
Energy-Aware Variable Partitioning and
Instruction Scheduling for Multibank Memory
Architectures

ZHONG WANG and XIAOBO SHARON HU
University of Notre Dame

Many high-end DSP processors employ both multiple memory banks and heterogeneous register
files to improve performance and power consumption. The complexity of such architectures presents
a great challenge to compiler design. In this article, we present an approach for variable partitioning
and instruction scheduling to maximally exploit the benefits provided by such architectures. Our
approach is built on a novel graph model which strives to capture both performance and power
demands. We propose an algorithm to iteratively find the variable partition such that the maximum
energy saving is achieved while satisfying the given performance constraint. Experimental results
demonstrate the effectiveness of our approach.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compil-
ers; C.3 [Special-Purpose and Application-Based Systems]—Signal processing systems; B.5.1
[Register-Transfer-Level Implementation]: Design—Memory design

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Multiple memory banks, nonorthogonal architecture, instruc-
tion scheduling, operating mode, parallelism and serialism balance, runtime and energy saving
tradeoff

1. INTRODUCTION

To meet the ever increasing demands for higher performance and lower power
on embedded systems, domain-specific processors with sophisticated architec-
tures are being designed and deployed to better match target applications. One
such architecture, often referred to as a nonorthogonal architecture [Cho et al.
2002], is characterized by irregular data paths comprising of a heterogeneous
register set and multiple memory banks. A number of embedded DSP proces-
sors, for example, Analog Device ADSP2100, Motorola DSP56000, and NEC
uPd77016, are based on this architecture. Compared to a large, centralized ho-
mogeneous register file, a heterogeneous (in terms of instruction usage) register

Authors’ addresses: Department of Computer Science and Engineering, University of Notre Dame,
Notre Dame, IN 46556; email: {zwang1,shu}@cse.nd.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1084-4309/05/0400-0369 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005, Pages 369–388.

370 • Z. Wang and X. S. Hu

set organized in a distributed fashion can reduce both access time and power, as
well as simplify the control logic and chip layout design [Desoli 1998]. The use
of multibank memory can potentially improve the exploitation of instruction
level parallelism, which in turn may decrease memory access time and energy
consumption compared to a single large memory [Benini et al. 2000].

Harvesting the benefits provided by the nonorthogonal architecture hinges
on effective compiler support. Parallel operations afforded by multibank mem-
ory give rise to the problem of how to maximally utilize the instruction level
parallelism. Similarly, heterogeneous register sets increase the difficulty in de-
ciding which register set to use for a certain instruction. A good compiler should
consider the heterogeneous register set assignment and instruction scheduling
together, since the two are closely related [Zeithofer and Wess 2001]. It is not
difficult to see that compilation techniques for general-purpose architectures
are not adequate to handle the irregularity in the architecture. In this article,
we focus on two critical steps in the compilation process, that is, partitioning
variables (or data) among the memory banks, and scheduling memory access
operations. The decisions made in these two steps can have a significant impact
on the overall program code size, execution time, and energy consumption.

A number of articles (e.g., Sudarsanam and Malik [2000]; Saghir et al. [1996];
Lorenz et al. [2001]; Cho et al. [2002]; Leupers and Kotte [2001]; Zhuge et al.
[2001]; Wuytack et al. [1969]) have investigated the use of multibank memory
to achieve maximum instruction level parallelism (i.e., optimize performance).
These approaches differed in either the models or the heuristics (which will
be discussed in more detail in later sections). However, none of these works
considered the combined effect of performance and power requirements.

It is well known that memory components in embedded systems, particularly
those for data-intensive applications, are a major power consumer [Catthoor
et al. 1998]. To help ease the energy demands by memory, advanced memory
modules are designed to operate in different modes, for example, active, idle, and
sleep [Rambus 1999; Micron 1999], which have different operating currents.
The exploitation of different operating modes together with multiple memory
banks further complicates the problem of variable partitioning and memory op-
eration scheduling. On top of this, performance requirement often conflicts with
energy savings. Previous works have studied the effects of multiple memory op-
erating modes at the higher levels such as program basic blocks, system tasks,
or processes. However, significant energy savings and performance improve-
ments can be obtained by exploiting memory operating modes and multibank
memory simultaneously at the instruction level (which we will illustrate with
an example in Section 3, as well as in the experimental results section).

In this article, we present our approach to variable partitioning and memory
access operation scheduling in the presence of multibank memory and multiple
memory operating modes for maximizing energy savings without sacrificing
performance. We reveal some observations to help categorize different cases.
A novel memory access graph model, which simultaneously captures potential
energy savings as well as potential performance improvements, is proposed
to overcome the weakness of previous techniques. Based on this model, we
have devised an iterative technique to find best energy savings while satisfying

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

Energy-Aware Variable Partitioning and Instruction Scheduling • 371

Fig. 1. The architecture of DSP56000.

the performance constraint. Experimental results show that our technique can
achieve an average code size improvement of 14.15% over the unoptimized pro-
grams (for benchmarks in DSPStone [Zivoljnovic et al. 1994]) and 7.71% over
the programs optimized by the original SPAM compiler (Princeton Spam Com-
piler Project; web site: www.ee.princeton.edu/spam/). Code size improve-
ments translate directly to shorter execution times. Such improvements are
quite significant compared with those obtained by existing approaches. In terms
of energy savings from memory modules, our results on average outperform
those from SPAM by around 47%. The experiments on the benchmark pro-
grams also showed that our algorithm runs much more efficiently than the
original algorithm of SPAM.

The rest of the article is organized as follows. Section 2 presents the back-
ground material and reviews previous work. Sections 3 and 4 describe the en-
ergy savings strategy and graph model, respectively. The variable partitioning
and instruction scheduling algorithm is discussed in Section 5. Section 6 pro-
vides experimental results and, finally, Section 7 concludes the article.

2. PROBLEM FORMULATION AND RELATED WORK

In this section, we briefly discuss essential features of the nonorthogonal archi-
tecture. We then formulate our problem and review related work.

