to each scheduling point
of task τi gives the slowdown factor ηi, written as

ηi = minj(ηij). (8)

We show that the slowdown factors computed by the generic
slowdown algorithm, under both scheduling policies, are in
nonincreasing order. The claim along with the proof is given
below.
Lemma 1: Given the tasks are ordered in a nondecreasing

order of their relative deadline, the task slowdown factors
computed by the generic slowdown algorithm are in a non-
increasing order.

Proof: The claim follows from the task ordering and the
sequence in which task are assigned slowdown factors. Note
that the generic slowdown algorithm computes a candidate
slowdown factor for each unassigned task based on the fea-
sibility test of the given scheduling policy. We would like to
emphasize that the computation of a candidate slowdown factor
for a task [(3) and (7)] assumes the same slowdown factor
for all unassigned tasks. In each iteration of the algorithm,
the maximum over the task candidate slowdown factors ηm

is assigned to the unassigned tasks up to index m. Since the
maximum over all candidate slowdown factors is assigned to
some tasks, this can only lower the candidate slowdown factor
in future iterations. Hence, the candidate slowdown factor of
each task and the maximum over the candidate slowdown
factors are nonincreasing in consecutive iterations. Since the
tasks are assigned a slowdown in increasing order of their index
and the value of ηm is nonincreasing in consecutive iterations,
the task slowdown factors are in nonincreasing order. �

D. Frequency Inheritance

We show that the property of frequency inheritance, where
a task inherits the frequency of a blocked task, is important
in ensuring task deadlines. Note that the computation of the
candidate slowdown factor for a task τi, as given by (3) and (7),
assumes the same slowdown for task τi and its blocking section
Bi. However, it is known that tasks are blocked by the critical
section of tasks with larger relative deadlines [30] and a block-
ing task can have a smaller slowdown factor than the blocked

task (by Lemma 1). A lower slowdown factor for a blocking
task can increase the blocking time for the task and result in a
deadline miss. Therefore, it is necessary that the slowdown of a
blocking task be adjusted at runtime to avoid deadline misses.

We illustrate in Fig. 3 that tasks can miss their deadline if
they do not follow frequency inheritance. We consider tasks
scheduled by the EDF scheduling policy and a similar case
arises under RM scheduling as well. Fig. 3(a) shows the task
set represented by (1). For the example, the algorithm based on
the EDF scheduling policy (3) computes task slowdown factors
of η1 = 1.0 and η2 = 0.167. Fig. 3(b) shows the EDF schedule
at the computed slowdown factors where τ1 misses its deadline.
The computation of the slowdown factor for task τ1 assumes the
same slowdown of η1 for the blocking sections and can tolerate
a blocking time of 3/1.0 = 3.0. However, executing task τ2 at
a speed of η2 = 0.167 can extend the blocking time to as much
as 3/0.167 = 18. As seen in the figure, task τ1 is blocked for
17 time units, which is greater than the period (deadline) of
task τ1 and results in τ1 missing the deadline. With frequency
inheritance, task τ2 inherits a slowdown of η = η1 = 1.0, when
blocking task τ1. This bounds the blocking time, and task τ1
meets its deadline as shown in Fig. 3(c). We later prove that the
property of frequency inheritance guarantees all task deadlines
for the proposed algorithms.

We now state the processor slowdown rules that incorporate
frequency inheritance. The processor slowdown η depends on
the executing task and the tasks that are blocked in the system.
The slowdown rules are stated as follows.

1) Rule 0: η = 0 (shutdown the processor), when idle.
2) Rule 1: η = ηi, when τi is executing and not blocking any

other task.
3) Rule 2: η = max(ηi,maxj(ηj)), when τi is blocking

tasks τj . This rule enforces frequency inheritance. If the
blocked task has a higher slowdown factor, this slowdown
is inherited by the blocking task.

Resource access protocols like priority inheritance protocol
implement priority inheritance [31] and frequency inheritance
can be easily augmented to these protocols. We prove next that
all tasks meet the deadline under the frequency inheritance rules
for processor slowdown.
Theorem 1: Based on the EDF scheduling policy, the slow-

down factors computed by the static slowdown algorithm along
with the frequency inheritance rules for processor slowdown
guarantee all task deadlines.

Proof: The workload (computation time) for a task τk at
the assigned slowdown of ηk is Ck/ηk. Since the tasks are
assigned a slowdown factor greater than or equal to the candi-
date slowdown factor computed using (3), each task τi, i = 1,
. . . , n, satisfies the condition

1
ηi

Bi

Di
+

i∑
k=1

1
ηk

Ck

Dk
≤ 1. (9)

The proof is similar to the proof by Baker [30] with the consid-
eration of task slowdown factors and is proven by contradiction.
Suppose the claim is false and we let t be the first time that a
job misses its deadline. Let t′ be the latest time before t such

1030 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, JUNE 2006

Fig. 3. Motivation for frequency inheritance. (a) Task arrival time and deadlines with critical sections. (b) Slowdown computed by the generic algorithm based
on EDF scheduling, η1 = 1.0 and η2 = 0.167. A slowdown of η = 0.167 for task τ2 increases the blocking time for task τ1, and job τ1 misses the deadline.
(c) Frequency inheritance bounds the blocking time, and all tasks meet the deadline.

