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Abstract

One of the main challenges in cloud computing is an enormous amount of energy consumed in data-centers. Several
researches have been conducted on Virtual Machine(VM) consolidation to optimize energy consumption. Among the
proposed VM consolidations, OpenStack Neat is notable for its practicality. OpenStack Neat is an open-source
consolidation framework that can seamlessly integrate to OpenStack, one of themost common and widely used open-
source cloud management tool. The framework has components for deciding when to migrate VMs and for selecting
suitable hosts for the VMs (VM placement). The VM placement algorithm of OpenStack Neat is called Modified Best-Fit
Decreasing (MBFD). MBFD is based on a heuristic that handles only minimizing the number of servers. The heuristic is
not only less energy efficient but also increases Service Level Agreement (SLA) violation and consequently cause more
VM migrations. To improve the energy efficiency, we propose VM placement algorithms based on both bin-packing
heuristics and servers’ power efficiency. In addition, we introduce a new bin-packing heuristic called a Medium-Fit
(MF) to reduce SLA violation. To evaluate performance of the proposed algorithms we have conducted experiments
using CloudSim on three cloud data-center scenarios: homogeneous, heterogeneous and default. Workloads that run
in the data-centers are generated from traces of PlanetLab and Bitbrains clouds. The results of the experiment show
up-to 67% improvement in energy consumption and up-to 78% and 46% reduction in SLA violation and amount of
VM migrations, respectively. Moreover, all improvements are statistically significant with significance level of 0.01.
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Introduction
Cloud computing refers to the provisioning of computing
capability as a service through the Internet. The hardware
and systems software that together provide those services
are referred to as a cloud [1]. Cloud providers leverage
virtualization technology to provide on demand comput-
ing resources in form of virtual machines (VMs). VMs
have their own operating system to manage applications.
Containerization is an alternative technology which parti-
tion a server hardware into many containers that share an
operating system [2].
As a cloud is realized on large-scale usually distributed

data-centers, it consumes an enormous amount of energy.
In 2012, energy consumption by data centers worldwide
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was 300 - 400 tera-watt hour, about 2% of the global elec-
tricity usage, and it is estimated to triple by 2020 [3].
VM consolidation using live VM migration [4] optimizes
power utilization by running VMs in as much few servers
as possible and putting the rest in sleep mode or turning
them off. The research by Meisner et al. shows that turn-
ing off servers or putting them in a sleep mode saves a
large amount of power [5]. According to their study, a typ-
ical HP blade server consumes 450 w at peak load, 270 w
at idle state and 10.4 w at sleep mode.
Energy efficiency usually has a trade-off with quality of

service which is another concern of consolidation. From
the cloud customer point of view, all that matter is the
fulfillment of their applications resource demand. The
resource demand is usually specified as Service Level
Agreement (SLA). Thus, any good consolidation algo-
rithm should provide a well-balanced energy efficiency
and SLA assurance. In addition to these concerns, there
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is a third aspect of consolidation that deals with minimiz-
ing the amount of VM migrations [6]. Unnecessary VM
migrations need to be avoided as it increases the network
traffic and also incurs additional cost of energy [7, 8].
To address the above consolidation issues, a number of

research works are conducted [6, 9–14]. Not all researches
deal with all aspects of consolidation. For example, the
work in [12] particularly focuses on energy minimizing
aspect of consolidation while the works in [9, 10] address
minimizing SLA violation as well. Some of the works
[6, 11, 13, 14] deal with all three aspects of consolidation
including reducing the amount of VMmigrations.
Beloglazov and Buyya (2014) developed a framework

and an open-source implementation of dynamic VM con-
solidation for OpenStack cloud [14]. OpenStack is one
of the most common and widely used open-source cloud
management tool [15–17]. The framework is calledOpen-
Stack Neat. The implementation of the framework runs
independently of the base OpenStack and applies the
consolidation process by invoking public APIs of Open-
Stack. The architecture of OpenStack Neat contains four
decision components:

1 Host overload detection: used to decide whether a
host is overloaded.

2 Host underload detection: used to decide whether a
host is underloaded.

3 VM selection: selects the VMs to be migrated from
overloaded hosts.

4 VM placement: selects a host for placing the current
VM to be migrated.

TheVMplacement algorithm ofOpenStackNeat imple-
mentation is called Modified Best-Fit Decreasing (MBFD)
[14]. The MBFD selects an active host with the mini-
mum available CPU that fits the current VM. In case of
a tie, the host with the smallest available RAM is cho-
sen. Since the algorithm is based on the best-fit decreasing
heuristic, it has high efficiency of consolidating VMs to
a smaller number of servers. It reduces energy consump-
tion by turning off or putting in sleep mode the rest of the
servers. However, the algorithm has some drawbacks: (i)
placing VM to the most utilized host increase the over-
load probability. The overload will intern increases SLA
violations and the number of VM migrations, and (ii) in a
heterogeneous cloud, the MBFD algorithm loses the ben-
efit of favoring power-efficient servers and will be less
energy efficient.
In this paper, we address the limitation of MBFD;

thereby proposing an enhancement to the OpenStack
Neat consolidation to improve energy efficiency, lower
VMmigrations and SLA violation. To improve the energy
efficiency, we propose a VM placement algorithms by
modifying the bin-packing heuristics considering power

efficiency of hosts. Moreover, we introduce a new bin-
packing heuristic, medium-fit, to reduce SLA violations
and the number of VM migrations. To evaluate the pro-
posed algorithms, we have conducted an experiment
using CloudSim simulator on three cloud data-center sce-
narios: homogeneous, heterogeneous and default. Twenty
days of workloads that run on the three data-center sce-
narios have been generated from traces of PlanetLab
and Bitbrains clouds [18, 19]. The proposed algorithms
improve all three consolidation aspects: energy efficiency,
SLA violation and amount of VM migrations. The results
of the experiment show up-to 67% improvement in energy
consumption and up-to 78% and 46% reduction in SLA
violation and amount of VMmigrations, respectively.
The main contributions of this paper are the following:

• A new bin-packing heuristic called a medium-fit is
defined. The medium-fit heuristic provides a
well-balanced efficiency between energy
consumption and SLA violation.

