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Abstract: The performance of all-optical switches is a compromise

between the achievable bandwidth of the switched signal and the energy

requirement of the switching operation. In this work we consider a system

consisting of a photonic crystal cavity coupled to two input and two

output waveguides. As a specific example of a switching application, we

investigate the demultiplexing of an optical time division multiplexed

signal. To quantify the energy-bandwidth trade-off, we introduce a figure of

merit for the detection of the demultiplexed signal. In such investigations it

is crucial to consider patterning effects, which occur on time scales that are

longer than the bit period. Our analysis is based on a coupled mode theory,

which allows for an extensive investigation of the influence of the system

parameters on the switching dynamics. The analysis is shown to provide

new insights into the ultrafast dynamics of the switching operation, and the

results show optimum parameter ranges that may serve as design guidelines

in device fabrication.

© 2011 Optical Society of America

OCIS codes: (200.4560) Optical data processing; (160.5298) Photonic crystals.
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1. Introduction

All-optical switches are expected to play a key role in increasing the bandwidth of future com-

munication networks by replacing slower electronic components for certain signal processing

tasks. Photonic crystal (PhC) membranes show great promise as a platform for such devices due

to the possibility of designing high Q cavities with ultra small mode volumes and waveguides

with highly tailorable dispersion characteristics [1]. They also have the advantage of being able

to integrate many components on the same chip, which is an important device requirement.

In order to make light fields interact and achieve all-optical switching it is necessary for the

PhC material to have a nonlinear response. The switching operation is facilitated by using a

control pulse to change the refractive index and/or gain of the material through the nonlinear

interaction. This change alters the transmission for a signal pulse, and thus opens or closes the

switch. Different physical phenomena may be responsible for the nonlinearity, but there is a

general trend showing that very fast responses are also very weak and thus require large field

intensities. This results in an energy-bandwidth trade-off, which means that larger bandwidths

are only achievable at the cost of a larger energy consumption of the device. By using PhC

cavities with large Q-values it is possible to achieve a large field enhancement, which reduces

the energy requirement. However, it also limits the transmission of the cavity, and the increased

photon lifetime causes patterning effects, which restrict the signal bandwidth. So again, there

is a trade-off between energy consumption and bandwidth.

All-optical switching has been demonstrated using many different platforms and materials

such as silicon waveguides [2] and micro rings [3], PhC cavities [4, 5] and Mach-Zender inter-

ferometers [6], semiconductor optical amplifiers [7], and parametric processes in fibers [8]. In

many cases, these demonstrations only consider switching of a single pulse. In this work, we

will define a figure of merit that applies to any type of switching device, and is suitable for eval-

uating the switching performance in high speed optical communication systems. In particular,

we will include patterning effects, which arise when the control pulse affects succeeding signal

pulses.

Previous work [9] has considered patterning effects in semiconductor optical amplifier based

switches as well as the high bit rate performance of photonic crystal switches based on shift-

ing the photonic band gap edge and an interferometric approach enhanced by the slow light

property of photonic crystals [10]. Here, we consider a different type of device, which uses a

cavity to enhance the light matter interaction. Our aim is to evaluate the limits of the operation

speed set by the cavity alone, and therefore consider the instantaneous Kerr effect to be the

only nonlinear interaction in the system. Since there are a large number of possible applica-

tions for a switching device, a single figure of merit does not quantify them all. Here, we shall

consider demultiplexing of optical-time-division-multiplexed (OTDM) signals as a specific and

important application example.

The coupled-mode-theory (CMT) model that we use to analyse the switching dynamics has
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the advantage that it is not limited to a specific type of structure like a PhC, but applies to

a broader range of systems that share a set of common properties. Furthermore, it is sim-

ple enough to allow an extensive parameter investigation, and despite its simplicity it has

been shown to provide excellent agreement with full finite-difference-time-domain calculations

(FDTD) [11, 12].

In the following section, we first describe the example system and the general model con-

sidered. Then, in Sec. 3, we investigate the simplest case of single pulse transmission through

the switch. A figure of merit for the detection of different channels in an OTDM signal is in-

troduced in Sec. 4, and in Secs. 5 and 6 we investigate the effects of a number of the system

parameters on the switching dynamics. Our conclusions follow in Sec. 7.