that there are no pending jobs with arrival times before t′ and
deadlines less than or equal to t. Since no requests can arrive
before system start time (time = 0), t′ is well defined. Let the
length of the interval be X = t− t′ and A be the set of jobs
that arrive in [t′, t] and have deadlines in [t′, t]. There exists an
index i such that A ⊆ {τ1, . . . , τi}. By choice of t′, there are
pending requests of jobs in A at all times during the interval
[t′, t] and the system is never idle in this interval. By the EDF
priority assignment, the only jobs that are allowed to start in
[t′, t] are in A. However, jobs with a deadline greater than t,
which are holding resources (at time t′) required by the jobs in
A, can execute in [t′, t]. Such jobs are denoted by the set B.
Each job Jb ∈ B executes with a deadline greater than t, and
it is true that X < Db. In particular, the maximum execution
time at full speed of blocking jobs in [t′, t] is bounded by Bi

[31]. By the frequency inheritance rules, the blocking critical
section inherits the maximum slowdown over the jobs blocked
in the system. By Lemma 1, the minimum slowdown of the
jobs in A is ηi. Since the jobs in B block some job in A,
they execute at a slowdown of at least ηi. Thus, the blocking
time is bounded by (1/ηi)Bi. The total execution time of the
jobs in A and B is given by (1/ηi)Bi +

∑i
k=1(1/ηk)(�(X −

Dk)/Tk� + 1)Ck. Since a task misses its deadline at time t, the
execution time for these jobs exceeds X , which is the length of
the interval. Therefore

1
ηi
Bi +

i∑
k=1

1
ηk

(⌊
X −Dk

Tk

⌋
+ 1
)
Ck > X.

Since X/Tk ≥ �X/Tk�, we have

1
ηi

Bi

X
+

i∑
k=1

1
ηk

(
X −Dk + Tk

TkX

)
Ck > 1

=
1
ηi

Bi

X
+

i∑
k=1

1
ηk

(
1 +

Tk −Dk

X

)
Ck

Tk
> 1

Dk ≤ X ∀k, k = 1, . . . , i, and we have

1
ηi

Bi

Di
+

i∑
k=1

1
ηk

(
1+

Tk−Dk

Dk

)
Ck

Tk
=

1
ηi

Bi

Di
+

i∑
k=1

1
ηk

Ck

Dk
> 1

JEJURIKAR AND GUPTA: ENERGY-AWARE TASK SCHEDULING FOR EMBEDDED REAL-TIME SYSTEMS 1031

which contradicts (9). Hence, all tasks are guaranteed to meet
the deadline. �
Theorem 2: Based on the RM scheduling policy, the slow-

down factors computed by the slowdown algorithm along with
the frequency inheritance rules for processor slowdown guaran-
tee all task deadlines.

Proof: We prove the claim by contradiction, and the proof
for RM scheduling is similar to that of EDF scheduling. All
tasks are assigned a slowdown factor greater than or equal to
the candidate slowdown factor computed using (7), and there
exists a scheduling point Sij for each task τi, i = 1, . . . , n,
which satisfies the condition

1
ηi
Bi +

∑
1≤k≤i

Ck

ηk

⌈
Sij

Tk

⌉
≤ Sij . (10)

Suppose the above claim is false and an instance of task τi

misses its deadline. Let t′ be the latest time before t such
that there are no pending jobs with priority less than P(τi).
Corresponding to each scheduling point Sij , let A denote the
set of jobs that arrive in [t′, t′ + Sij] with priority greater than
or equal to that of τi, then A ⊆ {τ1, . . . , τi} Let B denote the
jobs that execute in [t′, t′ + Sij] with a priority less than task τi.
The maximum execution time of jobs in B at full speed is
bounded by Bi [31]. By Lemma 1 and the frequency inheritance
rules, the minimum slowdown of the jobs in B is ηi, and the
blocking time is bounded by (1/ηi)Bi. Thus, the total execution
time of the jobs in an interval of length Sij is bounded by
(1/ηi)Bi +

∑i
k=1(Ck/ηk)�Sij/Ti�. Since task τi misses its

deadline, for each scheduling point Sij , the execution time
of the jobs in the interval t′ + Sij exceeds the length of the
interval. Therefore

1
ηi
Bi +

i∑
k=1

Ck

ηk

⌈
Sij

Tk

⌉
> Sij

which contradicts (10). Hence, all tasks are guaranteed to meet
the deadline. �

E. Computation Time

The complexity of the algorithm is dictated by the computa-
tion of the candidate slowdown factors, given by (3) and (7).
Each iteration of the generic slowdown algorithm computes
candidate slowdown factors for the tasks that are not yet as-
signed slowdown factors. Under EDF scheduling, each iteration
of the algorithm can be performed in linear time. While most
examples require only one iteration, the generic slowdown
algorithm can have n iterations in the worst case, resulting in
a worst case time complexity of O(n2). For the RM scheduling
policy, the computation of slowdown factors has a pseudopoly-
nomial time complexity. This is due to the fact that the total
number of scheduling points arising in the exact RM analysis
are pseudopolynomial in number. However, in practice, the
number of scheduling points is not large and the algorithms are
efficient. Note that the slowdown algorithms are in the same

time complexity class as the feasibility test for the respective
scheduling policy.