• In the proposed algorithms, the bin-packing
heuristics are modified to consider the power
efficiency of the servers. The modification has
resulted in a better energy efficiency when used in
heterogeneous cloud.

• The proposed algorithms can be implemented with a
minor addition to a cloud configuration database. The
peak power of hosts is the only additional information
necessary to incorporate the proposed algorithms in
the implementation of OpenStack Neat framework.

The remainder of this paper is organized as fol-
lows. In “Related work” section, we discuss the related
works. The proposed VM placement algorithms are
described in “Proposed work” section. In “Experiment and
results” section, we present the experiment setups and dis-
cuss the result of the simulation. Finally, we conclude the
paper in “Conclusion” section.

Related work
The problem of consolidation is well formulated in the
works of Guazzone et al. (2012) as an optimization func-
tion [6, 20]. The objective function is a linear combination
of cost of energy, VM migration and cost of performance
degradation. The resulting mathematical programming is
a Mixed-Integer Nonlinear Program (MINLP) which is
known to be NP-hard. The only known solution to an
NP-hard problem is an exhaustive search which is infea-
sible for dynamic cloud environment owing to its slow
convergence. Some research works give a different formu-
lation of the consolidation problem. For example, Rawas et
al. (2018) formulate the consolidation problem in context
of Geo-distributed data-centers [21]. Accordingly their
equation considers power-effectiveness of data-centers
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and users to data-center communication costs in addi-
tional to cost of energy in each data-center. In all cases, the
optimum solution (exhaustive search) is infeasible owning
to its slow convergence.
Several approximate consolidation solutions are pro-

posed in the literature [6, 14, 18, 22–24]. In these approx-
imate solutions, the VM placement decision is handled
with simple heuristics such as a modified form of best-fit
and first-fit decreasing.
In the works of Beloglazov et al. (2014), the VM place-

ment problem is handled by the MBFD algorithm [14].
The algorithm deals withminimizing the number of active
servers and is based on a bin-packing heuristic called
Best-Fit Decreasing (BFD). The default VM placement
algorithm in CloudSim cloud simulator is the Power-
Aware Best-Fit Decreasing (PABFD) [18]. The PABFD
places the current VM on a host that fits it and the esti-
mated increase in power is the minimum. Chowdhury
et al. (2015) proposed Power-AwareWorst-Fit Decreasing
(PAWFD) algorithm which favors a host whose estimated
increase in power utilization is the maximum (quite the
opposite of PABFD) [22]. Their experiment shows that
PAWFD has better performance than their baseline algo-
rithm, PABFD.
A comprehensive performance analysis of various VM

placement algorithms is conducted by Z. Mann and M.
Szabo (2017) [23]. For overload and underload detection,
the authors reuse algorithms fromOpenStackNeat frame-
work. The VM placement algorithms considered for com-
parison include PABFD and PAWFD. The best performing
algorithms are the “Guazzone” [6] and the “Shi-AC” [25]
algorithms. The “Guazzone” algorithm is from the works
of Guazzone et al. (2012) [6] and it applies three host selec-
tion criteria: (i) powered-on host proceeds powered-off
host, (ii) within powered-on or powered-off host cate-
gory, hosts are selected by decreasing size of free CPU,
and (iii) in case of same CPU capacity, hosts are selected
by increasing values of idle power consumption. The
“Shi-AC” is from Shi et al. (2013) and assigns a VM place-
ment by favoring a server with the largest absolute CPU
capacity [25].
To address the issue of unnecessary VMmigrations and

an increase in SLA violation caused by heuristics that only
deal with minimizing the number of servers, Farahnakian
et al. (2015) proposed prediction aware VM placement
[24]. The proposed algorithm called Utilization Prediction
Aware Best-Fit Decreasing algorithm (UP-BFD) chooses
a host based on the prediction of future resource utiliza-
tion. Their simulation result shows that UP-BFD performs
better than those that are not utilization prediction aware.
The authors provide a whole set of prediction aware
algorithms for consolidation.
Wang et al. (2016) developed an improved particle

swarm optimization (PSO) algorithm to optimize virtual

machine placement in national cloud data centers [26].
The optimization considers the trade-off between energy
consumption and global QoS (response time, throughput,
availability and reliability) guarantee for data-intensive
services. To evaluate the algorithm, the authors extended
CloudSim to a new simulator called FTCloudSim by
adding fat-tree data center network construction module,
a QoS module, and so on. Experiment results show that
the proposed approach reduce energy consumption while
satisfying the global QoS guarantee.
In line with the above works, this paper tries to address

the consolidation problem from all three perspectives.
However, instead of proposing a novel framework we built
our work on existing OpenStack Neat framework and
specifically improve the VM placement component. The
VM placement algorithms we propose like most of the
above works are based on bin-packing heuristics. The dif-
ference is that our algorithms include power efficiency
of servers as an additional factor. Moreover, we defined
a new bin-packing rule that is suitable to reduce SLA
violation and amount of VM migrations. The complexity
of bin-packing based VM placement algorithms are very
simple. It is proportional to the number of VMs to the
number of hosts. This is much simpler than evolutionary
computation techniques that also involve the number of
populations and iterations.

Problem description
An efficient VM placement algorithm is expected to allo-
cate computing resources in such a way that it satisfies
VMs’ resource demand and minimizes energy utiliza-
tion with the least number of VM migrations possible.
As described in “Related work” section, many of the
VM placement algorithms are based on bin-packing algo-
rithms. The problem of VM placement is analogous to
problem of bin-packing where items of different sizes are
assigned to bins of unit size (see “Proposed work” section).
The bin-packing heuristics are more suitable to homoge-
neous cloud environment. For heterogeneous cloud envi-
ronment, however, the heuristics need to be modified
to accommodate the variability in servers. Moreover, as
described in “Introduction” section, efficient bin-packing
algorithms like BFD, increase overload probability of
servers.
The VM placement component of OpenStack Neat

framework, MBFD, has no mechanism to handle the het-
erogeneity of servers. The PABFD algorithm, designed for
the same framework, uses the estimated power utiliza-
tion of servers for the current VM [18]. The idle power
of the servers, however, is not taken in to considera-
tion by PABFD. This has a negative impact on the total
energy-efficiency of the algorithm.
In this paper, we address the limitation of the existing

VM placement algorithms in OpenStack Neat framework
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with respect to energy-efficiency, VMmigrations and SLA
violation.

