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Energy Aware Virtual Network Embedding
Sen Su Zhongbao Zhang∗ Alex X. Liu∗ Xiang Cheng Yiwen Wang Xinchao Zhao

Abstract—Virtual network embedding, which means mapping
virtual networks requested by users to a shared substrate
network maintained by an Internet Service Provider, is a key
function that network virtualization needs to provide. Prior
work on virtual network embedding has primarily focused on
maximizing the the revenue of the Internet Service Provider
and did not consider the energy cost in accommodating such
requests. As energy cost is more than half of the operating cost
of the substrate networks, while trying to accommodate more
virtual network requests, minimizing energy cost is critical for
infrastructure providers. In this work, we make the first effort
towards energy aware virtual network embedding. We first pro-
pose an energy cost model and formulate the energy aware virtual
network embedding problem as an integer linear programming
problem. We then propose two efficient energy aware virtual
network embedding algorithms: a heuristic based algorithm and
a particle swarm optimization technique based algorithm. We
implemented our algorithms in C++ and performed side-by-side
comparison with prior algorithms. The simulation results show
that our algorithms significantly reduce the energy cost by up
to 50% over the existing algorithm for accommodating the same
sequence of virtual network requests.

Index Terms—Network virtualization, virtual network embed-
ding

I. INTRODUCTION

A. Background and Motivation

Network virtualization is the key technology that allows

multiple heterogeneous Virtual Networks (VNs) to coexist on

the same shared Substrate Network (SN). It brings three major

benefits. First, it enables resource sharing among these VNs

and makes most efficient use of the SN. Second, it offers

opportunities to design and evaluate new network protocols

and architectures. Third, it provides more flexibility to expand

or shrink the VN as needed.

This paper concerns the problem of VN embedding. Net-

work virtualization involves one Internet Service Provider

(ISP) and multiple users, where the ISP manages the physical

SN infrastructure while each user requests VNs from the ISP.

Each VN request consists of a network topology where each

node and edge have some constraints. The node constraints are

typically on capacity (such as CPU computing power, memory
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and storage capacity, etc) and location (i.e., the location in

the topology of the substrate network of the ISP). The edge

constraints are typically on communication bandwidth. When

the ISP receives a VN requests from users, the ISP needs to

map the VN to the physical nodes and links in its network,

which is called VN embedding.

B. Limitation of Prior Art

The VN embedding has received significant attention in

recent years. The primary goal of prior work is to maximize

the revenue of the ISP by accommodating more VN requests

on the same SN [2]–[8]. The key limitation of prior studies

is that they did not consider the energy cost for serving

VN requests. However, energy is a major cost for ISPs.

For example, in US, Akamai, one of the world’s leading

providers of content delivery networking services, has an

annual electricity cost of about $10 Million [9]. In China,

China mobile Communications Corporation, the largest mobile

service provider in the world, consumes over 13 TWH power

consumption in 2011 [10]. Telecom Italia, the second largest

consumer of electricity in Italia, consumes more than 2 TWh

per year, which is equivalent to the energy consumed by

660,000 families in one year [11]. Thus, to maximize the

net profit, the ISP needs to strike the right balance between

accommodating more VN requests and minimizing energy

costs for serving VN requests.

C. Proposed Approach

In this paper, we propose to tradeoff between maximizing

the number of VNs that can be accommodated by an ISP

and minimizing the energy cost of the whole system. For

each VN request, the ISP maps the VN to some physical

nodes and links in its network in such a way that the

amount of additional energy cost caused by accommodating

the VN request is minimized. This approach is based on two

observations. The first observation is that the substrate nodes

are usually geographically distributed to deploy and deliver

service to end users, and the electricity price may differ for

different locations and may fluctuate over time [9], [12]. Based

on this observation, an ISP should try to map the virtual nodes

of a VN to the physical nodes that have the lowest electricity

price while satisfying the location constraint of the VN. The

second observation is that the power consumption of a server

is approximately in linear to its CPU utilization with a large

offset, which equals up to nearly 50% of the peak power [13].

Based on this observation, an ISP should try to map the virtual

nodes of a VN to the physical nodes that are already actively

running; thus we can maximize the number of nodes that do

not have any load and therefore can be put to sleep to save

energy.
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D. Technical Challenges and Proposed Solutions

The first technical challenge is on modeling and quantifying

the energy cost of the complex physical network infrastructure

of an ISP. Specifically, we need to model both electricity

price and energy consumption. For electricity price, we use

a discrete-time model to characterize the spot dynamics of

electricity price. For energy consumption, we first classify

substrate nodes into host nodes, which need to execute some

computational tasks, and router nodes, which need to forward

packets to and from host nodes. We further classify them

into active nodes, which need to be powered up, and inactive

nodes, which can be powered off to save energy. Then, for

different types of nodes, we build the corresponding energy

consumption models. Based on such models, we carry out

the quantitative analysis of the overall energy consumption,

including the energy consumption of virtual nodes and virtual

links for accommodating a VN request. After the modelings,

we can quantify the electricity cost by calculating the time

integral of the electricity price and the power consumption.

The second technical challenge is on designing energy

aware VN embedding algorithms. To address this challenge,

first, we model our energy aware VN embedding problem as

an integer linear programming problem. Second, we propose

a heuristic algorithm called EA-VNE for solving this problem.

This algorithm consists of two steps: node mapping and link

mapping. The node mapping step further consists of two

substeps: router node mapping and host node mapping. In

the router node mapping, we exploit the location- and time-

varying diversities of electricity prices to save energy cost.

To maximize the probability of performing successful link

mapping in the next step, we design a worst-fit strategy for the

bandwidth resources. In the host node mapping, we design a

best-fit strategy to minimize the number of hosting nodes and

make the best use of the resource while satisfying the node

requirements of the VN request. In the link mapping step,

we design an active nodes and router ports preferred shortest

path algorithm that tries to minimize the number of forwarding

nodes and ports. To further minimize energy cost, we design

an approximation algorithm called EA-VNE-EPSO, which is

based on the well known particle swarm optimization (PSO)

technique. Specifically, we treat a VN embedding solution

as a particle in PSO and thus each particle will achieve a

better and better embedding solution through the iteration

process by learning from the experience of other particles.

To accelerate the convergence of this iterative algorithm,

we propose an energy aware local selection strategy based

on the characteristics of VN embedding. Furthermore, we

propose a non-uniform mutation strategy to prevent premature

convergence.

E. Summary of Experimental Results

We carry out extensive simulation and show that our algo-

rithms outperform the state-of-the-art algorithm in terms of

long-term average energy cost while gaining competitive rev-

enues for ISPs. While maintaining nearly the same revenues,

our algorithms EA-VNE and EA-VNE-EPSO save up to 40%

and 50% of energy cost than prior art, respectively.

F. Key Contributions

We make the following key contributions in this paper:

1) We make the first attempt to incorporate the energy

factor in performing VN embedding. We formulate an

energy cost model for studying the energy aware VN

embedding problem.

2) We design two VN embedding algorithms to reduce the

energy cost while keeping nearly the same revenue so

as to maximize the profit for the ISPs.

3) We conducted side-by-side comparison between our

algorithms and the state-of-the-art algorithm. We show

that our algorithms outperform the state-of-the-art algo-

rithm in terms of both long-term average energy cost

and revenues for ISPs.

The rest of the paper is organized as follows. In Section

II, we present the energy cost model and the energy aware

VN embedding problem formulation. In Section III and IV,

we present our heuristic and meta-heuristic energy aware

VN embedding algorithms, respectively. We evaluate our VN

embedding algorithms in Section V. Section VI reviews related

work. Finally, Section VII concludes the paper.

II. SYSTEM MODELING

In this section, we first present a network model. Second, we

formulate an energy model for VN infrastructure. Third, we

quantitatively analyze the energy consumption for accommo-

dating a VN request. Finally, we formulate the energy aware

VN embedding problem based on the model. The notations

used in this paper are summarized in Table I.