F. Examples

We compute the slowdown factors under both scheduling
policies for the example in Section II. The task set is τ1 =
{5, 5, 2} and τ2 = {40, 40, 4}, and their worst case blocking
time is B1 = 3 and B2 = 0 at maximum speed.

1) EDF Scheduling: Under the EDF scheduling policy, we
use (3) to compute the task slowdown factors. Initially, the
slowdown factor of all tasks is unassigned, and the computation
of candidate slowdown factor for each task is given as

1
η1

(
3
5

+
2
5

)
= 1 gives η1 =

5
5

= 1.0

and
1
η2

(
0
40

+
2
5

+
4
40

)
= 1 gives η2 = 0.5.

The maximum over the candidate slowdown factors is
η1 = 1.0, and we assign task τ1 a slowdown of η1 = 1.0. This
completes the first iteration. In the next iteration, we compute
the candidate slowdown for task τ2 considering the assigned
slowdown of task τ1

1
1.0

(
2
5

)
+

1
η2

(
0
8

+
4
40

)
= 1 gives η2 = 0.167.

Task τ2 being the only unassigned task has a slowdown factor
set to η2 = 0.167. Thus, the slowdown factors for the tasks are
η1 = 1.0 and η2 = 0.167.
2) RM Scheduling: Under the RM scheduling policy, we

compute slowdown factors corresponding to each scheduling
point of a task as given by (7). Task τ1 has only one scheduling
point S11 = 5 and task τ2 has eight scheduling points S2 =
{S2k = 5k|k = 1, . . . , 8}. The candidate slowdown factor for
task τ1 is determined by S11 = 5, and its computation is
given as

1
η11

(
3 + 2 ·

⌈
5
5

⌉)
= 5 gives η1 = η11 = 1.0.

The candidate slowdown factor for task τ2 is the minimum of
the slowdown factors corresponding to the eight scheduling
points. We compute the slowdown factor for each schedul-
ing point, and the computation for two points S21 = 5 and
S28 = 40 is given as

1
η21

(
0 + 2 ·

⌈
5
5

⌉
+ 4 ·

⌈
5
40

⌉)
=5 gives η21 = 1.2

1
η28

(
0 + 2 ·

⌈
40
5

⌉
+ 4 ·

⌈
40
40

⌉)
=40 gives η28 = 0.5.

The slowdown factor for each scheduling point decreases
as the scheduling point increases (for this particular example).
The minimum occurs at the scheduling point S28 = 40, which
results in a slowdown factor of η2 = η28 = 0.5. The maximum

1032 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, JUNE 2006

Fig. 4. Generic simulator using PARSEC.

over the candidate slowdown factors for both tasks is η1 = 1.0,
and we assign task τ1 a slowdown of η1 = 1.0. With the slow-
down assigned to task τ1, we compute the candidate slowdown
for task τ2. For brevity, we only show the computation of
slowdown factor corresponding to the two extreme scheduling
points S21 and S28

2
1.0

·
⌈

5
5

⌉
+

1
η21

(
0 + 4 ·

⌈
5
40

⌉)
= 5 gives η21 = 1.33

2
1.0

·
⌈

40
5

⌉
+

1
η28

(
0 + 4 ·

⌈
40
40

⌉)
= 40 gives η28 = 0.167.

The minimum slowdown factor for the scheduling points of
task τ2 occurs at S28. The candidate slowdown factor for task
τ2 is η2 = η28 = 0.167 and τ2 is assigned a slowdown of
η2 = 0.167. Thus, the task slowdown factors computed under
RM scheduling are η1 = 1.0 and η2 = 0.167.

IV. EXPERIMENTAL RESULTS

We have used PARSEC [42], a C-based discrete event simu-
lation language, to implement a simulator with the scheduling
policies and the slowdown algorithms. The simulator block
diagram is shown in Fig. 4. It consists of two main entities,
namely, the task manager and the real time operating system
(RTOS). The task manager generates jobs for each task pe-
riodically and sends it to the RTOS entity. The RTOS is the
crucial entity, and all the scheduling algorithms are part of this
entity. It schedules the jobs on the processor and controls the
processor speed through the speed regulator. The jobs access
the shared resource through the resource access protocol. The
profile manager profiles the energy consumed by each task and
calculates the total energy consumption of the system.

The dynamic power consumption P for complementary
metal oxide semiconductor (CMOS) circuits [43] depends on

the operating voltage and frequency of the processor and is
given by

P = CeffV
2
ddf (11)

where Ceff is the effective switching capacitance, Vdd is the
supply voltage, and f is the operating frequency. Note that
the transistor gate delay (and, hence, frequency) depends on the
voltage, and a decrease in voltage is accompanied by a decrease
in the processor frequency. The relationship between gate delay
tinv, which is inversely proportional to the operating frequency
(f), and voltage is given by

tinv =
kVdd

(Vdd − Vth)α
(12)

where Vth is the threshold voltage and α is a technology-
dependent parameter. Considering the voltage levels in cur-
rent embedded processors, the operating voltage range for the
processor is between 0.6 and 1.8 V. We have normalized the
operating speed and support discrete slowdown factors in steps
of 0.05 in the normalized range.