2.1 Target Architecture and Problem Formulation

Our target architecture consists of multiple memory banks and a heterogeneous
register set. Associated with each memory bank is an independent set of address
bus, data bus, and address generation unit (AGU). Figure 1 shows an example
of such an architecture, that of Motorola DSP56000. DSP56000 has three sets of

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

372 • Z. Wang and X. S. Hu

register files ({X0, X1}, {Y0, Y1}, {A, B}) and two memory banks (X, Y). We used
this architecture in our experiments. However, our algorithm can be easily ex-
tended to architectures with a homogeneous register set or more memory banks.

We consider memory modules used in the memory banks to have two op-
erating modes, that is, the active mode and the low-current mode (standby
or sleep) [Micron 1999]. The operating mode transition is controlled by the
memory controller, whose states can be modified through a set of configuration
registers [Delaluz et al. 2001]. The detailed discussion of controlling memory
operating mode transition is beyond the scope of this article. In the active mode,
a memory module performs normal read/write, while in the low-current mode,
the memory module does not perform any memory operation and consumes
much lower current than in the active mode. A memory module can switch
between the two operating modes by incurring a certain time overhead. The
memory module supply current during the mode transition is the same as in
the active mode. For instance, for a Rambus RDRAM module [Rambus 1999],
it takes a negligible amount of time to switch from the active mode into the
standby (low-current) mode with the dynamic energy consumed in a cycle1 be-
ing reduced from 3.57 nJ to only 0.83 nJ, but it takes two clock cycles to switch
back to the active mode. For a Micron SyncBurst SRAM module [Micron 1999],
it takes two cycles to switch the module from the active mode into the snooze
(low-current) mode with the dynamic energy consumed in a cycle2 changing
from 5.61 nJ to only 0.17 nJ, and it takes another two cycles to switch back to
the active mode. Clearly, in order to save energy by putting a memory module
in the low-current mode, the consecutive idle time should be long enough to
compensate for the transition time overhead. Furthermore, it is more benefi-
cial to lump the idle times into a single long idle period than to disperse them.
This presents some unique challenges to the problem we want to solve, which
is formally defined as follows.

Definition 2.1. Given a program (in the form of an intermediate code) and
a nonorthogonal architecture specification, generate an instruction schedule
which maximizes the memory operation parallelism and energy saving.

It is not difficult to envision that increasing parallelism could have an ad-
verse effect on energy savings. Our goal is to devise a methodology to trade off
performance, that is, operation parallelism, and energy savings in the Pareto
optimal solution set.

2.2 Related Work

To our best knowledge, no existing work has investigated the problem defined
in Definition 2.1. However, a number of researchers have studied different as-
pects of this problem, for example, maximizing memory operation parallelism,
exploiting the memory module operating modes, etc. We briefly review them
below to help clarify our unique contributions.

1The dynamic energy in a cycle is obtained from the measured supply current values associated
with memory modules documented in the data sheets (for a 3.3-V, 2.5-ns cycle time, 8-MB module).
2The dynamic energy in a cycle is calculated for a 3.3-V, 5.0-ns cycle time, 1-MB module.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

Energy-Aware Variable Partitioning and Instruction Scheduling • 373

2.2.1 Related Work on Operation Parallelism. Previous related work can
be roughly divided into two main categories: those that use compacted interme-
diate code as the starting point (e.g., Sudarsanam and Malik [2000]; Saghir et al.
[1996]; Lorenz et al. [2001]; Cho et al. [2002]), and those that start with uncom-
pacted intermediate code (e.g., Leupers and Kotte [2001]; Zhuge et al. [2001]).
Compacted intermediate code refers to the intermediate code that is compacted
or scheduled by some heuristics such as list scheduling, to increase the instruc-
tion level parallelism without considering the data dependency. Since schedul-
ing is done prior to exploring memory bank assignments, it is obvious that some
memory-operation-pair combinations may be left out of consideration no mat-
ter which heuristic is used to compact the code. Thus, the approaches in the
first category often fail to exploit many optimization opportunities. Techniques
in the second category overcome this problem by using the uncompacted code
to explore all possible pairs of memory operations as long as there are no de-
pendencies between them. Therefore, we adopt the same philosophy as these
techniques, that is, starting with the uncompacted code.

Most existing techniques to explore parallelism adopt some graph model for
variable partitioning. A major distinction between those techniques lies in the
graph model definition. Reviewing these graph models can help explain why
these models are not adequate.

Given a program represented by a control data flow graph (CDFG), an undi-
rected graph can be constructed to model the relationship among the variables
in the program. The nodes in the graph represent all the local variables stored
in memory. Partitioning the nodes in the graph into different groups then leads
to partitioning the corresponding variables to different memory banks. The ef-
fectiveness of such an approach relies on modeling edge weights properly to
capture all relevant information.

A straightforward way of assigning edge weights is to connect two nodes with
an edge of weight 1 if the two corresponding variables do not have data de-
pendencies and the memory operations involving the variables can potentially
overlap [Leupers and Kotte 2001] (as accessing such two variables in parallel
may decrease the schedule length). However, such potential parallelism may
not be always realizable due to certain timing constraints on the associated
memory operations. (Recall that the operations are to be scheduled later for
uncompacted code.)

Zhuge et al. [2001] introduced the concept of possibility weight to capture
the likelihood of parallelizing pairs of instructions. The model does improve on
the simple graph model above, but it still has some deficiencies. For instance,
to derive the edge weight between a pair of variables, they simply summed the
possibility weights of all pairs of memory operations involving this variable pair
in the entire procedure. Simply adding the possibility weights from different
pairs of memory operations cannot correctly capture the scheduling freedom
difference between the operation pairs. We will discuss these deficiencies in
more detail in Section 4.

None of the existing graph models consider how to exploit serialism in in-
struction execution to trade off performance for energy savings. In this article,
we propose to use two lists to describe the edge weight in the graph model. By

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

374 • Z. Wang and X. S. Hu

introducing one more dimension to the graph edge weight, we not only capture
the serialism information among operations, but also overcome the deficiencies
of previous models.