Proposed work
A bin-packing model is a natural fit to the problem of VM
placement. In bin-packing, items are assigned to contain-
ers (bins) with optimization objective of minimizing the
number of bins. Items are specified by sizes with values
not more than the size of the bin. The bin-packing prob-
lem is well known to be NP-hard and, hence, an exact
solution is unlikely to be found or is inefficient (e.g., for
very dynamic problems). However, many approximation
heuristics are proposed in literature [27, 28]. The most
common heuristics are the following:

Next-Fit (NF) assigns an item to the recently opened bin
if it fits; otherwise, it closes it and opens an empty
bin.

First-Fit (FF) assigns an item to the first partially filled
bin that fits it; otherwise, an empty bin is opened.

Best-Fit (BF) assigns an item to the fullest partially filled
bin that fits it; otherwise, an empty bin is opened.

Worst-Fit (WF) assigns an item to the lowest partially
filled bin that fits it; otherwise, an empty bin is
opened. WF has a rule that opposes the BF rule.

Any-Fit (AF) any fitting rule that doesn’t open an empty
bin unless all partially filled bins do not fit an item.
All of the above heuristic except NF belong to AF.

The worst-case asymptotic performance ratio (APR) is
used to measure the packing efficiency of a given heuristic
relative to the optimum in the worst case scenario. APR is
defined as follows:
Let A(L) be the number of bins when algorithm A is

used to pack list of items L and OPT(L) be the optimum
number of bins. If, RA(L) = A(L)/OPT(L) is the ratio of
the number of bins taken by A to that of the optimum,
then APR is defined as [27]:

APR(A)≡ inf{r ≥ 1 : for some N > 0,RA(L) ≤ r∀L with OPT(L) ≥ N},
(1)

where r is a real number greater than or equal to the ratio
RA(L).
APR of next-fit and worst-fit heuristics is 2; while that

of first-fit and best-fit is 17/10 [29]. The APR of any-fit
is between first-fit and next-fit. The worst-case asymp-
totic performance ratio is improved when the problem
allows items to be presorted in decreasing order. Themost
important results are for First-Fit Decreasing (FFD) and
Best-Fit Decreasing (BFD):

APR(FFD) = APR(BFD) = 11/9 [30],

where FFD and BFD are algorithms that apply first-fit and
best-fit rules, respectively to items sorted in decreasing
order of size.
The average case performance ratio measures the

expected performance ratio of approximation algorithms
by considering a uniform distribution of item sizes. The
average case performance ratio of both BF and FF con-
verge to 1 asymptotically [27].
Thus, concerning minimizing the number of servers,

best-fit and first-fit based algorithms will give better effi-
ciency. However, to address the limitation of best-fit based
algorithms, that is high overloading probability, we define
a new bin-packing heuristic called a Medium-Fit (MF).

Themedium-fit rule
The medium-fit bin-packing rule is defined as follows:
Let LD be a desired resource utilization level of a host

given by, LD ≡ (overloadthr + underloadthr) /2; where
overloadthr and underloadthr are overload and underload
threshold of resource utilization levels, respectively. Then,
the MF rule is defined to favor a host whose resource level
has a minimum distance from LD. More precisely,

Allocated-host ≡ argmin
h

|Lh − LD|, (2)

where Lh is the resource utilization level of host, h.
If LD = overloadthr , then the equation will be sim-

ilar to the best-fit algorithm. If on the other hand
LD = underloadthr , then it will be equivalent to the
worst-fit. Hence, the name medium-fit. As an example
if overloadthr is assumed 0.9 (90%) and underloadthr is
assumed 0.3 (30%) then LD = 0.6. The MF rule with
items sorted by decreasing size is called a Medium-Fit
Decreasing (MFD).
The reason why theMFD algorithmminimizes overload

probability and at the same time minimize the number
of active servers is explained in the following. Suppose
that all hosts are below LD and the underload detection
algorithm selects the lowest loaded host for its VMs to
be migrated. Then, the MFD algorithm takes each VM in
turn and allocates it to the highest loaded host accord-
ing to Eq. (2). The process is repeated– taking VMs from
the lowest loaded host to highest ones– until some hosts
pass the desired level, LD. The hosts, whose VMs are all
migrated, are turned off or put in sleep mode. This is
minimizing the number of active servers without the high-
est loaded hosts passing overload-threshold. On the other
hand, if some hosts are above the desired level, say by the
long run underload migration process, then Eq. (2) imply
that any new VM migration (from underloaded or over-
loaded hosts) will be allocated to a host whose load level
is near LD. In both cases, MFD minimizes the overload
probability, and as a consequence reduces SLA violation
and VMmigrations.



Moges and Abebe Journal of Cloud Computing: Advances, Systems and Applications             (2019) 8:2 Page 5 of 14

Power-efficient modified heuristics
Minimizing the number of active servers is one but not
the only solution to reduce energy consumption in a cloud
data-center. If in addition, servers are categorized accord-
ing to their power efficiency and the most efficient ones
are favored, then we expect more energy-efficiency in
heterogeneous cloud. For this purpose we define Power
Efficiency (PE) of servers as follows:

PE ≡ CPUtotal/Powermax, (3)

where:
– CPUtotal is the total processing capacity of a host
– Powermax is the power of a host at 100% load

From the definition we can see that PE becomes higher,
the higher the CPU and the lower the maximum-power.
The energy efficiency in the “Lago” algorithm has the the
same definition [23].
Figure 1 illustrate energy efficient heuristics for VM

placement algorithms. According to the illustration, using
one of the following heuristics lead to an energy efficient
VM placement algorithm:

1 Minimizing the number of active hosts using
Bin-packing heuristics such as FFD and BFD.

2 Favoring hosts with higher power efficiency (PE).
3 Using an algorithm that combines the above rules.

In this research we propose a combined heuristic
(option 3) for better energy efficiency. The combination
is done by modifying the bin-packing rules with power-
efficiency (PE).