We compare the processor energy consumption of two tech-
niques based on the above power model.

1) Uniform slowdown with frequency inheritance (USFI):
The algorithm computes a uniform slowdown factor for
each task, as presented in Section III-B. Frequency in-
heritance is part of the resource access protocol, where a
blocking task inherits the maximum slowdown factor of
the blocked tasks, and, hence, the name USFI.

2) DS algorithm: The DS algorithm is proposed by Zhang
and Chanson [34]. A brief explanation of the algorithm
is given in the introductory part, and the details are
present in [34]. For correctness, the critical sections are
nonpreemptive under the DS algorithm.

We also transform the task set to an independent task set and
use slowdown algorithms for independent tasks to compute task

JEJURIKAR AND GUPTA: ENERGY-AWARE TASK SCHEDULING FOR EMBEDDED REAL-TIME SYSTEMS 1033

Fig. 5. Energy consumption normalized to USFI under the EDF and RM scheduling policies.

slowdown factor [9], [10]. With tasks having different slow-
down factors, frequency inheritance is important in bounding
the maximum blocking time and is part of the resource access
protocol. The two transformations are explained as follows:

1) Transformation I (T1): For each task τi, the execution
time Ci is increased by its blocking time Bi to result in a
transformed task set Γ′ = {τ ′1, . . . , τ ′n}, where each task
τ ′i = {Ti,Di, (Ci + Bi)}. The slowdown factors for the
transformed task set with frequency inheritance guaran-
tees all task deadlines.

2) Transformation II (T2): We add a new task called the
blocking task τb = {Tb, Tb, Cb} in the system, where
Cb = maxi(Bi) and Tb = mini(Ti). Task τb has the
smallest deadline, and its computation time is accounted
for in the feasibility analysis of all tasks, thereby ac-
counting for the blocking time. Frequency inheritance is
required to bound the blocking time and is part of the
resource access protocol. All task deadlines are ensured
under this transformation.

To manage the resource access, we use the DPCP [39] under
EDF scheduling policy and the PCP [31] under fixed priority
scheduling. The maximum blocking time for each task is com-
puted based on the protocol (nonpreemptive critical sections
under the DS algorithm). We have performed experiments on
real-life task sets as well as randomly generated tasks. The
slowdown factors are computed using the different algorithms,
and the task set is simulated for a time period equal to the
hyperperiod of the task set. Each task is assumed to execute
up to its WCET.

A. Real-Life Applications

We have used three applications (task sets) given in the Pro-
totyping Environment for Embedded Real Time Systems [44]
(PERTS) software. The applications are flight control system
(FCS), end to end scheduling (EES), and multiple resource
scheduling (MRS). A task set with multiple resources is con-
verted to an equivalent task set by scaling the execution period.
Each application has shared resources that are accessed in a mu-
tually exclusive manner. Fig. 5 shows the energy consumption
of each algorithm normalized to the energy consumption of the

USFI algorithm, under both EDF and RM scheduling policies.
It is seen in the graph that the energy consumption follows a
similar trend for both EDF and RM scheduling.

For the examples considered, it is seen that the USFI and
DS have the same energy consumption. The blocking time of
tasks is not significant and even if the slowdown factors are
computed assuming the tasks are independent, the feasibility of
the task set is not compromised. In such a case, both algorithms
compute the same slowdown factors and have the same energy
consumption. Transformations T1 and T2 have higher energy
consumption compared to USFI. Transformation T1 increases
the task execution time by the task blocking time, thereby
increasing the utilization of the transformed task set. A higher
utilization results in a higher slowdown and, hence, higher
energy consumption. T1 has the maximum energy consumption
and consumes, on average, 50% more energy than USFI. The
transformation T2 has a better performance than T1 and the
energy consumption of T2 is relatively closer to that of USFI.
Transformation T2 adds a blocking task with a workload of
the maximum blocking time over all tasks. The blocking task
has the minimum period, and it contributes to a considerable
increase in the utilization, thereby leading to higher slowdown
factors and more energy consumption. Note that if a trans-
formation results in infeasible slowdown factors, we do not
perform slowdown and the tasks are executed at the maximum
processor speed (ηi = 1 for all tasks).

B. Randomly Generated Task Sets

We performed experiments on randomly generated task sets
to compare the performance of the DS and USFI algorithms.
Similar to the work in [34], we used a mixed workload with
task periods belonging to one of the three period ranges [2000,
5000], [500, 2000], and [90, 200]. The WCET for the three
ranges is [10, 500], [10, 100], and [10, 20], respectively. Task
sets comprise of 10–15 tasks, uniformly distributed in these cat-
egories, with the period and WCET of a task randomly selected
within the corresponding ranges. The number of semaphores
(within 0–2) and the position of the critical sections within
each task execution were selected randomly. The length of the
critical sections were chosen to be CSperc × WCET, where

1034 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, JUNE 2006

Fig. 6. Energy consumption for random tasks normalized to the HS algorithm.