2.2.2 Related Work on Energy Savings. A number of research results have
been published regarding saving energy through exploiting operating mode
changes. The key idea is to distribute idle times judiciously through good
scheduling. This can be achieved at various abstraction levels or design stages.
For example, an on-line, low-power, task scheduling algorithm for multiple de-
vices was presented in Lu et al. [2000]. An operating system- OS- based solution
was proposed in Delaluz et al. [2002] where the OS scheduler manages power
mode transitions by keeping track of module accesses for each process in the
system. Several articles have been published to exploit the benefit of memory
operating mode control. In Delaluz et al. [2001], a compiler-directed scheme was
presented to reschedule the basic blocks such that longer consecutive memory
idle times can be obtained. The techniques in Benini et al. [2000] and Luz et
al. [2002] considered data organization in multibank memory such that data
accesses can be concentrated in a small number of banks while other banks can
be left in the low-current mode. No instruction scheduling was considered in
these works.

Our work focuses on the instruction level. By integrating energy consider-
ation into the instruction scheduling stage, we can achieve additional energy
savings without sacrificing performance. Note that our work complements the
above mentioned energy savings techniques since it can be applied together
with these other techniques.

2.2.3 Other Related Work. Some research related to multiple memory
banks concerns with memory partitioning [Benini et al. 2000; Wuytack et al.
1999]. Given the memory access pattern of a class of programs, memory par-
titioning finds the best memory bank configuration, for example, the number
of memory banks, the size of each bank, the number of ports for each bank,
etc., from the viewpoint of instruction level parallelism or energy savings. It is
a different problem from the one considered in this article in that the memory
configuration is given in our architecture model, and we concentrate our effort
on variable partitioning and instruction scheduling among memory banks. It
is worth noting that Wuytack et al. [1999] deployed the model of conflict graph
and conflict probability, which derives the graph information from uncompacted
intermediate code. Though it addressed a different problem, it also showed that
working on uncompacted code reveals more optimization opportunities.

3. IDLE TIME EXPLORATION

As mentioned earlier, memory operating mode transition does not come for
free. Extra clock cycles are needed to change between the active and low-current
modes. Therefore, to exploit the low-current mode, longer consecutive idle times
are more desirable for a memory bank. However, variable partitioning and in-
struction scheduling with only performance considerations may not lead to the
best schedule in term of idle time distribution. For example, for the data flow

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

Energy-Aware Variable Partitioning and Instruction Scheduling • 375

Fig. 2. (a) An example DFG, where L (respectively, S), followed by an integer i represents a LOAD
(respectively, STORE) operation on variable i. Other nodes are nonmemory operations. Edges de-
note the precedence constraint between operations. (b) Schedule with only performance considera-
tion. (c) Schedule when mode transition time is two cycles. (d) Schedule when mode transition time
is four cycles.

graph (DFG) shown in Figure 2(a), a schedule with only performance consid-
eration is shown in Figure 2(b), while better schedules with respect to both
performance and energy are shown in Figures 2(c) and 2(d). In Figure 2(b), the
memory modules cannot be switched to the low-current mode because all idle
times are too short. In the latter two schedules, the idle slots are put together
such that one or more memory modules can change to the low-current mode
during the idle periods. In Figure 2(c), both memory banks can be put into
low-current mode during the control steps 3 → 5 under the assumption that
Rambus RDRAM is used, while in Figure 2(d), the second memory bank can be
put into low-current mode during the control steps 4 → 6 under the assumption
that a Micron SRAM module [Micron 1999] is adopted. Thus, we gain energy
savings without affecting the schedule performance.

Memory operation scheduling for energy savings is tightly related to that
for maximum parallelism, but their different goals can lead to totally different
schedules. For example, one could easily sacrifice all the parallelism by putting
all variables in one memory bank, which gives the longest idle times for other
memory banks. Therefore, a tradeoff exists between energy savings and per-
formance. We consider the problem of maximizing the energy savings without
degrading the performance (i.e., program execution time).

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

376 • Z. Wang and X. S. Hu

In the following, we examine an ideal scenario in which no register constraint
exists. In other words, all the variables can be loaded at the earliest time and
stored at the latest time. The importance of this case will become clear in Section
5, where we will show that an operation schedule can be regarded as the ideal
scenario after the mobility is calculated with the register constraint in mind.
Given a control data flow graph (CDFG) representing the behavior of a program
segment, assume that the desired schedule length is t, the number of memory
operations in the ith memory bank is ni and the overhead for memory module
mode transition is m clock cycles. For a given t, there exist three cases depending
on the relationship of t, ni and m.

Case 1. min (t − ni) > m, ∀i.

Maximal energy savings can be readily achieved by Lemma 3.1. The correct-
ness of Lemma 3.1 is easy to prove and is omitted.

LEMMA 3.1. If min (t − ni) > m, ∀i, by simply pushing the LOAD (respec-
tively, STORE) operations to the beginning (respectively, end) of the schedule,
the maximal energy saving is achieved.

The schedule in Figure 2(b) belongs to this case when the operating mode transi-
tion time is two cycles. The schedule with optimal energy savings can be readily
obtained by Lemma 3.1 and is shown in Figure 2(c).

Case 2. min (t − ni) ≤ m, ∃i and t ≥ n+m
N .

In the above conditions, N denotes the number of memory banks, and n is the
total number of memory operations, that is, n = ∑N

i=1 ni. These two conditions
mean that consecutive idle times, which are long enough to change the memory
module to low-current mode, can be formed in some but not all of the mem-
ory banks. To improve energy savings, one might consider moving the memory
operations between banks to serialize more operations in one or more banks
while leaving other banks with longer idle times. The goal is then to maximize
“serialism” without degrading the performance. The example in Figure 2(d) il-
lustrates such a thought for the SRAM memory module. The desire to increase
serialism in this case complicates the variable partitioning problem.

Case 3. t < n+m
N .

N and n have the same meaning as in Case 2. No further optimization can be
obtained in this case. So long as the schedule length is maintained, not enough
idle time can be formed in any memory module.

For a given problem, deciding the schedule length is not an easy task. Even
if we have a schedule, Case 2 still presents quite a challenge. In the following,
we present our approach to tackling the problem.