TABLE I: Notations
Notation Description

s, t Substrate nodes.
u, v Virtual nodes.
i(j) Substrate router (host) node.
r(h) Virtual router (host) node.

Ri(Rr) The residual (demanding) number of virtual routers.
Cj(Ch) The residual (demanding) CPU value.
Mj(Mh) The residual (demanding) memory value.
Sj(Sh) The residual (demanding) storage value.

Bst(Buv) The residual (demanding) bandwidth value.
Dis(i, r) The Euclidean distance between r and i.

W The maximum accepted distance value for mapping a
virtual node to a substrate node.

xr
i (y

h
j ) A binary variable. xr

i represents router node mapping

while yhj represents host node mapping. xr
i (y

h
j ) = 1 if

mapping r (h) to i (j) and 0 otherwise.

fuv
st A binary variable. fuv

st = 1 if mapping virtual link luv
to the physical link lst and 0 otherwise.

PSi(PSj) A binary variable. PSi(PSj) = 1 if i (j) is in active
state and 0 otherwise.

A. Network Modeling

A substrate network (SN) is represented by a weighted

graph Gs = (Ns, Ls), where Ns denotes the set of physical

nodes and Ls denotes the set of physical links. The substrate

nodes can be classified into two categories: router nodes and

host nodes. That is, Ns = (Nsr , Nsh), where Nsr denotes the

set of routers and Nsh denotes the set of hosts. Similarly, the

substrate links can also be classified into two categories: the

backbone link and the local link, denoted by Lsr and Lsh,

respectively. Fig. 1 (b) shows an SN example where circles

and rectangles denote router and host nodes, respectively.
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Fig. 1: Example of VN embedding

For router nodes, we consider the following three attributes.

The first attribute is the number of virtual routers that the

physical router can support for deploying and running different

personalized network protocols. In Fig. 1 (b), the numbers that

are in parentheses and besides each circle are such numbers.

The second attribute is the location that the router is located as

routers are generally geographically distributed. For example,

in Fig. 1 (b), RA may be located in Los Angeles, RB in

Chicago, RC in New York, and RD in New Jersey. We use

a 2-dimensional coordinate Loc(i) = (xi, yi) to denote the

location of node i. The third attribute is electricity price. The

power market of different locations are managed by different

Independent System Operators (ISOs) and the ISOs are under

competitive electricity market structure. Therefore, different

locations often have different electricity prices. Even for the

same location, the electricity price may vary frequently over

time [9], [12]. Fig. 2 shows the hourly electricity price of

the first week of Sep 2011 available at [14] for five regions

in the day-ahead market, including Eastern Hub of PJM

(Pennsylvania-Maryland-New Jersey), NP-15 Hub of CAISO

(California), Capital Hub of NYISO (New York), Mass Hub of

ISO-NE (New England) and Illinois Hub of MISO (Midwest).

We observe that the electricity price varies over both location

and time. To characterize the spot price dynamics, in this

paper, we use a discrete time model, which has a time window

(e.g., an hour) of interest t ∈ 0, 1, ..., T . We use Pri(t) to

denote the electricity price for node i at time slot t, ta to

denote the arriving time of a VN request, and td to denote the

duration of the VN request being served in the SN. Thus, the

expiration time te of the VN request is te = ta + td.
For host nodes, we consider three attributes: CPU speed,

memory size, and storage capacity. In Fig. 1 (b), the triple

besides each host node denotes the values of these attributes.
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Fig. 2: Hourly electricity price of five locations in one week

For links, we consider bandwidth. In Fig. 1 (b), the number

besides each link is the bandwidth. Note that the modeling,

analysis, and algorithms in this paper can be easily extended

to incorporate other attributes, such as latency and jitter

constraints, as well.

A virtual network (VN) is represented as a weighted graph

Gv = (Nv, Lv). Here Nv = (Nvr, Nvh), where Nvr and Nvh

denote the set of virtual router and host nodes, respectively;

and Lv = (Lvr, Lvh), where Lvr denotes the set of virtual

links between any two virtual routers and Lvh denotes the

set of virtual links between host nodes and routers. Fig. 1 (a)

shows the VN requested by a user on the SN in Fig. 1 (b).

We now formally define the VN embedding problem. Given

a VN request Gv with a set of virtual nodes Nv = (Nvr, Nvh)
and a set of virtual links Lv = (Lvr, Lvh), and a SN Gs with

a set of physical nodes Ns = (Nsr, Nsh) and a set of physical

links Ls = (Lsr, Lsh), embed Gv on Gs, which means to find

two one-to-one mappings: Mn and Ml. Here Mn is a one-

to-one mapping from Nv to a subset of Ns. This mapping

includes two sub-mappings, Mnr and Mnh, where Mnr is

from Nvr to a subset of Nsr, and Mnh is from Nvh to a subset

of Nsh. For each virtual router node nvr and the physical node

Mnr(nvr) that it maps to, Mnr(nvr) satisfies both virtual

router quantity and location requirements of nvr. For each

virtual host node nvh and the physical node Mnh(nvh) that it

maps to, Mnh(nvh) satisfies the node requirements on CPU

speed, memory size, and storage capacity of nvh. Here Ml

is from Lv to a subset of Ps, which denotes all loop-free

paths composed by the physical links in Ls. This mapping also

includes two sub-mappings, Mlr and Mlh, where Mlr is from

Lvr to a subset of Psr , denoting all loop-free paths between

any two routers, and Mlh is from Lvh to a subset of Psh,

denoting all loop-free paths between hosts and routers. For

each virtual link lv and the physical path Ml(lv) that it maps

to, the bandwidth of each physical link in Ml(lv) is no less

than the bandwidth requirement of lv. Take the embedding in

Fig. 1 as an example. The node mapping solution is {{Ra →
RA, Rb → RC}, {Ha1 → HA1, Ha2 → HA2, Hb1 →
HC1}} and the link mapping solution is {{(Ra, Rb) →
(RA, RB, RC)}, {(Ra, Ha1) → (RA, HA1), (RA, Ha2) →
(RA, HA2), (RB , Hb1) → (RC , HC1)}}.

Note that, we focus on considering one ISP in this paper.

When multiple ISPs collaborate to provided VN services, as

each ISP knows only the characteristics of his own infrastruc-

ture, there are many technical challenges to address this issue.

The readers can refer to [15] for more discussion on this topic.

B. Energy Cost Modeling

1) Node Energy Cost: Let ∆PRr
i denote the additional

power consumption for mapping a virtual router r ∈ Nvr to

a substrate router i ∈ Nsr, and ∆PHh
j denote the additional

power for mapping a virtual host node h ∈ Nvh to a substrate

host node j ∈ Nsh. The node energy cost can be calculated

as follows:

∆EN =
∑

r∈Nvr

∑

i∈Nsr

xr
i∆PRr

i

∫ te

ta

Prs(t)dt+

∑

h∈Nvh

∑

j∈Nsh

yhj ∆PHh
j

∫ te

ta

Prs(t)dt (1)

This formula requires two inputs: ∆PRr
i and ∆PHh

j .

We first discuss the calculation of ∆PRr
i . As a typical

router usually consists of four main components as shown in
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Table II, we estimate PRi, the power consumption of mapping

a router node, based on the model proposed in [16]:

PRi = Pf + L · Pl + P · Pp. (2)

Here L and P denote the number of linecards and ports of the

routers, respectively. Thus, the incremental power consump-

tion for mapping a virtual router node r to i is calculated as:

∆PRr
i =

{

Pf +∆L · Pl +∆P · Pp (if PSi = 0)

∆L · Pl +∆P · Pp (otherwise)
(3)

TABLE II: Components of a typical router
Components Function Power Notations

Chassis Cooling equipments and others. The sum of these
two parts: Pf .

Switching
fabric

Learning and maintaining the
switching tables.