Proposed VM placement algorithms
Using the combined heuristic illustrated in Fig. 1,
we develop three algorithms: Power Efficient First-Fit
Decreasing (PEFFD), Power Efficient Best-Fit Decreas-
ing (PEBFD) and Medium-Fit Power Efficient Decreasing
(MFPED). In the first two algorithms, active hosts are cat-
egorized according to their power efficiency and the most
efficient ones are favored. Within the same category of
hosts, FFD and BFD rules are applied. In both algorithms,
if a suitable host is not found from the active hosts, the
same rules are applied to the inactive hosts and turn on
the selected one. In the third algorithm, the intention is to
reduce the effect of overloading and also reducing energy
consumption. Thus, MFPED will first apply the medium-
fit rule on active servers and in case of a tie, a host with
the highest PE is favored. The details of the algorithms are
given in the following subsections.

The power efficient first-fit decreasing (PEFFD) algorithm
The PEFFD algorithm as shown in Algorithm 1, takes
as input the VM list to be migrated and the host list to
be allocated. For each VM sorted by decreasing resource
demand (line 1 in Algorithm 1), the algorithm first tries
to find a host that fits it and is the best (line 5-13). A host
fits for a VM if it has enough resource for the VM (line 6).
The best host is then determined by iteratively replacing
allocatedHost with a better host (line 7-11). In PEFFD, a
host is better than another host if its power efficiency, PE
(see Eq. 3), is greater than that of the other host and the
lowest indexed one is chosen to break a tie. Next, a VM
and the best host are added to a vmPlacement map (line
15). If an active host is not found for a VM, then a host is
searched from inactive host lists using the same process
(line 16-31).When all VMs are exhausted the vmPlacement
map is returned.

Fig. 1 Illustration of a combined heuristic. The proposed algorithms combines two VM placement heuristics: bin-packing rules and selection by
power-efficiency
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Algorithm 1: The Power Efficient First-Fit Decreasing
Input: activeHostList, inactiveHostList, vmList
Output: vmPlacement

1 sort vmList in the order of decreasing CPU utilization ;
2 foreach vm in vmList do
3 bestPowerEfficiency ← MIN ; // MIN is a

minimum number
4 allocatedHost ← NULL;
5 foreach host in activeHostList do
6 if host has enough resource for vm then
7 powerEfficiency ←

getTotalCPU(host)/getMaxPower(host) ;
8 if powerEfficiency > bestPowerEfficiency

then
9 allocatedHost ← host ;

10 bestPowerEfficiency ← powerEfficiency
;

11 end
12 end
13 end
14 if allocatedHost �= NULL then
15 add (allocatedHost, vm) to vmPlacement ;
16 else

// assign allocatedHost from
inactive hosts

17 bestPowerEfficiency ← MIN ;
18 allocatedHost ← NULL;
19 foreach host in inactiveHostList do
20 if host has enough resource for vm then
21 powerEfficiency ←

getTotalCPU(host)/getMaxPower(host)
;

22 if
powerEfficiency > bestPowerEfficiency
then

23 allocatedHost ← host ;
24 bestPowerEfficiency ←

powerEfficiency ;
25 end
26 end
27 end
28 if allocatedHost �= NULL then
29 add (allocatedHost, vm) to vmPlacement ;
30 end
31 end
32 end

Result: vmPlacement

The power efficient best-fit decreasing (PEBFD) algorithm
The PEBFD algorithm shown in Algorithm 2 has many
similarity to the PEFFD described above. The difference is
the PEBFD uses the best-fit rule instead of the first-fit rule.

In PEBFD, a host is better than another host if its power
efficiency, PE, is greater than that of the other host. In case
two hosts have the same PE, then the one that has lower
available CPU is chosen (line 12-16 in Algorithm 2).

Themedium-fit power efficient decreasing (MFPED)
algorithm
The MFPED algorithm is listed in Algorithm 3. In
MFPED, a host is better than another host for VM alloca-
tion if its CPU utilization level distance from the desired
level (as defined in (2)) is less than that of the other host
(line 8-12 in Algorithm 3). In case two hosts have levels
with equal distance from the desired level, then the one
that has a higher PE is chosen (line 13-17).

Experiment and results
The algorithms are simulated in CloudSim, the most
popular toolkit for modeling and simulating cloud envi-
ronment and evaluation of resource allocation algorithms
[31]. CloudSim contains Java classes for modeling the
different components of a cloud. Moreover, the Open-
Stack Neat framework is included as power packages in
CloudSim [18]. Thus, any power-aware algorithm can be
simulated by extending an existing power-aware alloca-
tion policy. In this research, we extended PowerVmAllo-
cationPolicyMigrationLocalRegression class and overrode
the findHostForVm method by the proposed algorithms.
Methods for overload decision (the local regression),
underload decision and VM selection are inherited from
the base classes.

Experiment setups
We compare the proposed VMplacement algorithms with
two baseline algorithms: MBFD, the VM placement in
OpenStack Neat [14] and PABFD which is the default VM
placement in CloudSim [18]. MBFD deals with minimiz-
ing the number of servers while PABFD chooses a host
that leads to the minimum power increment for the VM
to be placed. The baseline algorithms are described in
(Algorithms 4 and 5).
For simulating a cloud environment, we defined three

data-center scenarios (default, heterogeneous and homo-
geneous) described in the following subsections.