2. Model

The PhC structure illustrated in Fig. 1(a) consists of high index rods with a dielectric constant,

εr = 12, surrounded by air and has two input waveguides and two output waveguides coupled

to a cavity at the center, similar to Ref. [11]. In Fig. 1(b), the parameters entering a CMT

γC γC

γS

γS

AC, AS

ωC, ωS

SinC SoutC

S
in

S
S

o
u
t
S(b)

Fig. 1. (a) The switching structure investigated with a central cavity and two input and two

output waveguides. An example of a steady state Ez-field distribution with inputs from the

left and the bottom is overlaid on the structure. (b) CMT model of the structure in (a) with

an illustration of the parameters entering Eqs. (1) and (2).

model of the same system are indicated. We will assume that the nonlinear response of the

cavity is dominated by the Kerr effect. For the pulse widths considered here, this effect may be

considered instantaneous.

The rod in the center of the structure in Fig. 1(a) has an elliptical shape, which results in

two field modes that are denoted Ai(t), where i = S,C is short for signal and control. We

shall call them cavity mode S and cavity mode C. The fields in the waveguides are denoted

SinS,C(t) and SoutS,C(t) corresponding to the input and output waveguides. The resonance fre-

quencies of the cavity modes are ωS,C and the coupling of light between the cavity modes

and waveguides is described by the field decay rates γS,C. The fields are normalized so that

|Sin(out)S,C|2 = Pin(out)S,C is the power in the input (output) waveguides, and |Ai|2 = Ui is the en-

ergy in the cavity modes. These fields are the slowly varying envelopes, related to the total

fields by ai(t) = Ai(t)exp(−iωLit) and si(t) = Si(t)exp(−iωLit), where ωLi are the carrier fre-

quencies of the input fields. In the case where a signal beam is sent in through one waveguide

and a control beam through another, the time evolution of the waveguide fields is governed by
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the CMT equations [13]

dSoutS

dt
= −iδSSoutS + i

1

τS

(

PoutS

PSS

+2
PoutC

PSC

)

SoutS −
1

τS

(SoutS −SinS) (1)

dSoutC

dt
= −iδCSoutC + i

1

τC

(

PoutC

PCC

+2
PoutS

PCS

)

SoutC −
1

τC

(SoutC −SinC). (2)

Here, we have introduced the total lifetime of each cavity mode, 1/τi = 2γi, the detuning of the

input fields from the cavity resonances, δi = ωi −ωLi , and the characteristic powers

1

Pi j
=

2

ε0εmax
r c

ωi

c
κi jQiQ jχ (3)

max, (3)

where i, j = S,C. The parameters: ε0, c, εmax
r , χ (3)

max, are the vacuum permittivity, the speed of

light in vacuum, and the maximum values of the relative permittivity and third order suscepti-

bility within the caviy. Qi = ωiτi/2 is the quality factor of cavity mode i, and κi j is a parameter

describing the overlap of the fields within the active region of the cavity. For open systems with

a finite quality factor the calculation of κi j is nontrivial and should be handled within the frame-

work of non-hermitian differential equations [14]. Alternatively, expressions for the steady state

powers, PoutS and PoutC, can be derived from Eqs. (1) and (2), and these may be used to fit results

from FDTD calculations, whereby the values of κi j can be determined. This issue, however, is

not the main focus of this work, so we choose values of κi j that result in characteristic powers,

which are similar to the values in Ref. [11].

ωLC
ωC ωLS

ωS ω

ΩC
∆ωC

ΩS

∆ωS

δC
δS

Control

Cavity Mode C

Signal

Cavity Mode S

Fig. 2. Illustration of the power spectra of the signal and control as well as the Lorentzian

transmission spectra of the cavity modes.

From the steady state solution of the linear part of Eqs. (1) and (2), it can be shown that the

transmission spectra of the cavity modes are Lorentzians with a full width at half maximum

(FWHM) of ∆ωi = 2/τi [13]. Fig. 2 illustrates these transmission spectra as well as the spectra

of the signal and control pulses and indicates the corresponding parameters. The FWHM of

the pulses are denoted Ωi. In a structure like the one shown in Fig. 1(a), where the waveguides

for the signal and control are spatially separated, the Q-values of the modes can be controlled

independently by placing a different number of extra rods adjacent to the cavity in the two

waveguides. This turns out to be important, since the results in Sec. 5 will show that an optimum

switching performance is achievable by using very different linewidths for the two modes.