Line-
cards

Forwarding packets between the
switching fabric and ports.

Pl

Ports Transceiving packets in and out. Pp

We now discuss the calculation of ∆PHh
j . Many studies

have reported that the full-system average power consumption

of a typical server is approximately in linear with CPU utiliza-

tion [17], [18]. The power consumption of other components,

such as memory and storage, is very small [19]. We use

the following equation to estimate the power consumption of

mapping a host node:

PHj = Pb + Pl · util, (4)

where Pb is the server’s baseline power without any CPU

load, and Pl represents the energy proportion factor for CPU

utilization util. Thus, the additional power consumption for

mapping a virtual host node h to j is:

∆PHh
j =

{

Pb + Pl · Ch (if PSj = 0)

Pl · Ch (otherwise)
. (5)

2) Link Energy Cost: We consider both long physical

links, which span over a large geographical region and there-

fore require repeaters that consume power, and short physical

links, which span a small geographical region and require no

repeaters. We use PLuv
st to denote the power consumption of

the repeaters on a long link lst ∈ Lsr when mapping a virtual

link luv ∈ Lvr. The overall link cost can be calculated as:

∆EL =
∑

luv∈Lvr

∑

lst∈Lsr

fuv
st ∆PLuv

st Prs(t)dt (6)

We set ∆PLuv
st to be linear with the traffic volume of the luv

and the distance between s and t based on the findings in [11]:

∆PLuv
st = Dis(s, t) · Pr ·

Buv

OBst

, (7)

where Pr denotes the power density of the repeaters over

distance and OBst denotes the overall bandwidth capacity of

substrate backbone link lst.

3) Switching Cost: Powering up a router (or a server)

incurs a onetime energy consumption for transiting from the

power-saving state into the active state, which is called a

switching cost. We use Esr (or Esh) to denote this cost. The

overall switching cost can be calculated as:

∆ES =
∑

r∈Nvr

∑

i∈Nsr

xr
i · (1− PSi) · Esr ·

∫ te

ta

Pri(t)dt+

∑

r∈Nvh

∑

j∈Nsh

yhj · (1− PSj) ·Esh ·

∫ te

ta

Prj(t)dt.

(8)

C. Problem Statement of Energy Aware VN Embedding

With the goal of minimizing the overall energy cost ∆E =
∆EN + ∆EL + ∆ES and the binary variables of xr

i , yhj
and fuv

st , we next formulate the energy aware VN embedding

problem as an integer linear programming (ILP):

Objective:

Min ∆E = ∆EN +∆EL+∆ES (9)

Capacity Constraints:

(∀r ∈ Nvr)(∀i ∈ Nsr) :

{

xr
i ·Rr ≤ Ri

xr
i ·Dis(i, r) ≤ W

(10)

(∀h ∈ Nvh)(∀j ∈ Nsh) :

{

yhj · Ch ≤ Cj , yhj ·Mh ≤ Mj

yhj · Sh ≤ Sj , yhj ·Dis(j, h) ≤ W
(11)

(∀lst ∈ Ls)(∀luv ∈ Lv) : f
uv
st ·Buv ≤ Bst (12)

Connectivity Constraint:

(∀s ∈ Ns)(∀luv ∈ Lv) :

∑

lst∈Ls

fuv
st −

∑

lts∈Ls

fuv
ts =







1, if xu
s = 1 or yus = 1

−1, if xv
s = 1 or yvs = 1

0, otherwise
(13)

Variable Constraints:

(∀i ∈ Nsr) :
∑

r∈Nvr

xr
i ≤ 1; (∀r ∈ Nvr) :

∑

i∈Nsr

xr
i = 1

(∀j ∈ Nsh) :
∑

h∈Nvh

yhj ≤ 1; (∀h ∈ Nvh) :
∑

j∈Nsh

yhj = 1

(14)

(∀i ∈ Nsr)(∀r ∈ Nvr) : x
r
i ∈ {0, 1},

(∀j ∈ Nsr)(∀h ∈ Nvh) : y
h
j ∈ {0, 1},

(∀lst ∈ Ls)(∀luv ∈ Lv) : f
uv
st ∈ {0, 1} (15)
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D. Performance Metrics

We define the long-term average revenue, earned by the ISP

for accommodating VN requests, as follows:

lim
T→∞

∑N

i=1 R
i(Gv)

T
, (16)

where Ri(Gv) = (
∑

h∈Nvh

(Ch +Mh + Sh) +WR ·
∑

r∈Nvr

Rr +
∑

lv∈Lv

B(lv))·td represents the revenue for accommodating the

ith VN request with the pay-as-you-go billing model. Here

WR denotes the market pricing weight of the resource of

virtual routers over host node resources. To calculate energy

cost in the long run, we define the long-term average energy

cost, which the ISP must pay, as follows:

lim
T→∞

∑N

i=1 E
i(Gv)

T
, (17)

where N is the number of VN requests accepted by the SN

successfully in time T and Ei(Gv) denotes the energy cost for

the ith VN request. In this paper, we aim to both maximize

the revenue and minimize the energy cost at the same time.

III. ENERGY AWARE HEURISTIC VN EMBEDDING

ALGORITHM

Solving ILP is well known to be NP-hard [20]. Although

standard exact algorithms such as branch and bound (BB)

and cutting plane (CP) guarantee optimal solutions, they may

incur exponential running time. Thus, they are not practical for

online VN embedding when the problem size is large. In this

section, we present a simple heuristic yet efficient algorithm,

called EA-VNE, to produce an energy aware solution. EA-

VNE is a two-step algorithm: the first step handles node

mapping and the second handles link mapping.

A. Node Mapping

In this step, we first perform the router node mapping, then

the host node mapping.

1) Router Node Mapping: We have two goals to achieve

in this mapping. First, we want to optimize the energy cost in

mapping virtual router nodes. Second, as router node mapping

affects both host node mapping and link mapping, we want to

perform router node mapping so that the host node mapping

and link mapping will be successful and optimized.

Towards the first goal, we need to map the virtual router

node on such substrate router nodes that have low electricity

price and are in the active state. For each substrate router node

i, we calculate the additional energy cost when we map the

virtual router node r on it as follows: Er
i =

∫ te

ta
Pri(t)PRr

i dt.
We then sort the candidate substrate nodes according to the

values of Er
i in non-decreasing order. We use NRE to denote

the set of ranking values of substrate router nodes.

To achieve the second goal, we design a worst-fit scheme for

the bandwidth constraint by selecting the substrate nodes with

higher degree and bandwidth. This will make the subsequent

host node mapping and link mapping easier.

Inspired by Google’s Pagerank algorithm, we rank each

substrate router node s based on itself and it’s neighbors, called

Noderank. We first measure the bandwidth resource of each

substrate node s by H(s) =
∑

l∈L(s)

Bl, where L(s) denotes the

set of all the outgoing links of s, and Bl denotes the available

bandwidth resource of link l. Next, we compute the initial

N
(0)
R value for node s by N (0)(s) = H(s)∑

w∈Nsr

H(w) . In Pagerank,

from current page, a random walker can follow it to another

page that it links to and can also jump to any other page. We

name these two operations as forward and jump operations. Let

s, t ∈ Nsr be two different nodes. Let pJst =
H(t)∑

w∈Nsr

H(w) , pFst =

H(t)∑

w∈nbr1(s)

H(w) , where pJst denotes the jumping probability from

node s to land on node t, nbr1(s) = {t | (s, t) ∈ Lsr}, and

pFst the forward probability from node s to node t. Clearly,

∀s ∈ Nsr :
∑

t∈Nsr

pJst = 1,
∑

t∈nbr1(s)
pFst = 1. For any node

t ∈ Nsr, let

NR(i+1)(t) =
∑

s∈V

pJst · p
J
s ·NR(i)(s) +

∑

s∈nbr1(t)

pFst · p
F
s ·NR(i)(s), (18)

where pJs + pFs = 1, pJs ≥ 0, pFs ≥ 0, and i = 0, 1, · · · .
Noderank represents both the bandwidth resource and the

topological attribute of substrate nodes. See details in our

previous work [5]. Finally, we sort these nodes according to

the values of Noderank in non-increasing order. We use NRR

to denote the set of ranking values for these nodes. We choose

the substrate nodes with higher ranking.