Default-scenario
The first scenario, shown in Table 1, adopts the data-
center setup of Beloglazov et al. which is included in
CloudSim [18]. The data-center has 800 hosts from two
server models (400 hosts from each server type) and four
types of VMs. The CPU capacity of the VM instances
is given in millions of instruction per second (MIPS).
The number of VMs and their workloads are generated
from real cloud traces: from PlanetLab [18] and Bitbrains
clouds [19, 32].
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Algorithm 2: The Power Efficient Best-Fit Decreasing
Input: activeHostList, inactiveHostList, vmList
Output: vmPlacement

1 sort vmList in the order of decreasing CPU utilization ;
2 foreach vm in vmList do
3 bestPowerEfficiency ← MIN;
4 allocatedHost ← NULL;
5 foreach host in activeHostList do
6 if host has enough resource for vm then
7 powerEfficiency ←

getTotalCPU(host)/getMaxPower(host) ;
8 if powerEfficiency > bestPowerEfficiency then
9 allocatedHost ← host ;

10 bestPowerEfficiency ← powerEfficiency ;
11 else
12 if powerEfficiency == bestPowerEfficiency then
13 if getAvailableCPU(host) <

getAvailableCPU(allocatedHost) then
14 allocatedHost ← host ;
15 end

16 end

17 end

18 end

19 end
20 if allocatedHost �= NULL then
21 add (allocatedHost, vm) to vmPlacement ;
22 else

// assign allocatedHost from inactive hosts

23 bestPowerEfficiency ← MIN;
24 allocatedHost ← NULL;
25 foreach host in inactiveHostList do
26 if host has enough resource for vm then
27 powerEfficiency ←

getTotalCPU(host)/getMaxPower(host) ;
28 if powerEfficiency > bestPowerEfficiency then
29 allocatedHost ← host ;
30 bestPowerEfficiency ← powerEfficiency ;
31 else
32 if powerEfficiency == bestPowerEfficiency then
33 if getAvailableCPU(host) <

getAvailableCPU(allocatedHost) then
34 allocatedHost ← host ;
35 end

36 end

37 end

38 end

39 end
40 if allocatedHost �= NULL then
41 add (allocatedHost, vm) to vmPlacement ;
42 end

43 end

44 end
Result: vmPlacement

Algorithm 3: The Medium-Fit Power Efficient
Decreasing

Input: hostList, vmList
Output: vmPlacement

1 LD ← 0.6 ; // The desired level is set
to 0.6

2 sort vmList in the order of decreasing CPU
utilization ;

3 foreach vm in vmList do
4 minDiff ← MAX ; // MAX is the

maximum number
5 allocatedHost ← NULL;
6 foreach host in hostList do
7 if host is active and has enough resource for

vm then
8 diff ← |getUtilization(host) − LD| ;
9 if diff < minDiff then

10 allocatedHost ← host ;
11 minDiff ← diff ;
12 else
13 if diff == minDiff then

// PE(.) is the power
efficiency of a host

14 if PE(host) > PE(allocatedHost)
then

15 allocatedHost ← host ;
16 end
17 end
18 end
19 end
20 end
21 if allocatedHost �= NULL then
22 add (allocatedHost, vm) to vmPlacement ;
23 end
24 end

Result: vmPlacement

For overload prediction, the local regression policy
which is available in the CloudSim simulator is used. At
each optimization step, the minimum loaded host is cho-
sen for its VMs to be migrated. If the remaining hosts
have enough resource to handle the VMs, the host will be
turned off for saving power.

Heterogeneous-scenario
In this scenario the number of host types is increased to
four by adding two quad-core IBM server models: IBM
Xeon X3470 (4 X 2933 MIPS) and IBM Xeon X3480 (4 X
3067 MIPS). To make a comparable computational power
as that of the Default-scenario, the number of hosts is
reduced to 560 (140 of each server type). The addition of
two server types creates more heterogeneity in the cloud.
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Algorithm 4: The Modified Best-Fit Decreasing
Input: activeHostList, inactiveHostList, vmList
Output: vmPlacement

1 sort vmList in the order of decreasing average CPU
utilization ;

2 foreach vm in vmList do
3 minCPU ← MAX;
4 allocatedHost ← NULL;
5 foreach host in activeHostList do
6 if host has enough resource for vm then
7 cpu ← getAvailableCPU(host) ;
8 if cpu < minCPU then
9 allocatedHost ← host ;

10 minCPU ← cpu ;
11 else
12 if cpu == minCPU and

getAvailableRAM(host) <

getAvailableRAM(allocatedHost)
then

13 allocatedHost ← host
14 end
15 end
16 end
17 end
18 if allocatedHost �= NULL then
19 add (allocatedHost, vm) to vmPlacement ;
20 else

// assign allocatedHost from
inactive hosts

21 minCPU ← MAX;
22 allocatedHost ← NULL;
23 foreach host in inactiveHostList do
24 if host has enough resource for vm then
25 cpu ← getAvailableCPU(host) ;
26 if cpu < minCPU then
27 allocatedHost ← host ;
28 minCPU ← cpu ;
29 else
30 if cpu == minCPU and

getAvailableRAM(host) <

getAvailableRAM(allocatedHost)
then

31 allocatedHost ← host
32 end
33 end
34 end
35 end
36 if allocatedHost �= NULL then
37 add (allocatedHost, vm) to vmPlacement ;
38 end
39 end
40 end

Result: vmPlacement

Algorithm 5:ThePowerAware Best-Fit Decreasing
Input: hostList, vmList
Output: vmPlacement

1 sort vmList in the order of decreasing CPU
utilization ;

2 foreach vm in vmList do
3 minPower ← MAX;
4 allocatedHost ← NULL;
5 foreach host in hostList do
6 if host has enough resources for vm then
7 power ← estimatePower(host, vm) ;
8 if power < minPower then
9 allocatedHost ← host ;

10 minPower ← power ;
11 end
12 end
13 end
14 end
15 if allocatedHost �= NULL then
16 add (allocatedHost, vm) to vmPlacement ;
17 end

Result: vmPlacement

Homogeneous-scenario
In this scenario only one type of host is defined in the
data-center. The setup differs from the Default-scenario
(Table 1) by the host type which in this case is only the HP
ProLiant ML110 G5. In this scenario the power efficiency,
PE, of all hosts are equal. Thus, performance improve-
ment with respect to energy consumption is not expected
from the proposed algorithms.

