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Recent observations demonstrate that confluent tissues exhibit features of glassy dynamics, such as caging behavior and dynami-

cal heterogeneities, although it has remained unclear how single-cell properties control this behavior. Here we develop numerical

and theoretical models to calculate energy barriers to cell rearrangements, which help govern cell migration in cell monolayers.

In contrast to work on sheared foams, we find that energy barrier heights are exponentially distributed and depend systematically

on the cell’s number of neighbors. Based on these results, we predict glassy two-time correlation functions for cell motion, with a

timescale that increases rapidly as cell activity decreases. These correlation functions are used to construct simple random walks

that reproduce the caging behavior observed for cell trajectories in experiments. This work provides a theoretical framework for

predicting collective motion of cells in wound-healing, embryogenesis and cancer tumorogenesis.

1 Introduction

Many important biological processes, including embryogene-

sis1,2, wound healing3,4, and tumorigenesis5,6, require cells to

move through tissues.

While numerous studies have quantified cell motility by

analyzing isolated cells in controlled environments7,8, recent

work has highlighted that cell motion in densely packed tis-

sues is collective, and very different from isolated cell motion.

In densely packed or confluent tissues (no gaps between cells)

researchers have discovered signatures of collective motility

such as dynamical heterogeneities9,10 and caging behavior11.

These signatures also occur in many glassy non-biological

materials, including polymers, granular materials, and foams
12. They can be understood in terms of the potential energy

landscape, which specifies the total potential energy of a mate-

rial as a function of the positions of all the degrees of freedom,

such as the particle positions. A glassy material spends most

of its time close to a mechanically stable minimum in the po-

tential energy landscape, but rare fluctuations can overcome

the high energy barriers and allow the material to escape to

a new minimum. These collective, rare fluctuations typically

involve a particle escaping from a cage generated by its neigh-

bors.

Inactive materials such as dry foams are jammed at conflu-

ence. Therefore, individual elements do not change neighbors

unless a sufficient external force is applied at the boundaries.
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Much effort has focused on understanding these rearrange-

ments that occur when energy is injected globally; they tend

to occur at special weak regions or soft spots in the material13

and the energy barriers to rearrangements are power-law dis-

tributed14.

Even in the absence of external forces, cells in confluent tis-

sues regularly intercalate, or exchange neighbors15. They ac-

tively change their shapes and exert forces on contacts to over-

come large mechanical energy barriers and transition from one

metastable state to another. Because energy is injected locally,

instead of globally at the boundaries, we hypothesize that the

statistics of energy barriers explored by cells might be very

different from those in inactive materials. The fact that glassy

dynamics are observed in confluent tissues suggests that cell

migration rates are governed by these energy barriers. In other

words, cell motility in tissues is set not by single-cell migra-

tion rates but instead by the rate at which cells can squeeze

past neighbors.

There is no existing theoretical framework for predicting

cell migration rates in confluent tissues. Although several

recent particle-based models for collective cell motion show

signatures of glassy dynamics16,17, these break down at con-

fluence and do not capture changes to cell shapes that occur

during intercalation.

In this Communication, we develop a framework for pre-

dicting cell migration rates in tissues by first calculating en-

ergy barriers to cell rearrangements. We find that the distri-

bution of energy barriers for local rearrangements is exponen-

tially distributed, which is precisely the distribution required

for glassy dynamics in non-active matter18, and different from

that observed in foams. Our simulation and model also predict

that the height of the energy barriers depends systematically

on the topology of cell neighbors in the vicinity of the rear-
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rangement. We utilize the ’trap’ model18 and an extension of

the Soft Glassy Rheology (SGR) model19 to convert our re-

sults for energy barrier distributions to testable predictions for

cell migration, including waiting times and two-time correla-

tion functions. Finally, we carry out a minimal random walks

based on these two-time correlation functions which capture

caging and migration of cells and make qualitative compar-

isons to experiments.