Next, we prove that our algorithm converges.

Theorem 3.1: The NR algorithm eventually converges at a

steady state.

Proof: Each value of NR(i) can be treated as a state of

the Markov chain. First, the number of states is finite since

the number of the substrate router nodes is limited. Second,

the chain is irreducible since each node is strongly connected.

Third, the chain is aperiodic since each node affects its own

rank value. Thus, the theorem follows.

To tradeoff between the above two potentially conflicting

goals, we design a comprehensive measurement for substrate

nodes as follows:

NR = α ·NRE + (1− α) ·NRR, (19)

where α denotes the ranking weight (0 < α < 1). Thus, we

choose the substrate node with the highest overall ranking for

mapping virtual nodes.

The benefits of such ranking measure are two-fold. First, it

can save energy cost by exploiting the diversity of electricity

price and reducing the number of active router nodes. Second,

it increases the possibility of accepting the VN requests and

hence producing more revenues for ISPs.

2) Host Node Mapping: In this step, the goal is to search a

substrate host node for each virtual host node while meeting

their node constraints on CPU speed, memory size, and

storage capacity. As host node mapping affects link mapping,

besides satisfying the above node constraints, we also need

to consider link mapping in this host node mapping step.

By treating virtual nodes as items and substrate nodes as
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bins, this problem becomes the multi-dimension bin packing

problem. Thus, when a VN request arrives, we use a best-fit

strategy to satisfy its resource constraints, which means that

we prefer to map a virtual host node to the active substrate

host node that has the most average utilization of the four

resource constraints (namely CPU speed, memory size, storage

capacity, and bandwidth) after the mapping. Specifically, we

first define the average utilization for substrate host node j
as: ūj =

Cj+Mj+Sj+Bj

4 , where Cj , Mj , Sj , and Bj denote

the CPU, memory, storage and bandwidth consumption after

mapping h to j, respectively. After that, we define the standard

deviation: δj =

√

(Cj−ūj)2+(Mj−ūj)2+(Dj−ūj)2+(Bj−ūj)2

4 .

Finally, we select such node that has the least standard de-

viation for mapping h. Such strategy helps to strike a balance

among the four kinds of resources and increase the resource

utilization. It also helps to save energy by giving priority to the

use of the nodes in active state without incurring the baseline

power and switching cost.
The pseudocode of the above router and host node mapping

algorithms is in Algorithm 1.

Algorithm 1: Energy Aware Router Node Mapping
Input: Gv , Gs.
Output: Energy aware node mapping solution.

1 /*Router node mapping*/

2 for each virtual node nvr to be mapped in Nvr do

3 Construct the candidate substrate router node list.
4 Exclude the substrate nodes labeled used from the list.
5 Compute the NRE , NRR and NR values for all candidate nodes in Gsr

using Equation 19.
6 Apply the worst-fit strategy and map nvr to the substrate node nsr with

highest ranking.
7 if node resource constraints not satisfied then

8 return RNODE_MAPPING_FAILED

9 Label nsr used.

10 /*Host node mapping*/
11 for each virtual node nvh to be mapped in Nvh do

12 Find the set of local host nodes of the corresponding substrate router node
Mvr(nvr), where nvr denotes the access router node of nvh .

13 Exclude the substrate nodes labeled used from the set.
14 Apply the best-fit strategy to map nvh to nsh in this set.
15 if node resource constraints not satisfied then

16 return HNODE_MAPPING_FAILED

17 Label nsh used.

18 return NODE_MAPPING_SUCCESS

B. Link Mapping

To map a virtual link luv, we need to find a loop-free

path between the hosting nodes hu and hv that satisfies the

bandwidth constraint of lij . In finding such a path, we need

to consider the link distance and the power states of substrate

nodes. Towards this end, we design a weighted shortest path

algorithm with the preference of active nodes and ports over

inactive ones. Specifically, we first pre-calculate the weighted

shortest path between each pair of substrate nodes using

Floyd’s algorithm. We then try to iteratively increase the length

between hu and hv from the pre-calculated shortest length

until that we find a set of paths that has the same weighted

shortest paths and satisfy the bandwidth constraint of luv . To

measure such paths, we introduce the weighted sum of the

number of inactive nodes and inactive ports:

L = βNf + (1 − β)Np, (20)

where Nf and Np denote the number of inactive forwarding

nodes and inactive ports of a path, respectively. Finally, we

select the path with the smallest weighted sum value to reduce

energy cost. The pseudocode of the above node mapping

algorithm is in Algorithm 2.

Algorithm 2: Energy Aware Link Mapping
Input: Gv , Gs, MAXLEN (indicating maximum length that is acceptable),

LEN (a matrix denoting the pre-calculated length of the weighted
shortest path between each pair of substrate nodes).

Output: Energy aware link mapping solution.
1 for each virtual link lij to be mapped in Lv do

2 Set △L to 0.
3 while LEN(hi, hj) + △L ≤ MAXLEN do

4 Find a set of all paths Set(P ) with length LEN(hi, hj) + △L in
the SN.

5 Sort these paths in Set(P ) according to βNf + (1 − β)Np in
non-decreasing order.

6 for each path in Set(P ) do

7 if link resource constraint satisfied then

8 Record the link mapping solution for lij .
9 Goto Step 1.

10 Set △L to △L+ 1.

11 return LINK_MAPPING_FAILED

12 return LINK_MAPPING_SUCCESS

C. Time Complexity Analysis

The NodeRanks for NRE and NRR can be computed in

polynomial time in terms of |Gs|, |Gv| and max{1,− log ǫ},

where ǫ is a desired precision. The link mapping step can

also be done in polynomial time in terms of |Gs|, |Gv| and

MAXLEN. Thus, EA-VNE is a polynomial-time algorithm.

IV. ENERGY AWARE META-HEURISTIC VN EMBEDDING

ALGORITHM

In this section, we present a meta-heuristic energy aware

VN embedding algorithm.

A. Motivation

As mentioned in Section III, the VN embedding problem is

NP-hard and is difficult to obtain the global optimal solution

when the problem size is large. We propose population based

optimization methods because they provide multiple solutions

and allow us to choose the best from these solutions [21].

Among existing population-based optimization methods,

Particle Swarm Optimization (PSO) [22], as an efficient and

powerful tool, has been successfully applied to a wide range of

optimization problems. It is inspired by the flocking behavior

of birds in their food hunting. The process of solving the

optimization problem is analogous to the food hunting process

where the optimal solution corresponds to the food position.

In PSO, each bird, called a particle, has its own position,

represented by Xi = (x1
i , x

2
i , · · · , x

D
i ), where D denotes the

dimensions of the solution space. To find the optimal solution,

each particle interacts with each others in a certain way

and adjusts its search direction iteratively with the velocity

Vi = (v1i , v
2
i , · · · , v

D
i ). The velocity of the i-th particle

depends on three factors: its own current position (denoted

by Xi), its own personal best previous experience (denoted

by pBi), and the group best experience (denoted by gB) of
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all members. During the iterative process, the velocity and

position of particle i on the d-th dimension are updated as

follows:

vdi = wvdi + c1r
d
1(pB

d
i − xd

i ) + c2r
d
2(gB

d − xd
i )),(21)

xd
i = xd

i + vdi , (22)

where w denotes the inertia weight, c1 denotes the cognition

weight, c2 denotes the social weight, and rd1 and rd2 denote two

random variables uniformly distributed in the range of [0,1] for

the d-th dimension. The search mechanism of the elitist-based

learning strategy in PSO helps it to achieve high efficiency.