CSperc is the size of the critical section as a percentage of the
WCET. We vary CSperc up to 30% of the WCET in steps of 3%.
Task sets are generated with a utilization between 50% and 75%
at maximum speed.

Fig. 6 shows the energy consumption of DS and USFI
algorithms under both EDF and RM scheduling policies. The
energy consumption is normalized to the high speed (HS) [34]
algorithm, where the tasks execute at the high speed H of the
DS algorithm. From the figure, it is seen that the DS and USFI
algorithms follow a similar curve with an increase in blocking.
With the blocking time less than 12%, the task slowdown
factors are not influenced by blocking time, and the energy
consumption is the same as that of the HS algorithm. As the
blocking increases further, both DS and USFI compute better
slowdown factors and save more energy (up to 30%) compared
to the HS. However, it is seen that the DS algorithm consumes
slightly less energy than the proposed USFI algorithm. Overall,
the DS algorithm performs better than USFI with 1%–4% more
energy savings than the USFI algorithm under EDF scheduling.
Under the RM scheduling policy, the gains are negligible up to
18% blocking, with 2%–4% energy gains with further increase
in blocking.

To explain the differences in the energy savings between the
DS and USFI algorithm, we elaborate the differences in the two
algorithms. The DS algorithm is based on the computation of
two operating speeds, a speed H considering the worst case
blocking times for tasks and a speed L assuming tasks to be
independent. Conceptually, the two speeds represent two modes
of operation referred to as Hmode and Lmode corresponding
to the speeds H and L, respectively. The mode transitions
are described by the DS algorithm, and the execution time in
Hmode and Lmode is determined dynamically based on task
blocking. When H > L, executing tasks at speed L reduces
the energy consumption. Comparing the USFI algorithm to the
DS algorithm, the system always executes in Hmode under the
USFI algorithm, where all task slowdown factors are computed
considering the worst case task blocking times. As opposed
to DS algorithm where all tasks have a constant slowdown
(speed H) in Hmode, tasks can have different slowdown factors
under the USFI algorithm. The slowdown factors computed
by the USFI algorithm are less than or equal to the speed H
under the DS algorithm. Some tasks have a slowdown factor
of ηi = H , while the remaining tasks have slowdown factors

smaller than H , which reduces the energy consumption of
the system.

The factors that lead to the difference in energy gains can be
explained by comparing the energy consumption during the two
modes of execution (Hmode and Lmode) in the DS algorithm to
the analogous counterparts of the USFI algorithm. Note that the
USFI algorithm does not have two modes of execution, but all
tasks are always executed at the slowdown factors computed
by Algorithm 1.

1) Execution in Lmode: When the system is executing in
Lmode under the DS algorithm, all tasks are executed
at speed L. The same tasks if executed under the USFI
algorithm would execute at speed ηi ≤ H , where some
tasks have a slowdown factor, ηi = H and other tasks
have a slowdown factor ηi < H (potentially ηi can be less
than L as well). Even when some tasks have a slowdown
factor less than L, it is important to note that a uniform
slowdown of L for all tasks is more energy efficient than
some tasks having higher slowdown and some having a
lower slowdown factor [45]. Under the EDF scheduling
policy, a uniform slowdown factor of L for the task set is
known to be the optimal slowdown (assuming tasks are
independent). Thus, the DS algorithm results in signifi-
cant energy savings when executing the system at speed
L, compared to the counterpart task executions under the
USFI algorithm.

2) Execution in Hmode: When the system is executing in
Hmode under the DS algorithm, all tasks are executed at
speed H . Whereas under the USFI algorithm, the same
tasks would be executed at a slowdown factor of ηi ≤ H
(even after frequency inheritance rules). Since some tasks
are executed at lower speeds than H , this results in
reduced energy consumption compared to DS algorithm.
Thus, the USFI algorithm consumes less energy than the
DS algorithm for the duration when the system is in
Hmode under the DS algorithm.

Thus, Lmode is beneficial for the DS algorithm, whereas the
USFI algorithm performs better when compared to Hmode of
the DS algorithm. Thus, the effectiveness of the two algorithms
depends on the duration of the execution time in the two modes.
Fig. 7(a) compares the execution time of the DS algorithm in
the two modes (for the case of EDF scheduling). The y-axis

JEJURIKAR AND GUPTA: ENERGY-AWARE TASK SCHEDULING FOR EMBEDDED REAL-TIME SYSTEMS 1035

Fig. 7. (a) Percentage time spent by the DS algorithm in Lmode and Hmode. (b) Energy consumption at speeds H , L, and ηmin.

shows the percentage execution time in Lmode as blocking time
is varied. It is seen in the figure that the duration of Lmode is
significantly greater (greater than 78% of the total time) than
that of Hmode. Since the DS algorithm results in higher energy
savings than USFI when executing in Lmode, the energy savings
of the DS algorithm are higher than that of USFI.