In Ref. [11] it was shown that changing Q by placing more rods next to the cavity does not

significantly affect κi j, if the corresponding change in the field distributions in the center of the

cavity is negligible. This justifies using ∆ωS and ∆ωC as independent parameters, which may

be varied significantly in value.
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In Eqs. (1) and (2) all the energy loss from the cavity modes is assumed to go into the waveg-

uides. To be more general, the equations could have contained an extra loss term, −ΓSoutS,C,

where Γ would be the rate of energy loss due to out of plane scattering or absorption in the

cavity. We neglect such a term here to keep the description as simple as possible. The second

terms in Eqs. (1) and (2) describe the nonlinear shift in the resonance frequency of the cavity

modes due to self- and cross phase modulation. By combining the first and second terms in

Eq. (1), we may define a power dependent effective detuning

δeff
S = δS −

1

τS

(

PoutS

PSS

+2
PoutC

PSC

)

. (4)

The operation principle of the switch is easily understood from Fig. 2 and Eqs. (1) and (4). The

injected control pulse redshifts the transmission spectrum of cavity mode S, which increases its

overlap with the signal spectrum and opens the switch.

An important strength of the CMT model is that it applies to any system, which consists of a

two-mode cavity with Lorentzian transmission spectra and no cross-talk between the signal and

control waveguides. For the system considered here, we use parameter values that are similar

to those in [11], and they are: ωS = 2.344 c/a, ωC = 2.231 c/a, κSS = 0.0943, κCC = 0.105,

κSC = 0.0312, and κCS = 0.0343, where a is the lattice constant of the PhC structure.

3. Transmission of a Single Signal Pulse

In order to understand the dynamics of systems described by Eqs. (1) and (2), we start by

considering the case of a single signal pulse in which case there is no coupling term in the

equations. The very short pulses employed in OTDM signals typically originate from mode-

locked lasers, which emit pulses with a shape that is well approximated by a Gaussian function

PinS(t) = P0
inS exp

[

− ln(2)

(

2t
∆tS

)2
]

,

where ∆tS is the FWHM pulse width.

First, we consider the transition from a quasi steady state regime of very long pulses to the

case of ultra short pulses, where the pulse bandwidth ΩS is larger than the cavity linewidth ∆ωS.

Although we will primarily focus on Gaussian pulses, it is more illustrative to use square pulses

for this purpose, because the steady state appears as the limit of an infinitely long square pulse.

While keeping the cavity linewidth constant, we have varied the peak power of the input pulse

for different values of the pulse width. Fig 3(a) shows the ratio of output energy and pulse width

as a function of the input power for different values of ∆ωS/ΩS for a square pulse. The steady

state solution of Eq. (1) is also plotted (dashed red) and agrees well with the results in [11].

The steady state curve shows a characteristic bistable behavior with an intermediate unstable

solution. When the pulse bandwidth is larger than the cavity linewidth, the output energy shows

local extrema as a function of input power. The same behavior is observed for a Gaussian pulse

(shown in Fig. 3(b) ). The reason for the appearance of the local extrema is oscillations in the

output power. To illustrate this point, Fig. 3(c) shows the input (black) and output (red) power

corresponding to the local extrema indicated by green dots in Fig. 3(b). The oscillations reflect

a purely linear phenomenon, which is most clearly illustrated by considering the solution of the

linear part of Eq. (1) in the case of a step function input

PinS(t) = P0
inSΘ(t), Θ(t) =

{

1 for t ≥ 0

0 for t < 0
.
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Fig. 3. (a) Ratio of output energy to input pulse width as a function of the input peak

power for a square pulse. The different curves correspond to different pulse widths, while

the cavity linewidth is fixed. The dashed red line shows the characteristic bistability curve

found from the steady state solution of Eq. (1). (b) The same as (a), but for a Gaussian

pulse. Notice the different scales on the P0
inS-axis in (a) and (b). The green dots indicate

local extrema in the output as a function of P0
inS. (c) Input (black) and output (red) power

of a Gaussian pulse with input powers corresponding to the green dots in (b). The curve of

the input power has been scaled to be comparable to the output. The values of input power

and output energy are given in units of [10−3ε0ca/χ (3) ] and [ε0a2/χ (3) ], respectively. The

parameters in both (a), (b), and (c) are: ∆ωS = 2.344×10−3c/a and δS = 3∆ωS.