Furthermore, the required parameters of PSO are less than

other heuristic algorithms, such as ant colony optimization

[23]. Thus, we choose PSO instead of other meta-heuristic

algorithms.

In operational network, when a VN request arrives, the ISP

treats the position of each particle in PSO as a possible VN

embedding node solution. First, the ISP initializes particles

(i.e., VN embedding node mapping solutions) randomly. Then,

the ISP checks the validity of these VN embedding node

solutions in terms of link mapping and determines the quality

of these solutions by calculating the additional energy cost of

them. Next, these particles learn from each other and update

their positions to achieve a better position according to the

local and global information. In such a way, finally, a near-

optimal solution of VN embedding can be obtained through

the evolution process of the particles.

There are three technical issues that need to be addressed

in employing PSO for minimizing the energy consumption of

embedding VN requests. First, as the standard PSO algorithm

only deals with continuous optimization problems, it is not

directly applicable to VN embedding, which is a discrete opti-

mization problem. To address this issue, we introduce a variant

of discrete PSO by redefining the parameters and operations of

the particles in Section IV-B. Second, the randomness of PSO

may generate infeasible solutions that violates the resource

constraints; even if a feasible solution can be obtained, it

may not be a good solution and consequently lead to slow

convergence for the PSO algorithm. To address this issue, we

present an energy aware local selection (EALS) strategy to

initialize and update the positions of particles in Section IV-C,

which helps to accelerate the convergence process. Third,

the inherent premature convergence problem of PSO may

become an obstacle to further optimize energy consumption.

To address this issue, we propose the non-uniform mutation

strategy for the gB particle in Section IV-D to address the

premature convergence problem of PSO.

B. Discrete PSO for VN Embedding

We next present a discrete method for energy aware VN

embedding. First, we label the virtual router nodes with

1, 2, 3, ...|VR| and substrate router nodes with 1, 2, 3, ...|SR|,
respectively. Second, we label the virtual host nodes con-

nected to the i-th virtual router node with i1, i2, ..., |V H |i
and the substrate host nodes connected to the i-th substrate

router node with i1, i2, ..., |SH |i, where |V H |i and |SH |i
denote the number of edge host node of the i-th virtual

and substrate router nodes, respectively. Third, we use the

position of the i-th particle as the node mapping solution

Xi = (XRi, XHi) where XRi = (x1
i , x

2
i , · · · , x

|R|
i ) and

XHi = (x1
i , x

2
i , · · · , x

|H|
i ) represent the router node and

host node mapping solutions, respectively, and |R| and |H |
denote the numbers of virtual router nodes and host nodes,

respectively. That is, in XRi, we will map the first virtual

router node to the substrate router node labeled x1
i , the second

virtual router node to the substrate node labeled x2
i and so on

for the rest of the virtual router nodes. The same rule also

applies for XHi. For the i-th particle, the velocity vector

Vi = (V Ri, V Hi), where V Ri = (v1i , v
2
i , · · · , v

|R|
i ) and

V Hi = (v1i , v
2
i , · · · , v

|H|
i ), which guides the current VN

embedding solution to achieve a better solution, is defined

as a binary vector. If vdi = 1, then we use the current choice;

otherwise, the corresponding virtual node mapping should be

adjusted by selecting another substrate node from its candidate

node list. After that, the velocity and position of particle i on

the d-th dimension can be updated accordingly to the following

velocity and position recurrence relations:

vdi = P1v
d
i ⊕ P2(pB

d
i ⊖ xd

i )⊕

P3(gB
d ⊖ xd

i )), (23)

xd
i = xd

i ⊗ vdi , (24)

where P1 is the inertia weight, P2 the cognition weight, and

P3 the social weight, satisfying P1 + P2 + P3 = 1.

C. Energy Aware Local Selection (EALS) Strategy

In the basic PSO algorithm, during the evolutionary process,

it is common to generate and update the position parameters

of the particles randomly within the corresponding range

with equal probability. However, the generated solutions may

violate the node and link constraints and thus leads to slow

convergence. To address this issue, we propose an energy

aware local selection (EALS) strategy for position initializa-

tion and particle updating to achieve quick convergence. In

the EALS strategy, to select the substrate route nodes, we first

rank them according to Equation 19. The higher ranking the

substrate router node i has, the higher possibility that the i-th
node is selected in the corresponding dimension of a particle.

For the substrate host nodes, we also sort them in terms of the

standard deviation of resources in the non-decreasing order.

Similarly, the higher ranking the substrate router node j has,

the higher possibility that the j-th node is selected in the

corresponding dimension of a particle. This strategy helps to

produce feasible and energy-efficient candidate VN embedding

solutions and therefore accelerate the convergence process.

D. Non-uniform Mutation (NUM) Strategy for the gB Particle

While achieving a fast convergence speed, the gB model of

PSO has a high chance of getting stuck in local optima [24].

To address this issue, we use the mutation idea proposed in

[25] to guide the flying of gB particle in order to keep the

solution population of PSO diverse, to expand the exploration

scope in the solution space, and to keep the elitist learning

mechanism of PSO active. The PSO algorithm is highly
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sensitive to the mutation probability. On one hand, higher

mutation probability expands the search space and makes

it possible to find better solutions; however, it causes large

disturbance of the group evolution, which reduces the conver-

gence speed. On the other hand, lower mutation probability

makes the algorithm converge faster; however, the diversity

of the population evolution reduces and the opportunity of

falling into local optima increases. Thus, we use a non-

uniform mutation (NUM) strategy designed for the gB particle

[26]. The main idea is that gB particle performs a mutation

operation with a certain possibility, which is calculated by the

NUM function as f(k, r) = σ ∗ (1 − r(1−
k
K

)b), where σ, K ,

and b are constants. Here k and r are random numbers in the

range (0, 1). Here r is used to non-monotonously decrease the

mutation probability. Thus, this approach helps to reduce the

likelihood of premature convergence and guides the searching

toward the promising domain area. Our algorithm is enhanced

by this strategy to enrich the population diversity as well as

get more optimal solutions.

E. EA-VNE-EPSO Algorithm

The EA-VNE-EPSO algorithm takes the SN and a VN

request as inputs, using Formula 9 as the fitness function

f(X), and outputs an energy aware VN embedding solution.

The pseudocode of this algorithm is in Algorithm 3.

Regarding the time complexity, this algorithm consumes M ·
I times more running time than the heuristic EA − V NE.

However, M and I are usually limited and can be adjusted

easily. Our experimental results show that this algorithm is

effective and efficient.

Algorithm 3: EA-VNE-EPSO Algorithm
Input: Gv , Gs, M (the population size) and I (the maximum iteration count);
Output: Energy efficient VN embedding solution.

1 Construct a candidate list of substrate nodes for each virtual node in the VN
request.

2 Initialize M particles using the EALS strategy, which corresponds to node
mapping.

3 Check the validity of these particles using Algorithm 2, which corresponds to link
mapping.

4 Initialize pB and gB according to f(X).
5 while iteration count i < I do

6 Update X and V for each particle.
7 if f(X) 6= +∞ then

8 Use Equation (23) and (24) to update them with the EALS strategy.
9 else

10 Re-initialize its position vector X using the EALS strategy and its velocity
vector V randomly.

11 Update pB and gB.
12 if f(Xi) < f(pB) then Set Xi as the personal best position of the

particle i.
13 if f(pB) < f(gB) then Set pB as the global best position.
14 Calculate the mutation probability for the global best particle.
15 if needing to perform a mutation then Reinitialize the position vector X of

this particle should adopt the EALS strategy for and update gB.
16 i+ +;

V. EXPERIMENTAL RESULTS

A. Experimental Setup

SN Topology: Similar to most previous studies, we used the

GT-ITM tool to generate the SN and VN topology [27]. The

SN topology is configured to have 500 routers, following the

same order of magnitude with the ISP configuration in [11].