In Fig. 7(a), it is seen that an increase in the blocking
percentage decreases the time duration of Lmode (time duration
in Hmode increases). This is due to the fact that an increase
in the blocking time (critical sections) increases the chances
of a task being blocked, which results in more transitions
to Hmode. Thus, it is expected that the difference in the
energy savings between the two algorithms should decrease
as blocking increases. However, the difference in the energy
consumption of DS and USFI algorithms is seen to increase
as blocking increases (Fig. 6). Note that the difference in the
energy consumption in the two modes also plays an important
role. Fig. 7(b) compares the normalized energy consumption
(normalized to full speed) at speeds H and L. Speed L is
independent of the blocking and depends only on the task
set utilization. Higher blocking time results in an increase in
the speed H , and, hence, we see an increase in the energy
consumption at speed H . We also analyze the task slowdown
factors computed by the USFI algorithm. Increase in the speed
H with higher blocking results in assigning a higher slowdown
factor for some tasks (ηi = H), and this gives a chance to
lower the slowdown factors for other tasks. While tasks can
potentially have different slowdown factors, it was seen in our
experiments that the task are partitioned into two sets based on
the slowdown factors, namely: 1) tasks with a speed ηmax = H;
and 2) tasks with a speed ηmin. The energy consumption at a
slowdown factor of ηmin is also shown in Fig. 7(b) (referred
as min task speed in the figure). Note that the increase in the
energy consumption at speed H , compared to that at speed
L, is much greater than the decrease in the energy consump-
tion at speed ηmin. The difference in the energy consumption
between speeds H and L increases the energy efficiency of
task execution in Lmode (of DS algorithm) compared to that
under the USFI algorithm. With a higher energy efficiency of
Lmode with increased blocking, even though the duration of
Lmode decreases, the total energy savings of the DS algorithm
increase. Thus, the difference in energy consumption between
DS and USFI increases with greater blocking.

Though the DS scheme performs slightly better than USFI,
it is noteworthy that the correctness (meeting all deadlines) of
the DS algorithm is based on nonpreemptive critical sections
(an example is presented in Section II-D). On the other hand,
the USFI algorithm works with task synchronization. The USFI
algorithm does not have two modes of operation similar to the
DS algorithm, and the task slowdown factors are computed,
taking into account the worst case blocking time encountered by
each task. Thus, the USFI algorithm guarantees task feasibility
under task synchronization. Furthermore, frequency inheritance
can be easily augmented to known protocols. Priority inher-
itance is an integral part of most protocols, and frequency
inheritance is a generalization of this idea. Thus, USFI is a
simple extension to known protocols and can work with any
resource access protocol.

V. CONCLUSION AND FUTURE WORK

In this paper, we present algorithms to compute static slow-
down factor for a periodic task set. We take into consideration
the effect of blocking that arises due to task synchronization.
We study static and dynamic priority scheduling policies and
have considered the RM and EDF scheduling, respectively. The
algorithms have a similar time complexity as their counter-
part slowdown algorithms for independent tasks. Computing
slowdown factors under EDF scheduling has polynomial time
complexity, and computing the slowdown factors under RM
scheduling has pseudopolynomial time complexity. Experimen-
tal results show that the techniques are energy efficient, and the
algorithms can be easily implemented in an RTOS. This will
have a great impact on the energy utilization of portable and
battery-operated devices.

We plan to further exploit the static and dynamic slack
in the system to make the system more energy efficient. As
future work, we plan to compute slowdown factors considering
the effects of slowdown on the energy consumption of all
components in the system.

REFERENCES

[1] J. W. S. Liu, Real-Time Systems. Upper Saddle River, NJ: Prentice-
Hall, 2000.

[2] G. C. Buttazzo, Hard Real-Time Computing Systems. Boston, MA:
Kluwer, 1995.

1036 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, JUNE 2006

[3] F. Yao, A. J. Demers, and S. Shenker, “A scheduling model for re-
duced CPU energy,” in Proc. IEEE Symp. Foundations Computer Science,
Milwaukee, WI, 1995, pp. 374–382.

[4] W. Kwon and T. Kim, “Optimal voltage allocation techniques for dynam-
ically variable voltage processors,” in Proc. Design Automation Conf.,
Anaheim, CA, 2003, pp. 125–130.

[5] G. Quan and X. Hu, “Energy efficient fixed-priority scheduling for real-
time systems on variable voltage processors,” in Proc. Design Automation
Conf., Las Vegas, NV, Jun. 2001, pp. 828–833.

[6] ——, “Minimum energy fixed-priority scheduling for variable voltage
processors,” in Proc. Design Automation and Test Europe, Paris, France,
Mar. 2002, pp. 782–787.

[7] H. Yun and J. Kim, “On energy-optimal voltage scheduling for fixed-
priority hard real-time systems,” Trans. Embed. Comput. Syst., vol. 2,
no. 3, pp. 393–430, Aug. 2003.