4. GRAPH MODELING APPROACH

As mentioned in Section 2.2.1, the edge weight assignments introduced in the
previous works all fail to capture some important information, which may lead
to suboptimal solutions. In this section, we describe our edge weight assignment

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

Energy-Aware Variable Partitioning and Instruction Scheduling • 377

Fig. 3. (a)Memory operation mobility graph for DFG in Figure 2(a). (b) Memory access graph with
the first dimensional weight; each node number corresponds to the associated variable number.
(c) Memory access graph with the second dimensional weight.

approach by examining the requirement of a desirable graph model and ana-
lyzing the deficiencies of previous graph models [Zhuge et al. 2001].

The construction of the graph model is based on the CDFG representation of
an application. The information about memory-operation scheduling freedom
can be derived from the CDFG and fed into a later stage to assign the graph
edge weights.

From the CDFG representation of a program, one can readily derive both the
as-soon-as-possible (ASAP) and as-late-as-possible (ALAP) schedules, consid-
ering the constraints of computation units. Let the control steps of a memory
operation, a, be ts(a) and tl (a) according to ASAP and ALAP, respectively. The
mobility, that is, the scheduling freedom of a, defined as [ts, tl], represents the
time interval in which a can be scheduled without introducing additional de-
lay. Only when the mobilities of two memory operations have some overlap
may parallelizing the two corresponding variables be beneficial (in terms of im-
proving performance). Clearly, the larger the overlap between two mobilities,
the higher the potential of the two variables being able to be parallelized. If
the mobilities of two operations are both small and their overlap is relatively
large, parallelizing the corresponding variables is more likely to improve the
schedule length. In other words, if such variables are put in the same bank,
accessing the two variables is forced to be sequentialized, which is very likely
to increase the overall schedule length. Zhuge et al. 2001 assigned a possibility
weight defined below to an edge to model this property.

Definition 4.1. Given two memory operations, a and b, let their mobilities
be [ts(a), tl (a)] and [ts(b), tl (b)], and the maximum overlap between these two
mobilities be the interval [t1, t2]. The possibility weight assigned to the edge be-
tween the two variables accessed in operations a and b is t2−t1+1

(tl (a)−ts(a)+1)(tl (b)−ts(b)+1) .

Figure 3(b) shows an example of this possibility weight assignment for the
memory operations given in Figure 3(a) which captures the memory operation
mobilities for the DFG in Figure 2(a). In Figure 3(a), there are six variables
and eight memory operations. The line beneath or above each operation rep-
resents its mobility. For example, L3 has a mobility of [0, 1]. In Figure 3(b),
more than one possibility weight may be associated with an edge. These come
from different pairs of memory operations. For instance, between variables v1

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

378 • Z. Wang and X. S. Hu

and v5, 1/5 comes from (L1, L5) pair, while 1/20 from (L5, S1) pair. In Zhung
et al. [2001], such numbers were simply added together. Moreover, if the same
operation pattern (e.g., overlapping of L1 and L5) occurs in another mobil-
ity range,3 the possibility weight is again added to the edge weight between
v1 and v5.

One deficiency of the possibility weight model in Zhung et al. [2001] is as-
sociated with simple summation of the possibility weights mentioned earlier.
Consider a simple example of an edge possibility weight of 1. This may come
from two operations such as L1 and L2 in Figure 3(a). It may also come from
two occurrences of the operation pair such as L3 and L4 in Figure 3(a). Though
both edges have a weight of 1, it is not difficult to see that the variables in the
first case should be given a higher priority to be parallelized since the sched-
ule length will definitely be increased if the two variables are put in the same
memory bank (while the variables in the second case have an additional slack
cycle). To overcome this problem, we advocate maintaining as a list the possibil-
ity weights from different operations involving the same variable pair instead
of adding them together. (We will discuss how to manipulate this list later.) For
example, a list, which contains two elements, that is, 1/5 and 1/20, is main-
tained to reflect the parallelism weights for edge between variables v1 and v5
in Figure 3(b).

Another problem with the possibility weight model is that it does not distin-
guish mobility overlaps within a single mobility range from those in different
mobility ranges. Consider the following example. Given three memory oper-
ations, a, b, c, in one mobility range, each has the same mobility [0, 1]. The
corresponding graph model contains an edge with weight 1/2 between the vari-
ables in a and b and between those in a and c. Assume in the same procedure,
memory operations a′, b′ in a different mobility range, have the mobility [3, 4],
and memory operations a′, c′ have the mobility [7, 8] in yet another mobility
range. Then, the associated graph has an edge with weight 1/2 between the
variables in a′ and b′ and between those in a′ and c′. Obviously, variables in
a, b, c should be given a higher priority to be parallelized than variables in
a′, b′, c′ since putting the former in one memory bank will definitely introduce
an additional delay (while putting the latter in the same bank does not neces-
sarily introduced additional delay since operations on variables in a′, b′ are in
a different mobility range from those on variables in a′, c′). However, the model
in Zhuge et al. [2001] treats the two groups indiscriminately.

Besides the above shortcomings, the possibility weight model has no consid-
eration about energy savings because the work in Zhuge et al. [2001] focused
only on performance. From the point of view of energy savings, one would prefer
to serialize memory operations as much as possible so as to leave more “long”
idle intervals for the low-current mode (see the discussion of Case 2 in Section
3). Clearly, this preference toward serialism may run against the requirement
of improving performance.

3A mobility range is a period of consecutive scheduling steps which may cover several variables’ mo-
bility. In this article, whenever we talk about two different mobility ranges, we refer to independent
nonoverlapping mobility ranges.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

Energy-Aware Variable Partitioning and Instruction Scheduling • 379

To capture the tradeoff between the desire of parallelism and that of serial-
ism, we propose to use two lists of weights. The first one is the one discussed
above, that is, the list of possibility weights, which are referred to as paral-
lelism weights. The second one is a new one and the weights are referred to as
serialism weights. The goal of serialism weights is to model the possibility of
serializing a pair of operations without sacrificing performance. To derive the
serialism weight, observe that, given a certain mobility range, the more oper-
ations in the range, the more difficult it is to serialize the operations without
increasing the total delay. Taking the example above, serializing three opera-
tions a, b, c increases the schedule length, while serializing a′ and b′ (or a′ and
c′) has no negative effect. Based on this observation, we formally define the
serialism weight as follows.