These routers are geographically distributed in a (25×25) grid,

which can be equally separated into 5 regions, representing 5

different electricity markets. For these 5 electricity markets,

we apply the real-world electricity price traces of 5 RTOs

in September 2011 in US that are publicly available at [14].

For each electricity market, the electricity price varies every

hour, which is termed as a time window. In the SN, each pair

of routers are connected with a probability of 0.5. For each

router, the maximum number of virtual machine supported

is a random number in [3, 128] based on Juniper router

configurations [28]. According to the typical access ability of

routers, each access router connects to 32, 64 or 128 host

nodes randomly. All of the router and host nodes are in the

power inactive state initially. For each host node in the SN,

the capacities of all available CPU, memory, storage, and

bandwidth of local links are uniformly distributed between

50 and 100. For backbone links between two routers, the

bandwidth is set to 100× of that for local links, which are

the typical configurations in practice.

VN Topology: We varied the scales of VN requests in

small, regular, and large sizes; specifically, the numbers of

virtual router nodes are uniformly distributed between 2 and

10, between 10 and 50, and between 50 and 100, respectively.

For all of these scales, we set the average VN connectivity

to be 50%. Each access virtual router connects to 8, 16 or 24

host nodes, randomly. Following the similar configuration used

in [6], all of the QoS requirements (i.e., the CPU, memory,

storage and bandwidth) of the virtual nodes and local virtual

links are uniformly distributed between 0 and 50. Similar to

the above SN configuration, for the backbone virtual links

between two routers, the bandwidth is set to 100× of local

virtual links. Similar to most prior studies on VN embedding,

the VN requests arrive according to a Poisson process with an

average arrival rate of 3 VNs per time window (i.e., an hour);

each request has an exponentially distributed lifetime with an

average of 10 time windows. In each simulation, there are

about 720 time windows (about a month), which corresponds

to about 2,000 VN requests on average. We ran ten random

different instances with these settings and calculated the mean

of the ten runs.

Other Parameter Settings: Similar to [7], we set the

location parameter LP , which is the ratio of W (in Table I) to

the grid size, to 1/3. Similar to [16], we set Pf , Pl and Pp to

375W, 315W, and 3W, respectively. Similar to [11], [29], we

set Pb, Pl defined in Section II-B to 165W, 1.5W per CPU unit,

respectively, and set Pr to 100W per distance unit. Similar to

[30], we set the switching costs for routers and hosts, i.e.,

Esr and Esh, to the corresponding energy consumption at

the maximum load of one hour. In calculating the long-term

average revenue, we set WR to 100. In EA-VNE, the ranking

weight α in Formula 19 is set to 0.5 and MAXLEN is set

to 8. In PSO based algorithms, the population size is set to 10

and the maximum iteration count is set to 50. The parameters

P1, P2, and P3 in Equation 23 are set to 0.1, 0.2, and 0.7,

respectively.

Comparison Setup: We implemented our algorithms in

C++ and performed side-by-side comparison with prior 9

major algorithms in Table III. The evaluation proceeds in the
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following five steps. In the first step (described in Section

V-B), to evaluate the performance of our heuristic algorithm,

we compared them with the state-of-the-art algorithm, i.e., D-

ViNE-SP proposed in [6]. D-ViNE-SP solves the programming

model using relaxation and rounding techniques. It uses deter-

ministic node mapping with the shortest path link mapping. To

perform side-by-side comparison, we modified their algorithm

slightly in order to support the embedding for two categories of

nodes, i.e., route nodes and host nodes. In addition, to evaluate

the effectiveness of the packing schemes that we adopted in

the route and node mapping steps, we also compared EA-VNE

to the other three packing scheme combinations as shown

in Table III. In the second step (described in Section V-C),

we evaluated our PSO based algorithms by setting different

parameters and compared it to the ACO based algorithm. In

this step, we also investigated the performance improvement

of the EALS strategy and NUM strategy throughout the

comparisons among the algorithms EA-VNE-PSO, EA-VNE-

ACO, and EA-VNE-EPSO. Next, we extend the investigation

to evaluate the impact of the VN scale on the performance of

these algorithms in the third step (described in Section V-D).

Finally, to quantify how close our algorithm is to the optimal

algorithm, the fourth step (described in Section V-E) compares

our solution achieved by EA-VNE-EPSO with the optimal

solution achieved by the standard ILP solver GNU Linear

Programming Kit. All simulation experiments were performed

on the server with Intel 3GHz dual-core CPU, 2GB memory,

160GB disk, and Linux 2.6 OS.

TABLE III: Comparison of VN embedding algorithms
Notation Algorithm Description

Heu

EA-VNE Our energy aware VN embedding

algorithm.

VNE-BB Similar to EA-VNE, apply both best-fit

scheme in router and node mapping steps.

VNE-BW Similar to EA-VNE, apply best and worst-
fit in router and node mapping steps,

respectively.

VNE-WW Similar to EA-VNE, apply both worst-fit

scheme in router and node mapping steps.

Meta-
heu

EA-VNE-PSO The energy aware VN embedding algorithm

based on PSO technique.

EA-VNE-ACO The energy aware VN embedding algorithm
based on the ant colony optimization tech-

nique used in [31].

EA-VNE-EPSO The enhanced version of EA-VNE-PSO
with EALS and NUM strategies.

Relaxed
and
rouding

D-ViNE-SP The state-of-the-art VN embedding algo-
rithm, proposed in [6].

Optimal GLPK It uses the standard ILP solver of GNU
Linear Programming Kit (GLPK) [32] to
solve the ILP model and generate the opti-
mal energy aware VN embedding problem.

B. Energy Aware Heuristic VN Embedding Algorithm

This subsection investigates the performance of our EA-

VNE algorithm in terms of the long-term average revenue

defined in Formula 16, the long-term average energy cost

defined in Formula 17, and the running time. The evaluations

were carried out on the regular-sized VN scale. We report the

comparison results (with 95% confidence interval) in Fig. 3.
1) Impact of Ranking Weight: For the value of α, in EA-

VNE, we set it to be adaptively adjusted to the environment of

network resource rather than a constant value. When the SN

has abundant resources for serving the VN requests, which

means that it is easy to satisfy the resource constraint, the

factor of the NRR should be neglected, and we have more

opportunity to optimize the energy cost by consolidating VNs

into the smaller number of substrate nodes. In this case, our

primary goal is to optimize the energy cost and α should

be set to near 0. When the SN is overloaded (i.e., most of

the substrate nodes have been powered up and the resource

of the nodes and links is exhausted), our primary goal is to

accommodate more VN requests. As the space for optimizing

the energy consumption is also limited, α should be set to near

1. Therefore, based on this idea, we set the the value of α to

be the dynamic utilization of the network resource of the SN.
In Fig. 3, we compare EA-VNE (with dynamically changing

value of α) with other modifications (α is set to constant

values, i.e., 0.1, 0.5, 0.9). As shown in Fig. 5, the value of

α in EA-VNE keeps between 0.3 and 0.4. We find that when

α increases, both of the revenue and the energy cost drop.

However, EA-VNE nearly achieves the best performance in

terms of both long-term average revenue and energy cost. That

is because the dynamic changing value for weight α helps it

find a right balance between the revenue and energy cost.
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2) Comparison with State-of-the-art Algorithm: From Fig.

3(a), we observe that EA-VNE obtains a little more revenue

than the state-of-the-art algorithm D-ViNE-SP. This is be-

cause first, in the node mapping step, in addition to node

constraints, EA-VNE also considers the bandwidth constraint,

which makes link mapping easier and therefore obtains higher

possibility of accepting VN requests; second, VN consolida-

tion increases the efficiency of the substrate resource usage

and save more room for the incoming VN requests.
From Fig. 3(b), we observe that EA-VNE consumes much

less energy than D-ViNE-SP in the long run. For example,

at the time window of 720, the energy cost of EA-VNE is

about 40% less than the energy cost of D-ViNE-SP. This is

because EA-VNE considers the electricity price and performs

consolidation in both the node and link mapping steps and

avoid powering on inactive nodes. Thus, EA-VNE leads to

higher energy efficiency than D-ViNE-SP. For example, Fig.