Table 1 Default-scenario parameters and configurations

Parameters Configuration

Host types HP ProLiant ML110 G4 (2 X 1800 MIPS)

HP ProLiant ML110 G5 (2 X 2660 MIPS)

Number of hosts 800; 400 of each host type

VM types 2500 MIPS

2000 MIPS

1500 MIPS

1000 MIPS

Workloads PlanetLab (10 days of traces)

Bitbrains (10 days of traces)

Overload decision Local regression

Underload decision The minimum loaded host

The data-center host, VM types and the PlanetLab traces are adopted from the
configuration in CloudSim [18]
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Workload traces
The experiment is performed on workload traces col-
lected from real clouds: PlanetLab and Bitbrains [18, 32].
The PlanetLab is a cloud of global research network and
the traces are collected from a monitoring system called
CoMon [33]. The data contains the percentage of CPU
utilization by more than a thousand VMs from servers
located at more than 500 places around the world. It is
collected during 10 randomly selected days in March and
April 2010 [18]. The dataset is organized as one folder
per day and a file in a folder contains a one day CPU
utilization of a VM sampled every 5 min. The statistical
characteristics of the dataset are shown in Table 2.
Bitbrains is a cloud service provider that specializes

in managed hosting and business computation for enter-
prises [32]. The dataset of Bitbrains contains resource
utilization by 1750 VMs from a distributed data-center
and is available online in the GridWorkloads Archive [19].
It is organized into two folders: fastStorage traces con-
sists of 1250 VMs and Rnd traces consists of 500 VMs.
In this work, we used the fastStorage traces. The fastStor-
age dataset is organized as one file per a VM, each file
containing 30 days of data sampled every 5 min.
To reuse the same utilization-model as that of Plan-

etLab available in CloudSim (UtilizationModelPlanet-
LabInMemory class), we have converted the datasets of
Bitbrains to the format of PlanetLab datasets. The first 10
days of the converted datasets are used in our experiment.
The statistical characteristics of the Bitbrains dataset used
in our experiment are shown in Table 3.

Evaluation metrics
We adopt the evaluation metrics proposed by Beleglazov
et al. [18]. The three main metrics are those that mea-
sure energy efficiency, SLA violation and VM migrations.

Table 2 Statistical characteristics of PlanetLab workloads
traces [18]

Date Number of VMs Mean-load(%) St.dev.(%)

03/03/2011 1052 12.31 17.09

06/03/2011 898 11.44 16.83

09/03/2011 1061 10.70 15.57

22/03/2011 1516 9.26 12.78

25/03/2011 1078 10.56 14.14

03/04/2011 1463 12.39 16.55

09/04/2011 1358 11.12 15.09

11/04/2011 1233 11.56 15.07

12/04/2011 1054 11.54 15.15

20/04/2011 1033 10.43 15.21

The percentages are relative to the configured CPU capacity of VMs

Table 3 Statistical characteristics of Bitbrains workloads traces

Date Number of VMs Mean-load(%) St.dev.(%)

01/08/2013 1238 11.21 26.33

02/08/2013 1237 7.60 17.52

03/08/2013 1234 5.10 13.16

04/08/2013 1233 8.48 21.11

05/08/2013 1232 9.43 21.67

06/08/2013 1231 8.63 23.19

07/08/2013 1218 7.73 17.49

08/08/2013 1209 10.78 24.07

09/08/2013 1207 7.06 16.93

10/08/2013 1205 8.64 21.62

The percentages are relative to the configured CPU capacity of VMs

Energy efficiency is measured with the total data-center
energy consumption in kwh (kilo-watt hour),

EnergyC ≡ data-center energy consumption per day
(4)

SLA violation due to overloading of hosts is measured by
the aggregate overload time fraction (OTF) and is defined as:

OTF ≡ 1
N

N∑

i=1

Toi
Tai

, (5)

where:
– N is the number of hosts
– Toi is the total time during which the host i has expe-

rienced the utilization of 100% leading to an SLA vio-
lation. In CloudSim simulation, Toi is counted when
the CPU capacity requested exceeds the available
capacity.

– Tai is the total time host i is in the active state (serving
VMs)

A VM migration causes overhead on a network as well as
an SLA violation as there will be service disruption during
migration. In addition, VMmigration incurs energy costs.
In this study, however, the energy cost and its impact on
the relative performance of VM placement algorithms is
assumed to be negligible. As indicated in the study con-
ducted by Huang et al. [34], in the case of consolidation
the impact of VM migrations on energy cost is minimal
and its value is dependent on factors such as speed of
LAN [8]. Typical power consumed during a VMmigration
in real experiment is 1 watt on source host and 10 watts
on destination host for 7 s; which gives energy cost of
2.1 × 10−5 kwh [34]. Hence, the energy consumption due
to VMmigrations will be negligible when compared to the
total energy consumed in a data-center.Moreover, the cost
of energy for migrating a VM on average is the same for
both the proposed and baseline algorithms. The energy
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cost that might arise due to VM migrations, hence, will
not be higher in case of the proposed algorithms unless
the amount of VMmigrations they cause is higher.
The associated metric to VM migration is denoted as

#VMmigrations.

#VMmigrations ≡ The number of VMmigrations in data-center per day
(6)

In all of the metrics defined above, the lower the metric
value is, the better the performance of the algorithm under
consideration.

Results and discussion
The results of the experiment for each scenario are dis-
cussed in the following subsections.

Performance of algorithms in the default-scenario
In the Default-scenario all proposed algorithms give lower
energy consumption, reduced SLA violation and VM
migrations compared with baseline algorithms. Compar-
ison by energy efficiency of the proposed algorithms
against the baselines MBFD and PABFD are shown in
Fig. 2. From the box plots of Fig. 2a, we observe that
PEBFD delivers the lowest median energy consumption
of 109.5 kwh in case of PlanetLab workload traces. It is
followed by a closer results of MFPED and PEFFD with
values 109.9 kwh and 110.3 kwh, respectively. The highest
energy consumption has resulted from the baseline algo-
rithm PABFD with a median value of 158.3 kwh followed
byMBFD at 120 kwh. The improvement of proposed algo-
rithms over baseline MBFD is 8 - 9%. In case of Bitbrains
workload traces shown in Fig. 2b, the order of perfor-
mance of the algorithms is not changed. The magnitude
of the difference in energy consumption, however, shows

significant change. For example, the improvement by pro-
posed algorithms in this case over the baseline MBFD
is 2 - 3%.
Table 4 summarizes the average performance of

the algorithms in the Default-scenario with respect
to all defined metrics: energy consumption, over-
load time fraction(OTF) and #VM migrations (see
“Evaluation metrics” section). In the table, the best val-
ues are highlighted in boldface. We observe that the
proposed algorithms outperform the baseline algorithms
in all performance metrics. The performance difference
between proposed algorithms is negligible(< 1%) with
respect to average energy consumption while with respect
to both OTF and #VM migrations, MFPED has the best
performance. Compared with MBFD, MFPED improves
OTF and #VM migrations by 32% and 15% respectively
using PlanetLab traces. Using Bitbrians traces, MFPED
improves OTF and #VM migrations by 64% and 18%,
respectively over MBFD.
Thus, we conclude that, in case of the Default-scenario,

the proposed algorithms improve all metrics (energy con-
sumption, SLA violation and number of VM migrations)
irrespective of the workload traces considered.