Definition 4.2. Assume the mobilities of two memory operations, a and b,
are [ts(a), tl (a)] and [ts(b), tl (b)], respectively, their union is [t1, t2], and the num-
ber of operations whose mobilities are contained in [t1, t2] is n. The serialism
weight for the edge between the variables accessed in a and b is t2−t1+1

n .

An example of the serialism weight is shown in Figure 3(c). Note that, similar
to the parallelism weights, more than one serialism weight may be associated
with an edge due to the multiple occurrences of the memory operations in-
volving the corresponding variable pair. Taking the serialism weight between
variables v1 and v5 as an example, 1 comes from the (L1, L5) pair (six operations
exist in mobility range [0, 5] which is the shortest range to cover both L1 and
L5’s mobility), while 9/8 comes from the (L5, S1) pair (eight operations exist in
mobility range [0, 8]). A list is also maintained for each edge to record these
serialism weights.

We now formally define the memory access graph (MAG) used in our
approach.

Definition 4.3. A memory access graph (MAG), G = (V , E, F), is a mul-
tiweighted undirected graph, where V is the set of nodes representing the
variables in the given code, E ∈ V × V is the set of edges, F = (wp, 	ws) is a
function from E to R2m representing the weight lists between the correspond-
ing two nodes, and 	wp and 	ws are the parallelism and serialism weight lists,
respectively.

Though we are able to capture the requirements of performance and energy
savings through introducing both parallelism and serialism weights, we need
to be able to use them effectively in partitioning the variables. The problem of
variable partitioning for k memory banks is equivalent to the maximum k-cut
problem, which is NP-complete [Ausiello et al. 1999]. A number of excellent
heuristics exist for solving the maximum k-cut problem [Ausiello et al. 1999].
To use such heuristics, we need to reduce the two lists of weights associated
with an edge to a single weight value. To reflect the tradeoffs between per-
formance and energy savings, we use a weighted sum formula to compute the
average weight of an edge. Specifically, the average weight of an edge e(i, j) is

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

380 • Z. Wang and X. S. Hu

defined as

w(i, j) =
m(i, j)∑

h=1

λpwp(h, i, j) − λsws(h, i, j), (1)

where λp, λs are two coefficients representing the tradeoffs between paral-
lelism and serialism, wp(h, i, j) (respectively, ws(h, i, j)) is the parallelism (re-
spectively, serialism) weight associated with the hth pair of operations in-
volving variables i and j , and m(i, j) is the total number of such pairs.
The rationale behind the subtraction used in Equation (1) is that wp(h, i, j)
and ws(h, i, j) can be viewed as measures of two opposite forces, parallelism
and serialism. Different coefficient values, λp and λs, reflect the preference
between the two forces, and hence help trade off performance with energy
savings.

As we can see from the definition, the parallelism weight can be regarded as
the local measurement which captures the scheduling information between two
memory operations, while the serialism weight can be regarded as the global
measurement which reflects the scheduling freedom for memory operations be-
longing to the same mobility range. The integration of these two factors through
Equation (1) provides a complete measure of benefit which can be obtained from
a certain variable partition.

Each member of 	wp is always smaller than 1, while that of 	ws may be
larger than 1. In order to ensure these two values are in the same range, each
member ws(i, j) is normalized with the formula ws(i, j) = ws(i, j)−wmin

wmax−wmin
, where

wmin(respectively, wmax) is the minimum (respectively, maximum) value of all
ws(i, j) values in the corresponding mobility range to which this ws(i, j) belong.
Keeping a linked list to record all weights enabled us to do this normalization
on the basis of mobility range.

It is important to point out that the average weight defined in Equation (1)
indeed can overcome the shortcomings mentioned earlier in the model intro-
duced in Zhuge et al. [2001]. Consider the shortcoming associated with simply
adding possibility weights for the two discussed scenarios that the possibility
weight is not able to distinguish, under our average weight model, that the edge
weight in the first case is (λp − 1

2λs), while the edge weight in the second case
is (1

2 (λp − λs) + 1
2 (λp − λs)). (We assume that no other variables have operations

overlap with the mobilities under consideration.) Given the same λp and λs val-
ues, the former is always greater than the latter, which correctly reflects the fact
that it is more beneficial to put the two variables in the first case into separate
memory banks as they have a more stringent timing requirement. For the short-
coming due to mobility range differentiation, according to our model, the aver-
age weight on the edge between a and b and that between a and c is (1

2λp − 2
3λs),

while the average weight on the edge between a′ and b′ and that between a′ and
c′ is (1

2λp − λs) (assuming no other operations overlap these mobilities). Again,
the edges between a, b, and c have a larger weight for a given pair of coeffi-
cients, and hence the variables associated with these operations are favored for
putting into separate banks (which is exactly what one would like to see).

There are still several unanswered questions. For example, how should one
select the coefficients in the average weight definition for a given application?

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

Energy-Aware Variable Partitioning and Instruction Scheduling • 381

Algorithm 1
Input: Intermediate Code, Register Constraints
Output: Code optimized for energy and performance

1. Derive the CDFG from the intermediate code. Calculate the mobility for each
operation.
2. Construct the memory access graph (MAG) //refer to Section 4
3. λp = 1, λs = 0, λ′

s = 0,4 calculate the average weight for each edge and schedule the
program.
4. Set the minimum schedule length Lmin as the schedule length of the current
schedule, Tmax = 0.
WHILE () do

5. Find the maximum cut. Allocate variables to memory banks according to the cut
result.
6. Schedule the program according to the above allocation result while maximizing
the consecutive idle time. Set Lschedule and Tschedule //refer to Section 3
7. if Lschedule − Lmin ≤ φ and Tschedule − Tmax ≤ η then

Nstable + +;
Record the corresponding variable partition and schedule;.

end if
8. if Lschedule − Lmin ≤ φ and Tschedule − Tmax > η then

Lmin = min(Lmin, Lschedule),
Tmax = max(Tschedule, Tmax),
λs = λp+λs

2 ,
Nstable = 0

end if
9. if Lschedule − Lmin > φ then

λs = λs+λ′
s

2 ,λ′
s = λs, Nstable = 0

end if
10. if Nstable ≥ σ then

break;
end if
11. Recalculate the average weight of MAG.