3(c) shows that EA-VNE consolidates the VN into much less

number of substrate nodes by up to 30% than D-ViNE-SP.
Table IV shows the average running time. We observe

that EA-VNE has much less running time than D-ViNE-SP.
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This is mainly because D-ViNE-SP needs to solve two linear

programming to embed a VN request [6].

TABLE IV: Average time and standard deviation comparison

on regular-sized VN scale
Time D-ViNE-SP EA-VNE VNE-BB VNE-BW VNE-WW

T 1.20min 5.14ms 5.37ms 5.36 ms 5.36ms
δT 0.13min 0.60ms 0.35ms 0.35 ms 0.34ms

3) Comparison with Combinations of Other Packing

Schemes: Table IV shows that EA-VNE consumes nearly the

same running time as algorithms with combinations of other

packing schemes, i.e., VNE-BB, VNE-BW, and VNE-WW.

Fig. 4 shows the comparison results with 95% confidence

interval, from which we observe that EA-VNE has the fol-

lowing two benefits compared to these algorithms. First, EA-

VNE generates the highest long-term average revenue with

VNE-WW as shown in Fig. 4(a). For example, at the time

window of 720, EA-VNE generates 45% and 32% higher

revenue than VNE-BB and VNE-BW, respectively. VNE-BB

and VNE-BW generate lower revenues because the best-fit

strategy for router node mapping cannot guarantee a feasible

link mapping solution and thus leads to a higher failure pos-

sibility for link mapping. Second, EA-VNE consumes lower

long-term average energy than VNE-WW. Fig. 4(b) shows

that EA-VNE reduces about 33% energy cost than VNE-

WW. This is because the worst-fit scheme for satisfying the

node constraints, used by VNE-WW, powers up more inactive

substrate nodes as shown in Fig. 4(c) and thus incurs more

energy cost.

C. Energy Aware Meta-heuristic VN Embedding Algorithm

As mentioned in Section IV, each particle achieves a

more energy-efficient solution through the iteration process

by learning from the experience from other particles. As the

number of iterations and population size increase, PSO can

find better energy aware VN embedding solutions with the

cost of more running time. To find the right balance between

energy efficiency and running time, we carried out simulations

on regular-sized VN scale to study the impact of the number

of iterations and population size on these two performance

metrics.

1) Impact of Iteration Number: We fixed the population

size to 10 and varied the iteration number from 0 to 100.

The energy efficiency and running time results are in Fig.

6(a) (with 95% confidence interval) and Fig. 6(b), respectively.

The results show that for accommodating the same sequence

of VN requests, PSO based meta-heuristic algorithms further

reduces the energy cost within reasonable iteration number.

When the iteration number is 50, EA-VNE-PSO can achieve

48% and 20% less energy cost than D-ViNE-SP and EA-VNE,

respectively. When the iteration number is more than 50, as

the iteration number increases, the running time of each our

algorithm increases linearly as shown in Fig. 6(b), and the

energy cost declines slowly and converges finally as shown in

Fig. 6(a). Thus, we set the iteration number to 50 for our PSO

based algorithm.

2) Impact of Population Size: In this evaluation, we set the

iteration number to 50 and varied the population size from

0 to 50. Energy cost results are in Fig. 6(c). We observe that

when the population size increases to more than 10, the energy

cost declines slowly and finally converges. Thus, we set the

population size to 10 in our PSO based algorithms. For running

time, running time increases in linear with the population size

for PSO. As the running time results are similar to those in Fig.

6(b), we do not show this figure due to space limitation. Note

that PSO allows an ISP to set parameters (such as iteration

number and population size) in tradeoff energy efficiency and

running time.

3) Comparison to ACO technique: To evaluate the effec-

tiveness of PSO, we compare EA-VNE-PSO to EA-VNE-

ACO. For energy cost, Fig. 6(a) and 6(c) show that under

the same iteration number and population size, EA-VNE-PSO
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Fig. 6: Comparison between EA-VNE-EPSO and other algorithms

outperforms EA-VNE-ACO significantly. For example, in Fig.

6(a), when the iteration numbers are 10 and 30, EA-VNE-PSO

consumes about 12% and 10% less energy consumption than

EA-VNE-ACO, respectively. Fig. 6(c) show similar results.

There are two main reasons that EA-VNE-PSO outperforms

EA-VNE-ACO significantly. First, after each iteration, the

pheromone values in ACO are updated by all the ants that

have built solutions [33]. Thus, ACO is less efficient than

PSO. Second, as the pheromone accumulates, ACO stops

searching early and thus leads to energy inefficiency and slow

convergence, which can be seen from these two figures. For

running time, Fig. 6(b) shows that these two algorithms are

comparable.
4) Improvement of EA-VNE-EPSO over EA-VNE-PSO: Fig.

6(a) and Fig. 6(c), show that EA-VNE-EPSO has less energy

cost than EA-VNE-PSO under the same iteration number

and population size. For example, in Fig. 6(a), when the

iteration numbers are 10 and 50, EA-VNE-EPSO saves about

8% and 6% less energy cost than EA-VNE-PSO. There are

two main reasons that EA-VNE-EPSO has less energy cost.

First, the EALS strategy accelerates the convergence of our

algorithm. During the iterative process of PSO, EALS strategy

helps to produce a larger number of VN embedding solutions,

which are not only feasible but also energy-efficient. Second,

the NUM strategy overcomes the premature phenomenon of

PSO to some extent. The NUM strategy enhances the global

search capacity of PSO and reduces its probability of being

trapped into local optima. Thus, EA-VNE-EPSO achieves

more energy-efficient VN embedding solutions and therefore

saves more energy. Note that for the EALS strategy and its

mutation process, EA-VNE-EPSO also consumes a little more

running time than EA-VNE-PSO as shown in Fig. 6(b).

D. Impact of VN Scales

We now evaluate the impact of VN scales on the perfor-

mance of our algorithms. As mentioned is Section V-A, we

generated two more different sized VN inputs: small-sized and

large-sized VN inputs. That means that the number of virtual

router nodes is uniformly distributed between 2 and 10 and

between 50 and 100, respectively. We conducted ten random

different such instances for each type of scale. We report the

comparison results (with 95% confidence interval) between

the D-ViNE-SP, EA-VNE-ACO and our proposed algorithms

in Fig. 7. From these results, we have the following interesting

observations.

First, as the VN scale increases, all algorithms (i.e., D-

ViNE-SP, EA-VNE, EA-VNE-ACO, EA-VNE-EPSO) have

the same rank in terms of energy cost and revenue.

Second, from Fig. 7(b), as the VN scale increases, we

observe that the relative energy efficiencies of our algorithms

decline. For example, for small-sized VN requests, EA-VNE-

EPSO (with the iteration number of 50) saves 23%, 29% and

58% energy cost than EA-VNE-ACO, EA-VNE and D-ViNE-

SP, respectively. However, for regular-sized VN requests, EA-

VNE-EPSO saves 17%, 19% and 47% energy cost than these

algorithms. When the VN requests scale to large sizes, the

relative energy efficiency advantages continue to drop to 4%,

9% and 16%, respectively.

As VN scale increases, Fig 7(d) and 7(e) show that all

algorithms have higher node and link utilization; for each VN

scale, they achieve nearly the same node and link utilization.

However, with VN scale increasing, the difference in terms of

the percentage of active nodes declines. This is because the SN

has to power up more and more substrate nodes to satisfy the

larger-sized VN requests as shown in Fig. 7(c). For the extreme

case, when the VN infrastructure is overloaded, nearly all the

substrate nodes have to be powered up to satisfy these VN

requests. In such scenario, the powerdown based consolidation

technique adopted in our algorithms may not work well. Thus,

the energy saving efficiencies of our algorithms decline.