Performance of algorithms in the heterogeneous-scenario
In the Heterogeneous-scenario all proposed algorithms
deliver lower energy consumption, reduced SLA violation
and VM migrations compared with baseline algorithms.
As shown in Fig. 3, the proposed algorithms show larger
energy consumption difference over baseline algorithms
than the difference in case of Default-scenario (on average
64% vs. 6%). The result supports that the power efficiency,
PE, as defined by Eq. (3) is an important energy efficiency
factor. From the box plots of Fig. 3a, we observe that all
proposed algorithms give a median energy consumption
around 35.3 kwh using PlanetLab workload traces. The

a b

Fig. 2 Comparison by energy efficiency of algorithms in the Default-scenario. Total energy consumption in data-center with two types of dual-core
HP ProLiant servers. MBFD and PABFD are the baseline algorithms and the rest are the proposed ones. a Results using PlanetLab traces. b Results
using Bitbrains traces
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Table 4 Average performance of algorithms in the
Default-scenario

Workloads Algorithms EnergyC (kwh) OTF(%) #VM migrations

PlanetLab
traces

MBFD 120.32 5.32 12919
PABFD 161.87 6.21 28175

PEFFD 111.13 4.06 12477

PEBFD 110.41 4.21 11819

MFPED 110.93 3.62 10975

Bitbrains
traces

MBFD 67.49 6.82 8787

PABFD 103.777 5.97 19808

PEFFD 65.90 2.63 7612

PEBFD 65.17 3.45 8527

MFPED 65.57 2.44 7216

The best values for each metrics (defined in 4-6) are boldfaced

highest energy consumption has resulted from the base-
line algorithm MBFD with a median value of 107.6 kwh
followed by PABFD at 48.5 kwh. The improvement of
proposed algorithms over baseline MBFD is around 67%.
In case of Bitbrains workload traces shown in Fig. 3b,
the lowest median energy consumption has resulted from
both PEFFD and PEBFD with value 18.3 kwh. The result is
followed by a very close value of MFPED at 18.6 kwh. The
improvement of proposed algorithms, in this case, over
the baseline MBFD is about 60%.
Table 5 presents the average performance of the

algorithms with respect to all defined metrics for
Heterogeneous-scenario. The performance difference
between proposed algorithms is negligible (< 0.5%) with
respect to energy consumption. With respect to OTF and
#VM migrations, MFPED has the lowest value followed
by PEFFD. The improvement of MFPED over the base-
line MBFD is 68% for OTF and 46% for #VM migrations.

In case of Bitbrains traces too, the proposed algorithms
improve energy consumption against both baseline algo-
rithms and the differences between them are negligible.
The MFPED algorithm improves OTF and #VM migra-
tion by 78% and 40% respectively, against MBFD.
Thus, in Heterogeneous-scenario, the proposed algo-

rithms improve all metrics (energy consumption, SLA vio-
lation and number of VM migration) by a greater amount
than the improvement in case of the Default-scenario.

Performance of algorithms in the homogeneous-scenario
There is no average energy saving by the proposed algo-
rithms against baseline MBFD in case of Homogeneous-
scenario. The benefit of the proposed algorithms, in this
case, is on reducing overload time fraction and number of
VM migrations. In Homogeneous-scenario, as the power
efficiency of all host is the same, the only power saving
option for the algorithms is to minimize the number of
hosts. Thus, we do not expect an improvement in energy
efficiency from the proposed algorithms over MBFD. As
shown in Fig. 4, both BFD based algorithms, MBFD and
PEBFD, deliver nearly equal median energy consumption
of 109.5 kwh and 58.2 kwh for PlanetLab and Bitbrains
traces, respectively. The worst energy efficiency (highest
consumption) has resulted from PABFD in both workload
traces.
Table 6 presents the average result of the experiment

in Homogeneous-scenario using PlanetLab traces. There
is no average energy saving by the proposed algorithms
against MBFD. There is, however, improvement in reduc-
ing overload time fraction and number of VMmigrations.
Compared with MBFD, MFPED improves OTF and #VM
migrations by 19% and 9%, respectively, when traces from
PlanetLab are used. Similarly, in case of Bitbrians traces,
the two BFD based algorithms, MBFD and PEBFD, give
almost equal energy consumption. Using Bitbrians traces,

a b

Fig. 3 Comparison by energy efficiency of algorithms in the Heterogeneous-scenario. Total energy consumption in data-center with four types of
servers from dual-core HP ProLiant and quad-core IBM Xeon. MBFD and PABFD are the baseline algorithms and the rest are the proposed ones.
a Results using PlanetLab traces. b Results using Bitbrains traces
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a b

Fig. 4 Comparison by energy efficiency of algorithms in the Homogeneous-scenario. Total energy consumption in data-center with one type of
server: HP ProLiant ML110 G5. MBFD and PABFD are the baseline algorithms and the rest are the proposed ones. a Results using PlanetLab traces.
b Results using Bitbrains traces

MFPED improves OTF and #VM migrations by 42% and
14%, respectively over MBFD. We also note that the worst
algorithm with respect to all three metrics in both work-
load traces is the PABFD.