The output power can in this case be expressed analytically, and is given by

PoutS(t) = P0
inS

∆ω2
S

∆ω2
S +4δ2

S

[

1+ exp(−∆ωSt)−2exp(−∆ωSt/2)cos(δSt)
]

Θ(t), (5)

which oscillates with a period given by the detuning, δS. The physical origin of the oscillations

is a transient interference beating between the incoming pulse oscillating at ωLS
and the excited

cavity mode oscillating at ωS. In the top left graph of Fig. 3(c) the oscillation period is ∼4

times the pulse width, and the output energy is at a local maximum. In the bottom left graph,

the period is ∼2 times the pulse width and the output energy is at a local minimum. In the

upper (lower) right graph, the oscillation period is ∼4/3 (∼1) times the pulse width and again

the output energy is at a maximum (minimum). Thus, it makes a big difference whether the

output pulse has reached a maximum or a minimum of the oscillation in a time determined

by the pulse width. As the input power is varied, the effective detuning changes due to the

nonlinear frequency shift of the cavity. This, in turn, changes the effective oscillation period of

the output pulse, causing the local extrema of the curves in Figs. 3(a) and 3(b).

The regime of short pulses, ∆ωS/ΩS < 1, is thus seen to be qualitatively different from the

quasi steady state regime, ∆ωS/ΩS > 1. For short pulses, the nonlinear change of the resonance

frequency relative to the pulse bandwidth has a significant effect on the transmission properties

of the switch. For long pulses, the switching mechanism can be understood from the bistability
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curve in Fig. 3(a). By increasing the input power, the transmission jumps from a small to a

large value. The criterion for the bistability to occur is δS/∆ωS >
√

3/2 [11], and therefore it

is the change of resonance frequency relative to the cavity linewidth, which is important for the

transmission in the quasi steady state regime.

Here, we have investigated the single pulse case in order to understand the more complicated

case of de-multiplexing. However, single pulse transmission is also relevant for regeneration

applications, where the S-shaped transfer function is used to improve the signal properties, [15].

In this case, the pulse shape changes seen in Fig. 3(c) need to be considered in detail.

4. Demultiplexing of a Data Signal

Since we are ultimately interested in the performance of switches in high speed data transmis-

sion systems, it is crucial to consider its operation on a sequence of pulses. For a demultiplex-

ing application, the target signal pulse should be transmitted in the presence of a control pulse,

while its transmission should be as small as possible in the absence of the control. The optical

demultiplexing is necessary due to the limited response time of the electronics in the receiver.

Here, and in Sec. 5 we will take as an example a detector with a response time of 80 ps corre-

sponding to a bandwidth of 12.5 GHz. The total OTDM bandwidth that we will consider is 125

GHz, which corresponds to 10 channels. The detector thus integrates over 10 bit periods, and

the decision between ”0” or ”1” is based on the amount of energy carried by the signal over the

integration period. To avoid having to test all the possible bit sequences, we focus on a worst

case scenario, where the difference in energy arriving at the detector in the ”0” and ”1” case is

minimal. The maximum received energy in the case of a ”0” occurs when the following 9 bits

of the OTDM signal are all ”1”s. This is shown in Fig. 4(a) and we denote this energy U 0{1}

outS .
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Fig. 4. (a) The top graph shows the input signal, when the target bit slot is ”0” and the

following bits are all ”1”s. The middle graph shows the input control pulse. The lower

graph shows the corresponding signal output, and U 0{1}

outS is given by the blue area under the

curve. (b) The top graph shows the input signal, when the target bit is ”1” followed by 9

”0”s. The middle graph shows the control pulse. The lower graph shows the corresponding

signal output, and U 1{0}

outS is the area under the curve. (c) The left graph shows the detected

energy for a pseudo random binary signal consisting of 215 −1 bits. The red lines indicate

the worst case scenario energies, U 1{0}

outS and U 0{1}

outS . The right graph shows the corresponding

probability distribution function (pdf).

The minimum received energy in the case of a ”1” occurs when the following 9 bits are all ”0”s.