ENDWHILE
12. Output the corresponding variable partition and schedule

Also, how does one handle the register constraints? We shall discuss these
issues in the next section, where we present our complete algorithm.

5. ALGORITHM

Our variable partitioning and instruction scheduling algorithm is intended to
be used in the back end of a compiler to optimize the intermediate code. The al-
gorithm operates on the CDFG representation of a given piece of intermediate
code. As the first step, it calculates the mobility for each operation with the reg-
ister constraint in mind. Then the MAG is constructed based on the mobility
information. With this MAG, the steps of average weight calculation, maxi-
mum cutting, variable partitioning, and instruction scheduling are iterated for
a number of times to find the best values of λp, λs. The algorithm framework is
shown in Algorithm 1.

In Algorithm 1, Tschedule represents the number of consecutive idle cycles for
the current schedule, while Tmax represents the maximal value of all Tschedule.

4λ′
s is used to remember the value of λs in the previous loop iteration.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

382 • Z. Wang and X. S. Hu

Lschedule and Lmin represent the current and minimum schedule lengths, re-
spectively. φ is a user-specified parameter to indicate the latency constraint
and defined as the allowed difference between the final and minimum schedule
lengths. η is a user-defined threshold to measure whether Tschedule has a signif-
icant change. The algorithm will finish after Tschedule has not shown significant
changes for σ number of loops.

In Line 1 of Algorithm 1, we use the technique in Zeithofer and Wess [2001]
to deal with the heterogeneous register set and register constraint. By divid-
ing the register mapping into two stages, register allocation (before schedul-
ing) and register assignment (after scheduling), the algorithm in Zeithofer and
Wess [2001] obtains the benefit, but avoids the difficulty of considering reg-
ister mapping and scheduling together. A heterogeneous register set is dealt
with by transforming physical registers into virtual registers such that all vir-
tual registers can be regarded as homogeneous. The concept of virtual regis-
ters provides a powerful methodology to check if a feasible register assignment
exists for a specific schedule without the necessity of generating one. This al-
lows the flexibility of considering the register constraint during scheduling,
by simply checking if enough virtual register resources are available in each
schedule step. Lots of effort can be saved by determining the detailed register
assignment for the final schedule instead of every possible intermediate sched-
ule. The approach in Zeithofer and Wess [2001] is similar to the register class
concept in Jung and Paek [2001] , but with the advantage that the number
of available virtual registers can be derived to constrain the mobility of each
variable.

In Line 5 in Algorithm 1, the well-known maximum spanning tree (MST)
algorithm [Prim 1957] is used as the maximum-cut heuristic. Then variables
are allocated to the memory banks under the rule that two variables having
a MAG edge belonging to the cut must be in different banks. Note that any
heuristic maximum-cut algorithm can be used at this step. The MST algorithm
is preferred because of its popularity and easy implementation.

The WHILE loop of the algorithm is used to find a point where the maximal
energy savings is achieved for the desired performance. Because of the opposite
forces of parallelism and serialism, more parallelism (larger λp and smaller λs)
may bring better performance and less energy savings, while more serialism
(smaller λp and larger λs) may bring more energy savings, but a possible deteri-
orated performance. Therefore, we introduce a process analogous to the binary
search into the algorithm, trying to reach the best tradeoff point, that is, a set
of λp and λs values to achieve maximal energy savings for a given desired per-
formance. In Step 8, if the performance is still in the desirable scope and more
energy savings can be achieved through the last change of λs, we then push λs
further toward the direction of serialism in the hope of getting more energy sav-
ings without degrading the performance. On the other hand, if the performance
degrades too much, we move back λs toward parallelism in Step 9 in the hope
of recovering the performance but still maintaining the gained energy savings.
Finally, when the alteration of λs becomes too small to bring any meaningful
change on either performance or energy savings, the algorithm exits from the
WHILE loop.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

Energy-Aware Variable Partitioning and Instruction Scheduling • 383

Fig. 4. An example to illustrate the result of applying Algorithm 1. (a) The original assembly code
given by SPAM compiler. (b) The assembly code after applying Algorithm 1.

The complexity of the algorithm depends on two factors, the schedule length
(L) and the number of variables (N). In the WHILE loop, step 6 takes O(L2)
time, while the MST algorithm can be done in O(N 2 log N) since there are at
most O(N 2) edges in an MAG graph. Therefore, the algorithm complexity is
O(w(L2 + N 2 log N)), where w is the number of iterations of the WHILE loop
body. It is shown in the experimental section that w is normally quite small for
reaching the final result.

The algorithm can be easily extended to other systems with different archi-
tectural parameters. For instance, if a system has a different register file set,
the technique in Zeithofer and Wess [2001] can still be used. The only differ-
ence will be the number of available virtual resources. By replacing the MST
algorithm with some polynomial maximum k-cut heuristic [Goldschmidt and
Hochbaum 1998], this algorithm framework can be extended to the system with
more memory banks.

Figure 4 shows an example assembly code which is the loop segment of a
FIR filter in a DSPStone benchmark suite [Zivoljnovic et al. 1994]. Figure 4(a)
is the assembly code obtained from SPAM. Figure 4(b) is the result after ap-
plying Algorithm 1, shown in the instruction format of opcode, operands, and
two possible parallel move fields. There are 10 nodes and 34 edges in the MAG
graph for the FIR filter. It takes four iterations to reach the final result. The
reader is referred to Wang and Hu [2004] for the complete code example. In
this example, variable y is put into Y memory bank due to the global vari-
able partition consideration. The loop body length is reduced from seven to
four clock cycles. The improvement is achieved by increasing the program par-
allelism (see instruction 9 in Figure 4(b)) and memory operation scheduling
(moving the operations of loading (respectively, storing) variable y to the be-
ginning (respectively, end) of its mobility according to Lemma 3.1, thus out of
the loop body). The final code is a tradeoff between energy savings and sched-
ule length. If the performance is the only emphasis, the loop body can be fur-
ther reduced to three clock cycles by moving data array px to the Y memory
bank.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

384 • Z. Wang and X. S. Hu

Fig. 5. Assembly code size results. The results are normalized with respect to the SPAM results.