Tests of significance
To verify the significance of the experiment results, we
have conducted the Wilcoxon signed-rank test [35]. Two
tests are presented in this Section: (i) comparing the
energy consumption of a data-center under proposed
algorithms with the value under MBFD (see Table 7), (ii)
comparing OTF and #VM migrations value of MFPED
algorithm with that of MBFD (see Table 8). The signifi-
cance level α = 0.01 is used for the test. Both tests are for
Default-scenario using PlanetLab traces.
The results of the statistical tests are shown in Tables 7

and 8. P-value indicates the probability of the null hypoth-

Table 5 Average performance of algorithms in the
Heterogeneous-scenario

Workloads Algorithms EnergyC (kwh) OTF(%) #VM migrations

PlanetLab
traces

MBFD 109.31 5.51 12524

PABFD 49.66 6.04 18160

PEFFD 35.58 2.06 7452

PEBFD 35.58 2.18 7853

MFPED 35.74 1.74 6731

Bitbrains
traces

MBFD 46.11 6.56 8360

PABFD 33.29 6.45 17826

PEFFD 20.56 1.82 5652

PEBFD 20.59 2.07 5903

MFPED 20.88 1.48 5041

The best values for each metrics (defined in 4-6) are boldfaced

esis, the alternative hypothesis to the hypothesis being
tested. For all tests in both tables the P-values are less than
the significant level α. Which means that the improve-
ment in all metrics are significant with confidence level of
at least 99%.
Test of significance in all other improvements, such as

the improvements in Heterogeneous-scenario gives simi-
lar results to the above tables.

The complexity of the algorithms
The runtimecomplexity of the fiveVMplacement algorithms,
described in “Proposed work” and “Experiment setups”
sections, are presented as follows. For all algorithms the
VMs to be migrated are sorted in decreasing order and
that takes a run time of O(mmig ∗ log(mmig)), where mmig
is the number of VM migrations. The algorithms then
proceed in two loops: The outer loop traces the VMs to

Table 6 Average performance of algorithms in the
Homogeneous-scenario

Workloads Algorithms EnergyC (kwh) OTF(%) #VM migrations

PlanetLab
traces

MBFD 110.40 4.26 11898

PABFD 161.43 6.26 27980

PEFFD 110.57 4.00 12035

PEBFD 110.40 4.27 11909

MFPED 110.78 3.60 10914

Bitbrains
traces

MBFD 65.29 3.19 8540

PABFD 103.70 6.00 19625

PEFFD 65.59 2.64 7578

PEBFD 65.28 3.16 8408

MFPED 65.39 2.24 7460

The best values for each metrics (defined in 4-6) are boldfaced
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Table 7 Statistical test for the significance of energy saving by
the proposed algorithms

Comparison by energy consumption,E P-value

E(PEFFD) < E(MBFD) 9.8 × 10−4

E(PEBFD) < E(MBFD) 9.8 × 10−4

E(MFPED) < E(MBFD) 9.8 × 10−4

be migrated and the inner loop traces the hosts to be
allocated. That will take O(mmig × n) runtime, where n
is the number of servers. Summing the two we have a
runtime complexity of O(mmig ∗ log(mmig) + mmig × n).
As the number of virtual machines, m, usually is greater
than the number of servers, the runtime complexity of all
algorithms are bounded by O

(
m2).

Regarding space complexity, the dominant variables for
all algorithms are VMs’ and servers’ information such
as CPU and RAM. No extra information is needed for
MBFD. The extra RAM for PABFD is the power utiliza-
tion model of the servers which is defined by 11 power
samples of servers. Thus in the worst case, PABFD need
11∗n extra units of memory. Likewise, the proposed algo-
rithms need the peak power of servers to calculate the
power-efficiency which takes an extra memory of n units.

Threats to validity
The main threat to the research is the experiment envi-
ronment: the simulation tool and the scenarios defined.
Conducting an experiment in a real cloud is infeasible
considering the very expensive hardware requirement and
the management overhead. That also does not facilitate
the progress of research on cloud management software.
On the other hand, CloudSim is typically designed to
simulate a cloud environment and to evaluate a resource
allocation algorithms [31]. It is widely used by research
works both in industry and academia [18, 22–24]. Thus,
the simulation environment is expected to provide results
similar to the result in a practical environment.
Considering the cloud scenarios, we have included both

homogeneous and heterogeneous data-center environ-
ment. We have also included the baseline setup available
in CloudSim so that the result of the experiment can
be compared with other similar works. In addition, the
workloads for simulations are generated from randomly
selected real cloud traces: PlanetLab and Bitbrains. In

Table 8 Statistical test for the significance of OTF and #VM
migrations improvement by the proposed MFPED algorithm

Comparisons by OTF & #VM migrations(Mig) P-value

OTF(MFPED) < OTF(MBFD) 9.8 × 10−4

Mig(MFPED) < Mig(MBFD) 9.8 × 10−4

each scenario, we have conducted twenty experiments:
ten experiments using PlanetLab traces and another ten
experiments using Bitbrians traces. The diversity and real-
ity of the scenarios considered enhance the evidence to
support the acceptance of the experiment results.

Conclusion
One of the main challenges in cloud computing is
the enormous amount of energy consumed in data-
centers. Several research works are devoted to address
the challenge using VM consolidation. VM Consolida-
tion is the process of minimizing energy consumption
in a cloud by allocating VMs to the fewest possible
servers. The complexity of the problem of consolida-
tion arises from the trade-off between energy saving and
SLA violation.
In this research, we have addressed the problem of

consolidation by improving the VM placement algorithm
of OpenStack Neat framework. We have proposed VM
placement algorithms by modifying bin-packing heuris-
tics considering the power-efficiency of hosts. The
proposed algorithms improve energy efficiency when
compared with the baseline algorithms: MBFD and
PABFD. The improvement in energy efficiency over
MBFD can be up-to 67%, depending on the data-center
host types and workloads. Moreover, to avoid unnec-
essary SLA violation and VM migrations, we defined a
new bin-packing rule called a medium-fit. Compared with
other VM placement algorithms, the medium-fit power-
efficient decreasing (MFPED), provides a lower SLA vio-
lation and number of VM migrations. MFPED improves
SLA violation and number of VM migrations against
MBFD by up-to 78% and 46%, respectively, depending on
the cloud scenario.
Regarding practical implementation, the only additional

information necessary to implement the proposed algo-
rithms is the peak power of hosts. For future work, we
plan to expand the scope of the work to include network
devices and traffic effects in the consolidation problem.
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