Fig. 4(b) illustrates this case, and the corresponding energy is denoted U 1{0}

outS . We now introduce

a figure of merit (FoM) to quantify the ability of the switch to distinguish between a ”0” and
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”1” bit in the signal. It is defined as the ratio between the two worst case detected energies

FoM =
U 1{0}

outS

U 0{1}

outS

. (6)

To achieve a large value of the FoM, it is important that the control pulse exits the cavity

fast enough to leave the succeeding signal pulses unaffected. Otherwise, U 0{1}

outS might become

large and thus decrease the FoM. This patterning effect is caused by a large lifetime of cavity

mode C. To confirm the validity of using U 0{1}

outS and U 1{0}

outS to define a figure of merit, we have

simulated the case of a pseudo random binary signal [9], consisting of 215 −1 bits as the input

in Eqs. (1) and (2). Fig. 4(c) shows the output energy registered by the detector as a function of

the bit number. The figure also shows the probability distribution function (pdf) of the detected

energies. The dashed black lines in Fig. 4(c) indicate U 0{1}

outS and U 1{0}

outS , and it is observed that

they are, in fact, upper and lower bounds on the received energy.

We have solved Eqs. (1) and (2) to investigate how the FoM depends on the different pa-

rameters describing the system. In all calculations, the peak power of the input signal is

P0
inS = 10−6 ε0ac/χ (3) , which is small enough compared to the control power to have a neg-

ligible effect on the nonlinear frequency shift. The signal and control pulses have equal widths,

∆tS = ∆tC = 103 a/c, constant phases, φinS(t) = φinC(t) = 0, the delay between them is zero, and

the bit rate B is 1/(4∆tS). The varied parameters are the detunings, the cavity linewidths, and

the peak power of the control pulse P0
inC. In Sec. 6, we vary the response time of the detector.

This is done by varying the pulse width while keeping the bit rate at 1/(4∆tS) and the number

of OTDM channels fixed at 10. This corresponds to a variation of the signal bandwidth, and the

energy-bandwidth trade-off is investigated by evaluating how much energy is required to obtain

a certain FoM for each bandwidth.

The parameter values from Ref. [11] are based on a 2D calculation, so the powers and en-

ergies used here are in units of [W/m] and [J/m]. To compare with real 3D devices, we may

assume that the extent of the field in the transverse plane is ∼a if the structure is a slab with a

thickness of some fraction of a. By choosing a = 0.6 µm and χ (3) = 6.5×10−19 m2/V2, which

corresponds to a nonlinear refractive index of n2 = 1.5×10−17 m2/W [16], we have an energy

unit of ε0a2/χ (3)a = 3 pJ, and a time unit of 103 a/c = 2 ps, giving a bit rate of 125 Gbit/s.

The value of n2 we are using is achievable in AlGaAs below half the electronic bandgap [11],

in which case two photon absorption is negligible.

5. Switching Dynamics with Signal and Control Pulse

First, we consider the case of a fixed linewidth of cavity mode C, ∆ωC = 2ΩC. The control

energy UinC and the linewidth of cavity mode S ∆ωS is varied, while the pulse widths of the

signal and control are fixed. For each
(

UinC,∆ωS

)

, both detunings are varied in order to find

the maximum FoM. Fig. 5 shows how the FoM depends on δS and δC for 4 different values

of
(

UinC,∆ωS

)

. In Fig. 5(a), the quasi steady state limit with ∆ωS/ΩS = 10 is shown, while

Fig. 5(b) gives the dependence in the short pulse regime with ∆ωS/ΩS = 0.06. Generally, the

maximum FoM occurs at a larger δS when the control energy is increased. A large control

energy provides a large nonlinear frequency shift of cavity mode S, which in combination with

a large signal detuning results in a large change in the signal transmission. This is the reason

why the FoM may be increased by using a larger control energy. Fig. 5 also shows that there

is a large qualitative difference in the dependence of the FoM on the detunings in the quasi

steady state and short pulse regimes. This is expected from the results in Sec. 3. The presence

of multiple extrema of the FoM as a function of δS in Fig. 5(b) is caused by the same effect

as the one discussed in relation to the appearance of local extrema in Fig. 3(a). Here, we have
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Fig. 5. (a) Variation of the FoM as a function of the signal detuning δS and control detuning