6. EXPERIMENTAL RESULTS

We have implemented our algorithm in the SPAM compiler environment
to replace the simulated annealing algorithm [Sudarsanam and Malik 2000]
originally used by the Princeton project [(see Website www.ee.princeton.
edu/spam/)]. The benchmarks used are from the DSPstone benchmark suite
[Zivoljnovic et al. 1994], which contains C source code for various DSP ker-
nels: Least Mean Square (B1), FIR (B2), N Real Update (B3), IIR Biquad (B4),
Convolution (B5), N Complex Update (B6), 2-Dimensional FIR (B7), Matrix
Multiplication (B8), 1st Adapted Predictor (B9), and Tone Detector (B10) rou-
tine in ADPCM. The intermediate code is generated by SUIF front end followed
by SPAM code generation program, then fed as input to our algorithm to obtain
the optimized assembly code.

The assembly code size results are shown in Figure 5. The data include
the original code size (Original), code size generated by the constraint-graph
method (SPAM), code size generated by Zhuge et al. [2001] (Inde Graph5), and
code size generated by our algorithm (VPIS). Figure 5 reveals that the methods
of independence graph and our algorithm can both perform better than SPAM.
This improvement can be attributed to exploiting more potential memory oper-
ations parallelism. Accredited to our comprehensive graph model and judicious
selection of weight coefficients, our algorithm demonstrates a superior perfor-
mance to the method of independence graph, as demonstrated in Figure 5. The
execution time of the assembly code is correlated to the code size [Leupers and
Kotte 2001], since the assembly code can be directly mapped to the schedule
for the basic block. Moreover, due to the existence of loops in the DSP bench-
mark, we are able to observe even larger improvements when comparing the
execution time of assembly code. The results are shown in Figure 6.

We compare the energy savings results of our algorithms those with SPAM.
Results from Inde Graph method are not included in this comparison, since it
does not have the energy savings consideration. In fact, it can be regarded as a

5Their article used a greedy heuristic algorithm, similar to the MST algorithm, to partition the
variables. Their results reported in this section were obtained from the MST algorithm for the sake
of fairly comparing graph models.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

Energy-Aware Variable Partitioning and Instruction Scheduling • 385

Fig. 6. Execution time of assembly code, The results are normalized with respect to the SPAM
results.

Fig. 7. Percentage of low-current cycles over the total execution clock cycle.

special case of our algorithm with the restriction of λp = 1, λs = 0. As a simple
comparison, we examine the generated assembly code. By counting the num-
ber of consecutive idle cycles (which must be larger than the operating mode
transition time) for the two schemes in each basic block, the absolute number of
idle cycles in which the memory module can be put into low-current mode is ob-
tained by summing all such numbers in the entire procedure. The ratio of these
idle cycles to the overall code size can be calculated. The average improvement
of this ratio is 19.84%. This ratio comparison can give us the initial estimation
of at least how much improvement can be achieved from the algorithm. With
the multiple execution times of loop bodies, a larger improvement should be
expected, which is demonstrated in the following comparison.

As a more elaborate comparison, we have simulated the execution of the gen-
erated assembly code with Sim56000 (Motorola’s DSP56000 simulator). From
the run profile, all the usable idle times are added together to get the total idle
cycles during which the memory module can be put into low-current mode. By
dividing this total of idle cycles by the benchmark’s total of execution clock cy-
cles, the ratios of memory energy savings are derived for all benchmarks. Note
the upper bound for this ratio equals the number of memory banks. The results
are shown in Figure 7.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

386 • Z. Wang and X. S. Hu

Fig. 8. Algorithm execution time.

Our algorithm achieves larger improvements for data-intensive (e.g.,
computation-intensive loop body) than control-intensive (e.g., procedure call,
procedure initialization) application code, since data-intensive code involves
more ALU operations which operate only on the register file. Furthermore,
data-intensive code is usually executed many times, as in the computation loops
in DSP applications. Based on these facts, we can see a larger energy savings
in Figure 7 than the initial estimation given above. The average improvement
of our approach over SPAM is 47.55%.

One concern may be raised about the algorithm execution time because of
the loop in the algorithm to find the best tradeoff point. Due to the fact that
variable partitioning is not very sensitive to the change of average coefficients
λp and λs (a small change in these two coefficients does not change the variable
partition), the algorithm generally can find the best tradeoff point in at most 20
loops. We ran the program in SUN Ultra Sparc2, and the algorithm execution
time comparison is shown in Figure 8. In the figure, we normalized the algo-
rithm execution time by the simulated annealing (SA) algorithm (adopted by
SPAM) execution time, which is given in the unit of seconds on the top of each
benchmark.

Figure 8 shows that our algorithm takes much less time than the SA-based
algorithm. Moreover with more complicated programs, the constraint graphs in
SPAM become larger and each step in the annealing process takes a longer time.
The SA algorithm execution time increases significantly with the increase in the
constraint graph size, while our algorithm, by contrast, does not have to deal
with the large graph for many times (at most 20 loops for our experiments).
Therefore, the execution time improvement becomes more obvious for larger
benchmarks.

7. CONCLUSION

A variable partitioning and instruction scheduling algorithm is proposed to
exploit the architecture with multiple memory banks and heterogeneous regis-
ter set. The algorithm takes into account both instruction level parallelism
and reducing system energy. A novel graph model is presented to capture

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

Energy-Aware Variable Partitioning and Instruction Scheduling • 387

both parallelism and serialism scheduling information. With such a model,
the maximum instruction level parallelism can be exploited to improve the
schedule performance. The idle intervals of the memory module are maximized
under the constraint of the schedule performance, such that the system energy
is reduced by changing memory modules to low-current mode for longer time.
Experimental results demonstrate that our algorithm outperforms the previous
techniques.