[8] Y. Shin, K. Choi, and T. Sakurai, “Power optimization of real-time embed-
ded systems on variable speed processors,” in Proc. Int. Conf. Computer
Aided Design, San Jose, CA, Nov. 2000, pp. 365–368.

[9] F. Gruian, “Hard real-time scheduling for low-energy using stochastic
data and dvs processors,” in Proc. Int. Symp. Low Power Electronics and
Design, Huntington Beach, CA, Aug. 2001, pp. 46–51.

[10] H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez, “Dynamic and
aggressive scheduling techniques for power-aware real-time systems,”
in Proc. IEEE Real-Time Systems Symp., London, U.K., Dec. 2001,
pp. 95–105.

[11] ——, “Determining optimal processor speeds for periodic real-time tasks
with different power characteristics,” in Proc. EuroMicro Conf. Real-Time
Systems, Delft, The Netherlands, Jun. 2001, pp. 225–232.

[12] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” in Proc. 18th Symp. Operating
Systems Principles, Banff, Canada, 2001, pp. 89–102.

[13] W. Kim, J. Kim, and S. L. Min, “A dynamic voltage scaling algorithm
for dynamic-priority hard real-time systems using slack time analysis,”
in Proc. Design Automation and Test Europe, Paris, France, Mar. 2002,
pp. 788–794.

[14] P. Mejia-Alvarez, E. Levner, and D. Mosse, “Adaptive scheduling server
for power-aware real-time tasks,” ACM Trans. Embed. Comput. Syst.,
vol. 2, no. 4, pp. 226–241, Nov. 2003.

[15] D. Shin and J. Kim, “Dynamic voltage scaling of periodic and aperiodic
tasks in priority-driven systems,” in Proc. Asia South Pacific Design
Automation Conf., Yokohama, Japan, 2004, pp. 651–656.

[16] C. Rusu, R. Melhem, and D. Mosse, “Maximizing rewards for real-time
applications with energy constraints,” ACM Trans. Embed. Comput. Syst.,
vol. 2, no. 4, pp. 537–559, Nov. 2003.

[17] T. A. AlEnawy and H. Aydin, “Energy-constrained performance op-
timizations for real-time operating systems,” in Workshop Compilers
and Operating System Low Power, New Orleans, LA, Sep. 2003,
pp. 11–20.

[18] J. Luo and N. Jha, “Power-conscious joint scheduling of periodic task
graphs and aperiodic tasks in distributed real-time embedded systems,”
in Proc. Int. Conf. Computer Aided Design, San Jose, CA, Nov. 2000,
pp. 357–364.

[19] J. Luo, N. Jha, and L. S. Peh, “Simultaneous dynamic voltage scaling
of processors and communication links in real-time distributed embed-
ded systems,” in Proc. Design Automation and Test Europe, Munich,
Germany, Mar. 2003, pp. 11150–11151.

[20] L. Yan, J. Luo, and N. K. Jha, “Combined dynamic voltage scaling and
adaptive body biasing for heterogeneous distributed real-time embedded
systems,” in Proc. Int. Conf. Computer Aided Design, San Jose, CA,
Nov. 2003, pp. 30–38.

[21] F. Gruian and K. Kuchcinski, “LEneS: Task scheduling for low-
energy systems using variable supply voltage processors,” in Proc. Asia
South Pacific Design Automation Conf., Yokohama, Japan, Jan. 2001,
pp. 449–455.

[22] Y. Zhang, X. S. Hu, and D. Z. Chen, “Task scheduling and voltage
selection for energy minimization,” in Proc. Design Automation Conf.,
New Orleans, LA, 2002, pp. 183–188.

[23] L. Leung, C. Tsui, and W. Ki, “Minimizing energy consumption
of multiple-processor-core systems with simultaneous task allocation
scheduling and voltage assignment,” in Proc. Asia South Pacific Design
Automation Conf., Yokohama, Japan, 2004, pp. 645–650.

[24] D. Zhu, R. Melhem, and B. Childers, “Scheduling with dynamic volt-
age/speed adjustment using slack reclamation in multi-processor real-
time systems,” in Proc. IEEE Real-Time Systems Symp., London, U.K.,
Dec. 2001, pp. 84–94.

[25] D. Zhu, N. AbouGhazaleh, D. Mosse, and R. Melhem, “Power aware
scheduling for and/or graphs in multi-processor real-time systems,”

in Proc. Int. Conf. Parallel Processing, Vancouver, Canada, 2002,
pp. 593–601.

[26] R. Mishra, N. Rastogi, D. Zhu, D. Mosse, and R. Melhem, “Energy aware
scheduling for distributed real-time systems,” in Proc. Int. Parallel and
Distributed Processing Symp., Nice, France, 2003, p. 21.

[27] A. K. Mok, “Fundamental design problems of distributed systems for hard
real-time environment,” Ph.D. dissertation, Dept. Elect. Eng. Comput.
Sci., Massachusetts Inst. Technol., Cambridge, 1983.

[28] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of Np-Completeness. San Francisco, CA: Freeman, 1979.

[29] J. A. Stankovic, M. Spuri, M. D. Natale, and G. Buttazzo, “Implications
of classical scheduling results for real-time systems,” IEEE Trans.
Comput., vol. 28, no. 6, pp. 16–25, Jun. 1994.