δC for ∆ωS/ΩS = 10 and ∆ωC/ΩC = 2. The top graph corresponds to a control energy of

UinC = 0.155 ε0a2/χ (3) , while the bottom graph corresponds to UinC = 1.6 ε0a2/χ (3) . (b)

Same as (a), except the cavity linewidths are related to the pulse bandwidths by ∆ωS/ΩS =
0.06 and ∆ωC/ΩC = 2.

varied the detuning instead of the power as in Fig. 3(a), but it is still the oscillations in the

output power that causes the extrema. A local extremum occurs for values of δS, where the

fixed control power causes the effective oscillation period to change by ∼4 times the pulse

width.

Another important observation, which can be made from Fig. 5, is that the FoM is much

larger in the short pulse regime than in the quasi steady state case. This is also clearly illustrated

in Fig. 6(a), which shows the maximum FoM as a function of UinC and ∆ωS. Notice that FoM <
1 is possible, although not practically acceptable, since the energy in the denominator of Eq. (6)

is an integral over 9 pulses, whereas the numerator results from an integration over 1 pulse. The
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Fig. 6. (a) The maximum of the FoM found by varying (δS,δC) as a function of UinC and

∆ωS. (b) The transmission of the signal pulse, U 1{0}

outS/U 1{0}

inS , corresponding to the maximum

of the FoM in (a). The black lines indicate discontinuity boundaries, where the transmission

suddenly changes value. (c) The value of δmax
S /ΩS corresponding to the maximum of the

FoM in (a). The white lines indicate discontinuity boundaries. (d) The value of δmax
C /ΩC,

which corresponds to the maximum of the FoM in (a).

price to pay for the increase in the FoM is a reduction in transmission, U 1{0}

outS/U 1{0}

inS , which is

illustrated in Fig. 6(b). The discontinuities in the transmission occur when the global maximum
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of the FoM shifts from one local maximum to another in the (δS,δC)-plane, cf. Fig. 5(b). The

value of the signal detuning, where the maximum in the FoM occurs, δmax
S , is plotted in Fig. 6(c)

and the discontinuity boundaries are indicated by the white lines. In Fig. 6(d) we show δmax
C

and it is observed to depend much stronger on UinC than ∆ωS. Since the signal power is too

small to shift the resonance frequency of cavity mode C, it makes sense that ∆ωS does not have

a significant influence on δmax
C . The maximum in the control detuning increases with increasing

control energy because a larger power causes a larger shift of ωC and in order to get a maximum

amount of power in the cavity δmax
C must also increase.

Many of the tendencies observed in Figs. 6(a)-(c) may be understood from the solution of

Eq. (1) in the linear limit. For a single Gaussian input pulse, the output energy is given by

UoutS = P0
inS∆tS

π
4

Xeln(2)(X−i2Y )2
(

Erfc
[

√

ln(2)(X − i2Y )
]

+

ei8ln(2)XY Erfc
[

√

ln(2)(X + i2Y )
])

, (7)

where

X =
∆ωS

ΩS

, Y =
δS

ΩS

, and Erfc(z) = 1− 2√
π

∫ z

0
e−t2

dt.

From the definition of the FoM in Eq. (6) and the fact that the control power effectively changes

δS, cf. Eq. (4), it seems reasonable to expect that the optimum value of δS/ΩS is found close to

a maximum of the relative change of UoutS with respect to δS/ΩS

∂U rel
outS(δS/ΩS) =

∣

∣

∣

∣

dUoutS

d(δS/ΩS)

∣

∣

∣

∣

1

UoutS

. (8)

In Fig. 7(a) we have plotted the maximum of ∂U rel
outS(δS/ΩS) as a function of ∆ωS/ΩS. The ob-
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Fig. 7. (a) The maximum value of ∂U rel
outS(δS/ΩS), defined in Eq. (8), plotted as a func-

tion of the bandwidth ratio between the pulse and the cavity. (b) The value of δS/ΩS

where the maximum in (a) occurs (solid black) and a cross section of δmax
S /ΩS at

UinC = 0.105 ε0a2/χ (3) from Fig. 6(c) (dashed red). (c) The transmission correspond-

ing to the maximum in (a) (solid black) and a cross section of the transmission at