Third, from Table. V, which depicts the average running

time and standard deviation comparison, we observe that as

the VN scales from small sizes to large sizes, the average

running time of these algorithms increase. It takes D-ViNE-

SP some minute level on average to embed a VN request. This

is because it needs to solve two linear programming to embed

a VN request through relaxing and rounding techniques.

However, the running times of our algorithms can keep at the

several milliseconds or seconds level, which means that our

algorithms are more practical for online VN embedding.

TABLE V: Running time comparison over different VN scales
Size Time D-ViNE-SP EA-VNE EA-VNE-ACO EA-VNE-EPSO

Small
T 0.10min 0.51ms 0.32s 0.34s

δT 0.01min 0.04ms 0.02s 0.02s

Reg
T 1.20min 5.14ms 3.06s 3.10s

δT 0.13min 0.60ms 0.21s 0.23s

Large
T 3.68min 13.02ms 8.02s 8.10s

δT 0.44min 0.15ms 0.45s 0.42s
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Fig. 7: Comparison between our algorithms and others on different VN scales

E. Optimality of EA-VNE-EPSO

To quantify the optimality of EA-VNE-EPSO, we compare

EA-VNE-EPSO with the standard ILP solver GNU Linear Pro-

gramming Kit (GLPK) [32]. Due to the inherent complexity

of the optimal VN embedding problem, the time complexity

of the ILP solver turns out to be exponential. We tried to map

a VN request with 4 router nodes to the SN with 50 router

nodes. It only took about several milliseconds for EA-VNE-

EPSO to get a near-optimal solution while GLPK took even

several days to compute the optimal solution, which is not

practical for online VN embedding. Thus, for the comparison

between EA-VNE-EPSO and GLPK, we especially carried out

simulations on inputs of extra small-sized network topology,

where only router nodes are included. Specifically, we set the

number of virtual route nodes from 2 to 3 and varied the

number of substrate nodes from 10 to 50. We embedded 500

such VN requests, all of which were accepted by the compared

algorithm. T results in terms of the energy cost are in Fig. 8

(with 95% confidence interval).
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For running time, our results show that EA-VNE, EA-VNE-

ACO, and EA-VNE-EPSO consume several milliseconds

while D-ViNE-SP and GLPK consume several seconds on

even such small network topologies. Fig. 8 shows the energy

cost comparison. We observe that our algorithm EA-VNE-

EPSO obtains the approximate energy efficient VN embedding

solutions. For example, when the number of substrate nodes is

40, the approximation ratio of EA-VNE and EA-VNE-EPSO

is about 1.233 and 1.028, respectively. When the number of

substrate router nodes is 50, the approximation ratios of these

two algorithms become 1.229 and 1.024, respectively. This

indicates that our algorithms obtain not only the near optimal

solutions but also have the stable performance.

We also evaluated the impact of location parameter LP on

the approximation ratio of EA-VNE-EPSO by fixing the num-

ber of substrate nodes at 50 nodes. The results are in Fig. 9.

We observe that as the LP increases, the approximation ratio

of EA-VNE-EPSO decreases, which means that it achieves

more optimal solutions. This is because larger LP indicates

that EA-VNE-EPSO can explore larger space for exploiting

the diversities of electricity price. For the extreme case, when

LP = 1, it may place all the virtual nodes in the substrate

nodes with the lowest price. Therefore, more optimal solutions

can be achieved.
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VI. RELATED WORK

In recent years, the VN embedding problem has received

much attention. However, most such work does not consider

energy cost in carrying out VN embeddings.

Since VN embedding is a NP-hard problem, early studies

made one or more of the following assumptions: (1) having

the complete knowledge of VN requests [3]; (2) having neither

node nor link requirements [34]; (3) having no admission

control when the resource of the SN is insufficient [34].

However, these assumptions may not hold in reality.
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Some attempts have been made to address VM embedding

without the above assumptions [2], [5], [7], [8]; however,

they introduce another assumption that the SN supports path

splitting and migration. Path splitting means splitting a virtual

link over multiple substrate paths to maximize revenue. Path

migration means migrating the traffic on a path to another path

to maximize the utilization of the SN. Yu et al. proposed the

first VN embedding solution based on this assumption in [2].

Based on the assumption that path splitting is supported by the

SN, later Cheng et al. proposed two VN embedding algorithms

RW-Maxmatch and RW-BFS based on a topology-aware node

resource measure called NodeRank, which reflects resource

qualities; Zhang et al. designed a PSO based VN embedding

algorithm to maximize the revenues from accommodating VN

requests [8]; and Cheng et al. further leveraged NodeRank and

PSO to maximize the revenues by trying to accommodate more

VN requests [7].

Recently, also based on this assumption, Chowdhury et

al. [6] considered the location requirement of virtual nodes

and made the first attempt to formulate the VN embedding

problem. To solve the formulation, they used the novel linear

programming relaxation and rounding technique to coordinate

the node and link mapping. Note that they applied multi-

commodity flow (the shortest path) algorithm for the link

mapping when the path splitting is (not) supported by the SN.

To minimize the physical resource of the SN, Fajjari et al.

proposed a novel ant colony optimization (ACO) based VN

embedding algorithm [31] called VNE-AC. It is inspired by

the behavior of ants in finding best paths to launch an ant

colony. In particular, each ant iteratively builds a piece of

the solution (i.e.transition), where each solution component

is embedded according to the available resources and the

artificial pheromone trail in the SN. Compared to VNE-AC,

our solution has the following advantages. First, after each

iteration, the pheromone values in ACO are updated by all

the ants that have built solutions [33]. Thus, the operations

of ACO are less efficient than those of PSO. Second, the

search mechanism of the elitist-based learning strategy of PSO

ensures its efficiency. Besides, the key parameters of PSO are

less than those of ACO [23]. Thus, it is easy to implement and

modify in dealing with concrete problems. Another drawback

of this algorithm is that, as the pheromone accumulates, it may

not get a global optimum because it stops searching early [33].

All above work does not consider energy consumption.

Since we publish the preliminary work of this paper, Botero

et al. proposed an exact algorithm to solve the energy efficient

VN embedding algorithm [35]. However, as demonstrated in

Section V-E, applying exact algorithms (such as GLPK) to

minimize energy cost will lead to too high time complexity

and is not practical for online VN embedding. In contrast, in

this paper, we focus on designing heuristic and meta-heuristic

algorithms to achieve near-optimal VN embedding solutions

with low calculational cost.

Some efforts are on addressing the inter-domain VN em-

bedding problem, where VNs are provisioned across large-

scale geographically distributed domains to deploy and deliver

services end to end. Chowdhury et al. presented a decentralized

inter-domain VN embedding framework [15]. In order to

maximize the revenue for ISPs, Houidi et al. further designed

an efficient inter-domain VN embedding algorithm, which first

employed Max-flow/Min-cut approach to split the VN request

into sub-requests and then used exact mapping to process such

sub-requests [36] . These two studies also ignore the energy

issue in VN embedding across multiple domains. While Zhang

et al. [37] studied the cost aware VN embedding problem

across multi domains, however, the network model is simple

and the algorithm is also less efficient.

Recently, Seetharaman proposed to conserve energy by

allowing tenants to reshape their own workload from the

application aspect in a network virtualization environment

[38]. However, our goal is to reduce energy cost from the

resource scheduling aspect. Thus, it is orthogonal to our work.

VII. CONCLUSION

VN embedding is a key problem in network virtualization.

In this paper, we study this problem from the energy saving

perspective. Specifically, we propose an energy cost model and

formulate the energy aware VN embedding to an integer linear

programming. To solve this formulation, we design two energy

aware VN embedding algorithms, i.e., EA-VNE and EA-VNE-

EPSO. Experimental results show that our algorithms can save

up to 50% energy cost for ISPs than existing algorithms when

accommodate the same sequence of VN requests.
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