Shape equilibrium or vertex models have been success-

fully used to predict the minimum energy shapes of 2D cross-

sections 3D cells in confluent tissues1,20–22. These models

develop an equation for the mechanical energy of a cell,

Ui = ξ P2
i + γPi +β (Ai −A0)

2, (1)

where Pi and Ai are the perimeter and area of the cell. Coarse-

grained mechanical properties of single cells that influence

cell shape, which are discussed in1,23, include cortical elastic-

ity, cortical surface tension, bulk incompressibility, and cell-

cell adhesion. The term quadratic in the perimeter accounts for

the elastic contractility of the actomyosin based cortex, with

modulus ξ . An effective ‘line tension’ γ couples linearly to the

perimeter. γ can be negative or positive and represents effects

due to cell-cell adhesion and cortical tension. The last term

quadratic in the area accounts for the bulk elasticity and ad-

ditional cell-cell adhesion effects20. Quantities in Eq. (1) can
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Fig. 1 A T1 transition and its typical energy profile from our

simulation. Cells E1 and E2 share an edge before the T1 and

become disjoint after the T1, while S1 and S2 are disjoint before the

T1 and share an edge after the T1. The energy increases as the edge

separating cells S1 and S2 decreases in length, and reaches a

maximum at length zero. A T1 swap takes place and then the energy

decreases as the edges separating E1 and E2 grows in length. The

energy difference ∆uAB marks the height of the energy barrier

associated with this transition.

be non-dimensionalized by an energy scale βA2
0 and a length

scale
√

A0:

utissue = ∑
i

ui; ui = κ p2
i +2κ p0 pi +(ai −1)2, (2)

with κ = ξ/(βA0) and 2κ p0 = γ/(βA
3/2

0 ).

This mechanical energy functional has been remarkably

successful in predicting cell shapes in embryonic tissues1,21

and it allows for anisotropic interactions between cells. Al-

though a few researchers have used these models to investigate

cell growth and division1,20, they have not been used to make

predictions about cell migration.

Standard methods24 were used to generate a random 2D

pattern of N points, which was then mapped to a packing of N

polygons with periodic boundary conditions via voronoi tes-

sellation. The program Surface Evolver25 was used to find

the nearest local minimum of Eq. (2) via a steepest descent

algorithm.

Under confluent conditions, cells can only rearrange via T1

topological swaps, as illustrated in Fig. 1. Although cell di-

vision and death can lead to fluid-like behavior26, these are

not necessary for cell migration2,11 and therefore we study

cell packings in the absence of these processes. To induce a

T1 transition at an edge, the total energy is minimized while

the length of the edge ℓα is actively decreased from Lα un-

til the edge reaches zero length. Such processes are common

during planar junction remodeling in epithelial layers15. A

topological swap takes place at ℓα = 0. The new edge is ac-

tively increased to a length Lα and then allowed to relax to

its final unconstrained minimized state. Except for this T1

transition, the topology of the network of vertices and edges

remains fixed. We have also studied systems where passive

energy-minimizing T1 transitions are allowed in addition to

the active T1 transition, and this does not change any of the

results reported below27.

Fig. 1 shows the total energy of the system as a function

of the edge length during a typical T1 transition. The length

ℓα is displayed as a negative number before the T1 transition

and positive after the T1 transition. The energy barrier for

this process ∆uAB is defined as the minimum energy required

to escape state A towards another stable state C. Statistics of

∆u are collected by testing the T1 transition path on six ran-

domly generated tissues each consisting of N = 64 cells. For

all cells in a tissue, we set the parameters such that the minimal

shape for each cell is a regular hexagon of area 1: κ = 1 and

p0 ≈ 3.722. The distribution of energy barriers ρ(∆u) of these

transitions is shown in Fig. 2(b). The tail obeys an exponential

distribution:

ρ(∆u) ∝ e−c ∆u/〈∆u〉 = e−∆u/ε0 , (3)

where fitting has determined c = 1.18 and we define ε0 =
〈∆u〉/c. This exponential distribution is robust to changes

in model parameters κ , p0, cell-to-cell variations (A0 → A0i)

and the method we use to initialize cell locations27. Our data

suggests that the exponential tails ultimately arise from an in-

terplay between the statistics of edge lengths and the energy
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functional. Although the initial T1 edge lengths Lα are Gaus-

sian distributed, we find that the change in energy due to a

reduction in cell perimeter is quadratic in Lα , resulting in an

exponential distribution for energy barriers.

Whereas simulations of sheared foams generically gener-

ate power-law distributed energy barriers with an exponential

cutoff14, exponential energy barriers appear to be a unique

feature of confluent tissues where energy is injected locally.

This is intriguing because it is precisely the distribution seen

in glassy systems with quenched disorder18.