UinC = 0.105 ε0a2/χ (3) from Fig. 6(b) (dashed red).

served increase in max{∂U rel
outS} as ∆ωS is decreased thus explains why the FoM also increases

when ∆ωS is decreased, as it is seen in Fig. 6(a). A more intuitive way to understand this be-

havior in the short pulse regime, is to consider the transient oscillations resulting from a step

function input given in Eq. (5). As ∆ωS is decreased, the ratio between the maxima and minima

of the oscillations as well as the cavity lifetime increase, which causes a larger difference in the

output energy between the upper and lower pulses in Fig. 3(c). This means that the change in

output energy due to the presence of the control pulse increases as ∆ωS is decreased.
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Fig. 7(b) shows the value of δS/ΩS, where the maximum in ∂U rel
outS occurs (solid black

curve) and a cross section of δmax
S /ΩS from Fig. 6(c) at UinC = 0.105 ε0a2/χ (3) (dashed

red curve). The agreement between the curves is seen to be good for large values of ∆ωS,

but there is a discrepancy when the cavity linewidth decreases. This is also the case for

the transmission corresponding to the maximum of ∂U rel
outS, which is plotted in Fig. 7(c)

(solid black curve) along with a cross section of the signal transmission, U 1{0}

outS/U 1{0}

inS , at

UinC = 0.105 ε0a2/χ (3) from Fig. 6(b) (dashed red curve). The reason for this discrepancy

is that the denominator in Eq. (6) is an integration over 9 bits. When ∆ωS decreases, the

signal energy in one bit does not escape the cavity before the next pulse arrives. This gives

rise to a much more complicated behavior, which can not be accounted for by an analysis

based on a single pulse input. The discontinuities in Fig. 6(a)-(c) are not described by the

linear analysis either. These can only be understood as an interplay between the nonlinear

frequency shift and the transient oscillations of the output pulses observed in Fig. 3(c). This

conclusion is supported by the fact that the discontinuities appear in the short pulse regime,

where the oscillations were observed in Fig. 3(c). Even though the linear analysis is not able to

describe all the details of Fig. 6(a)-(c), it is still very useful for understanding the general trends.

From Figs. 6 and 7 we have learned that decreasing the bandwidth of cavity mode S provides

a large figure of merit, but at the cost of a reduction in transmission. Here, we will use a

lower bound on the transmission of 0.1, corresponding to a cavity linewidth of ∆ωS ∼ΩS/3,

or equivalently, a quality factor of, QS ∼2500. Fig. 6(a) also shows that to achieve a figure of

merit well above 1 with this cavity linewidth, we must use larger control energies.

Using a fixed value of ∆ωS = ΩS/3, we now vary the control energy and the linewidth of

cavity mode C in the same way as in Fig. 6. The results are given in Fig. 8(a)-(d). From Fig. 8(a)
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Fig. 8. (a) The maximum FoM found by varying (δS,δC) as a function of UinC and ∆ωC.

(b) The transmission of the signal, U 1{0}

outS/U 1{0}

inS , corresponding to the maximum of the FoM

in (a). As in Fig. 6(b), the white line indicates a discontinuity boundary, where the trans-

mission suddenly changes value. (c) The value of δmax
S /ΩS corresponding to the maximum

of the FoM. The discontinuity boundary is also shown with a black line. (d) The value of

δmax
C /ΩC, which corresponds to the maximum of the FoM along with the discontinuity

boundary.

it is observed that there is an optimum value of ∆ωC, which minimizes the required control

energy to achieve a certain value of the figure of merit. If the cavity linewidth is large, the field

enhancement inside the cavity is small, and thus it requires a larger input power to achieve a

certain frequency shift. On the other hand, if the linewidth becomes smaller, the figure of merit

is reduced by patterning effects as mentioned in Sec. 4. Fig. 8(b) shows the dependence of the
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signal transmission, U 1{0}

outS/U 1{0}

inS . Like in Fig. 6(b), a discontinuity is also observed here and is

indicated with a white curve. Again, it is caused by the global maximum of the FoM shifting

from one local maximum to another.