As future work, the novel graph model presented in this article can be ex-
tended to other architectures besides multiple memory bank architecture, such
as clustered architecture and distributed systems. One common characteristic
for all these systems lies in the tradeoff between parallelism and serialism be-
cause of energy savings considerations, resource constraints, etc. For example,
in a clustered architecture, it is important to balance the workload to all clusters
to increase the performance. On the other hand, to reduce energy consumption,
it is desirable to reduce the bus communication between clusters and put some
clusters in low-power mode. Therefore, a graph model which can capture all
such information is essential to a good scheduler. How to extend our proposed
graph model to cope with other architectures is worth more research effort.

REFERENCES

AUSIELLO, G., CRESCENZI, P., GAMBOSI, G., KANN, V., MARCHETTI-SPACCAMELA, A., AND PROTASI, M. 1999.
Complexity and Approximation. Springer Verlag, Berline, Germany.

BENINI, L., MACII, A., AND PONCINO, M. 2000. A recursive algorithm for low-power memory parti-
tioning. In Proceedings of the International Symposium on Low Power Electronics and Design.
78–83.

CATTHOOR, F., WUYTACK, S., GREEF, E., BALASA, F., NACHTERGAELE, L., AND VANDECAPPELLE, A. 1998.
Custom Memory Management Methodology—Exploration of Memory Organization for Embedded
Multimedia System. Kluwer Academic Publishers, Dordrecht, The Netherlands.

CHO, J., PAEK, Y., AND WHALLEY, D. 2002. Efficient register and memory assignment for
nonorthogonal architectures via graph coloring and MST algorithms. In Proceedings of the ACM
Joint Conference LCTES-SCOPES (Berlin, Germany). 130–138.

DELALUZ, V., M. KANDEMIR, N. V., SIVASUBRAMANIAM, A., AND IRWIN, M. J. 2001. Hardware and soft-
ware techniques for controlling DRAM power modes. IEEE Trans. Comput. 50, 11 (Nov.), 1154–
1173.

DELALUZ, V., SIVASUBRAMANIAM, A., KANDEMIR, M., VIJAYKRISHNAN, N., AND IRWIN, M. J. 2002. Schedul-
ing techniques for embedded systems: Scheduler-based DRAM energy management. In Proceed-
ings of the 39th Conference on Design Automation. 697–702.

DESOLI, G. 1998. Instruction assignment for clustered VLIW DSP compilers: A new approach.
Tech. Rep. HPL-98-13. Hewlett-Packard Company, Palo alto, CA.

GOLDSCHMIDT, O. AND HOCHBAUM, D. S. 1998. Polynomial algorithm for the k-cut problem. In Pro-
ceedings of the 29th Annual Symposium on the Foundations of Computer Science. 444–451.

JUNG, S. AND PAEK, Y. 2001. The very portable optimizer for digital signal processors. In Proceed-
ings of the International Conference on Compilers, Architectures and Synthesis for Embedded
Systems. 84–92.

LEUPERS, R. AND KOTTE, D. 2001. Variable partitioning for dual memory bank DSPS. In Proceed-
ings of ICASSP.

LORENZ, M., KOTTMANN, D., BASHFROD, S., LEUPERS, R., AND MARWEDEL, P. 2001. Optimized address
assignment for DSPS with SIMD memory accesses. In Proceedings of the Asia South Pacific
Design Automation Conference (ASP-DAC, Yokohama, Japan). 415–420.

LU, Y. H., BENINI, L., AND MICHELI, G. D. 2000. Low–power task scheduling for multiple devices.
In Proceedings of the 8th International Workshop on Hardware/Software Codesign. 39–43.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

388 • Z. Wang and X. S. Hu

LUZ, V. D. L., KANDEMIR, M., AND KOLCU, I. 2002. Memory management and address optimization
in embedded systems: Automatic data migration for reducing energy consumption in multi-bank
memory systems. In Proceedings of the 39th Conference on Design Automation. 213–218.

MICRON. 1999. 1mb syncburst SRAM data sheet. Micron Technology Inc., Boise, ID. Website:
www.micron.com.

PRIM, R. 1957. Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 6.
RAMBUS. 1999. 128/144-mbit direct RDRAM data sheet. Rambus Inc., Losaltos, CA. Website:

www.rambus.com.
SAGHIR, M., CHOW, P., AND LEE, C. 1996. Exploiting dual data-memory banks in digital signal

processors. In Proceedings of the 7th International Conference on Architecture Support for Pro-
gramming Language and Operating Systems. 234–243.

SUDARSANAM, A. AND MALIK, T. S. 2000. Simultaneous reference allocation in code generation for
dual data memory bank asips. ACM Trans. Des. Automat. Electron. Syst. 5, 2, 242–264.

WANG, Z. AND HU, X. S. 2004. Variable partitioning and scheduling for multiple memory banks.
Tech. rep. CSE Dept., University of Notre Dame, Notre Dame, IN.

WUYTACK, S., CATTHOOR, F., JONG, G. D., AND MAN, H. D. 1999. Minimizing the required memory
bandwidth in VLSI system realizations. IEEE Trans. VLSI Syst. 7, 4 (Dec.), 433–441.

ZEITHOFER, T. AND WESS, B. 2001. Integrated scheduling and register assignment for VLIW–DSP
architectures. In Proceedings of the 14th Annual IEEE International ASIC/SOC Conference.
339–343.

ZHUGE, Q., XIAO, B., AND SHA, E. H.-M. 2001. Exploring variable partitioning in dual data-memory
bank processors. In Proceedings of the 34th International Symposium on Micro-Architecture
(MICRO-34), the 3rd Workshop on Media and Streaming Processors (MSP-3 Workshop). 42–55.

ZIVOLJNOVIC, V., VELARDE, J., SCHAGER, C., AND MEYR, H. 1994. Dspstone—a DSP oriented bench-
marking methodology. In Proceedings of the International Conference on Signal Processing Ap-
plications and Technology.

Received June 2004; revised October 2004, December 2004; accepted December 2004

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 2, April 2005.