[30] T. P. Baker, “Stack-based scheduling of real-time processes,” J. Real-Time
Syst., vol. 3, no. 1, pp. 67–99, Mar. 1991.

[31] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols:
An approach to real-time synchronization,” IEEE Trans. Comput., vol. 39,
no. 9, pp. 1175–1185, Sep. 1990.

[32] R. Jejurikar and R. Gupta, “Energy aware task scheduling with task syn-
chronization for embedded real time systems,” in Proc. Int. Conf. Com-
pilers, Architecture and Synthesis Embedded Systems, Grenoble, France,
Oct. 2002, pp. 164–169.

[33] ——, “Energy aware edf scheduling with task synchronization for embed-
ded real time operating systems,” in Workshop Compilers and Operating
System Low Power, Charlottesville, VA, Sep. 2002, pp. 7.1–7.6.

[34] F. Zhang and S. T. Chanson, “Processor voltage scheduling for real-time
tasks with non-preemptible sections,” in Proc. IEEE Real-Time Systems
Symp., Austin, TX, Dec. 2002, pp. 235–245.

[35] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts.
New York: Wiley, 2001.

[36] Intel StrongARM Processor, Intel Inc., [Online]. Available: http://www.
intel.com/design/strong/specupdt/278259.htm

[37] Intel XScale Processor, Intel Inc., [Online]. Available: http://developer.
intel.com/design/intelxscale/xscale_datasheet4.htm

[38] Transmeta Crusoe Processor, Transmeta Inc., [Online]. Available: http://
www.transmeta.com/crusoe/specs/html

[39] M. Chen and K. Lin, “Dynamic priority ceilings: A concurrency control
protocol for real-time systems,” Real Time Syst. J., vol. 2, no. 1, pp. 325–
346, Nov. 1990.

[40] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61,
Jan. 1973.

[41] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algo-
rithm: Exact characterization and average case behaviour,” in Proc. IEEE
Real-Time Systems Symp., Santa Monica, CA, Dec. 1989, pp. 166–171.

[42] Parallel Computing Laboratory, PARSEC: A C-Based Simulation
Language, Los Angeles: Univ. California, [Online]. Available: http://
pcl.cs.ucla.edu/projects/parsec

[43] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design. Read-
ing, MA: Addison-Wesley, 1993.

[44] Real Time Systems Laboratory, Prototyping Environment for Real-
Time Systems (PERTS), Urbana-Champaign: University of Illinois at
Urbana Champaign (UIUC), [Online]. Available: http://pertsserver.cs.
uiuc.edu/software/

[45] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically
variable voltage processor,” in Int. Symp. Low Power Electronics and
Design, Monterey, CA, Aug. 1998, pp. 197–202.

Ravindra Jejurikar (S’99) received the bachelor’s
degree in computer science (systems software) from
the Government College of Engineering, Pune, India,
in 1997, and the M.Tech. degree in computer science
and engineering from the Indian Institute of Technol-
ogy, Bombay, India, in 1999. He is currently working
toward the Ph.D. degree in computer sytems design
at the Department of Information and Computer
Science, University of California, Irvine.

His research interests include system level power
management with an emphasis on low-power
scheduling techniques for real-time systems.

JEJURIKAR AND GUPTA: ENERGY-AWARE TASK SCHEDULING FOR EMBEDDED REAL-TIME SYSTEMS 1037

Rajesh Gupta (S’83–M’85–F’04) received the
B.Tech. degree in electrical engineering from the
Indian Institute of Technology, Kanpur, India, in
1984, the M.S. degree in EECS from the Univer-
sity of California, Berkeley, in 1986, and the Ph.D.
degree in electrical engineering from Stanford Uni-
versity, Stanford, CA, in 1993.

He is a Professor and a holder of the Qualcomm
endowed chair in embedded microsystems in the
Department of Computer Science and Engineering,
University of California, San Diego. His current

research interests are in embedded systems, very large scale integration (VLSI)
design, and adaptive system architectures. Earlier, he was in the faculty of the
Computer Science departments of the University of California, Irvine, and the
University of Illinois, Urbana-Champaign. Prior to that, he worked as a Circuit
Designer at Intel Corporation, Santa Clara, CA, on a number of processor
design teams. He is the author/coauthor of over 150 articles on various aspects
of embedded systems and design automation and three patents on phase-locked
loop (PLL) design, data-path synthesis, and system-on-chip modeling.

Dr. Gupta is a recipient of the Chancellors Fellow at the University of
California, Irvine, UCI Chancellors Award for excellence in undergraduate
research, National Science Foundation CAREER Award, two Departmental
Achievement Awards, and a Components Research Team Award at Intel. He is
the Editor-in-Chief of the IEEE Design and Test of Computers and serves on the
editorial boards of the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN

OF INTEGRATED CIRCUITS AND SYSTEMS and the IEEE TRANSACTIONS ON

MOBILE COMPUTING. He is a Distinguished Lecturer for the ACM/SIGDA
and the IEEE CAS Society.