The values of detuning, which correspond to the maximum in the FoM, are depicted in

Figs. 8(c) and 8(d). It is clearly seen from these graphs that the discontinuity in Fig. 8(b) cor-

responds to a discontinuous change in δmax
S and δmax

C . By comparing Figs. 8(a) and 8(c) it is

observed that the maximum in the FoM is coincident with a maximum in δS. This makes sense

because the difference between the numerator and denominator in Eq. (6) can be made larger

by using a larger detuning if sufficient control power is available to deliver a correspondingly

large frequency shift. From Fig. 8(d) it is observed that the behavior of δmax
C closely resembles

that of δmax
S . It is to be expected that δmax

C is the value of δC, where a maximum amount of

control power is available to shift the resonance frequency of cavity mode S. This is the reason

for the increase in δmax
C with UinC, because the shift of ωC also increases with control power.

6. Energy-Bandwidth Trade-Off

From Fig. 8(a), we have learned that there is an optimum ratio between the linewidth of cavity

mode C and the spectral width of the pulse, which results in a minimum in the control energy

required to achieve a given value of the FoM. To quantify the energy-bandwidth trade-off, we

now vary the linewidth ∆ωC and control energy as in Fig. 8 for different values of the two

pulse widths, ∆tS = ∆tC. The bit rate is still given by 1/(4∆t), so this allows us to investigate

the dependence of the minimum required control energy on the bit rate of the signal. We keep

the ratio ∆ωS/ΩS fixed at 1/3 to get sufficient transmission, cf. Sec. 5. The result is shown in

Fig. 9(a). The different curves correspond to the minimum energy required to achieve different

values of the FoM. It is clearly observed how the energy requirement increases as the bit rate
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Fig. 9. (a) Minimum required control energy to obtain different values of the FoM (in-

dicated by the different curves) as a function of the signal bit rate. (b) The ratio of the

linewidth of cavity mode C and the pulse spectral width corresponding to the minimum

energies shown in (a). The diferent curves correspond to the same values of the FoM as in

(a). In both (a) and (b), the parameter values from Sec. 4 have been used.

increases, and as the value of the FoM increases. Fig. 9(b) shows the optimum ratio, ∆ωC/ΩC,

corresponding to the minimum in UinC. The different curves correspond to the same values of

the FoM as in Fig. 9(a). The optimum ratio is seen to be independent of the bit rate, but increases

as the value of the FoM is increased. Since the bit rate is varied by changing ΩC, we see that the

optimum linewidth of cavity mode C changes, corresponding to a quality factor of QC ≈ 900

for B = 40 GHz and QC ≈ 300 for B = 125 GHz, when ∆ωC/ΩC ≈ 3. For a bit rate of 125 GHz,

the quality factors of the two modes, QS and QC, differ by a factor of 9. As explained in Sec. 2,
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such a large difference is easy to achieve in a structure with spatially separated waveguides, like

the one shown in Fig. 1(a), suggesting that such structures are advantageous when operating at

high bit rates.

7. Conclusion

Using a coupled mode theory we have studied the performance of all-optical photonic crys-

tal microcavity switches. For ultra high bandwidth signals employing very short pulses, our

analysis show that the transmission properties are closely related to the change in resonance

frequency relative to the pulse bandwidth and interference effects play a major role. This shows

that the bistability curves obtained by a steady analysis can not be used to understand the

switching dynamics if the pulse width is small compared to the cavity lifetime.

The introduction of a figure of merit (FoM) based on the detection of a demultiplexed OTDM

signal allows us to quantify the energy-bandwidth trade-off and thereby define the minimum

required switching energy in a way that is suitable for applications in high speed optical com-

munication systems. Furthermore, the FoM applies to any type of switching device and can

therefore be used in a performance comparison between different systems.

The definition of the FoM in Eq. (6) takes into account the detrimental patterning effects,

which are caused by the cavity lifetime. The relatively small optimum value of 300 for QC at

B = 125 GHz shows that these effects are dominant in the energy-bandwidth trade-off compared

to the field enhancement caused by the cavity at high bit rates. This conclusion underlines

the importance of using realistic data signals consisting of many bit periods to estimate the

performance of switching devices.

Besides providing new insights into the physical mechanisms of the switching operation, our

numerical investigation also predicts parameter ranges where optimal performance is predicted.

These results should be useful for the design and analysis of high performance all-optical pho-

tonic crystal microcavity switching devices.
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