In28 it was shown that the the ground state of Eq. (2) forms

an ordered hexagonal lattice. However, cells in a biologi-

cal tissue vary significantly in their number of neighbors or

contact topologies, giving rise to a highly degenerate set of

metastable states. The T1 transitions explore these metastable

states and we find an interesting dependence of the energy bar-

rier heights on the local contact topology of cells involved. As

depicted in Fig. 1, cells S1 and S2 both gain one neighbor

while E1 and E2 lose one neighbor each after the transition.

To quantify the dependence of the energy barrier heights on

the local topology, we capture the local topology of four cells

with the measure QS = (6− ZS1)+ (6− ZS2) where ZS1 and

ZS2 are the number of neighbors for cells S1 and S2 ∗. Higher

values of QS correspond to S1,S2 pairs with fewer neighbors.

After a T1 transition, QS is always reduced by 2. In Fig. 2(c)

the energy barriers are categorized by their pre-T1 QS values.

∆u decreases monotonically with increasing QS and becomes

vanishingly small when QS = 2 (which becomes a QS = 0 state

after a T1 transition). This hints that the hexagonal config-

uration (all Z′s = 6) is not only the energetically preferred

state, but configurations further away from the ground state

also have higher energy barriers.

We observe that during a T1 transition most of the change

in energy is localized to the four cells S1, S2, E1 and E2 that

participate. Based on this observation, we develop a simple

mean-field model, which considers all four cells involved in

a T1 transition to be initially regular polygons of equal edge

length ℓ =
√

2/33/4 ≈ 0.62. We allow only the coordination

of S1 and S2 to vary independently, and set ZE1 = ZE2 = 6,

the average value required by the Gauss-Bonnet theorem.

The total energy for the four cells can be calculated for

the transition path, yielding a generic profile for the energy

leading up to the T1 transition, shown by the black line in

Fig. 2(a), that is remarkably similar to simulation results. The

mean-field model also predicts the energy barrier height ∆um f

as a function of the topology of the cells involved, as shown

by red dotted line in Fig. 2(c). With no fitting parameters,

the mean-field model correctly predicts the magnitude of

the energy barrier and the observation that lower topological

∗The dependence on the topological measure of E1 and E2 is not included

because the Aboav-Weaire law holds for our cellular packings (Fig. S1), and

therefore the topology of E1 and E2 are strongly constrained by QS.
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Fig. 2 (a): The energy trace shows a universal behavior, as shown

by the collapse of numerical results(colored thick lines) onto one

curve which is predicted by the mean-field model. (b) Probability

density on a semi-log plot illustrates the exponential distribution of

energy barriers. The dashed line is an exponential fit with a slope of

−1.18. (c)The dependence of barrier heights on the contact

topology of the underlaying cells. A histogram (p(QS,∆u)) of

energy barrier heights is shown at each value of the pre-T1

topological measure QS. Higher values of QS correspond to S1,S2

pairs with fewer neighbors. The average values are represented by

the black curve. p(QS,∆u) exhibits exponential tail for the range of

QS shown here. The black solid line is the average value of ∆u and

the red dotted line is the meanfield theoretical prediction with no

fitting parameters. The overall distribution P(∆u) (black histogram

on right of figure) is obtained by convolving p(QS,∆u) with the

distribution of topological measures f (QS) (red histogram on top).

measures have higher energy barriers, although it does not fit

the shape of the simulation curve. This suggests the shape of

this curve is due to nontrival local correlations between cell

shapes.

To go from energy barrier distributions to cell migration

rates, we explore two of the simplest models to demonstrate

that the observed energy barrier distribution generically yields

glassy behavior, as measured by the time one has to wait to see

a cell change its neighbors. In confluent tissues, cell migration

rates are then proportional to neighbor exchange rates.

In traditional statistical mechanics, the rate at which a near-

equilibrium system transitions from one metastable state to

another is described by an Arrhenius process,

R = ω0e−∆uAB/ε , (4)
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where ∆uAB is the energy barrier separating two metastable

states A and C (Fig. 1)), ω0 is an inherent escape attempt fre-

quency and ε = kBT is the scale of energy fluctuations.

While the assumptions on which Eq. (4) is based do not

necessarily hold in biological tissues, analogues to parame-

ters ω0, ∆uAB and ε exist in cells and likely govern cell motil-

ity. Several successful tissue models have characterized the

cell activity using an effective temperature ε estimated from

membrane ruffling29. Both ε and the rate at which cells at-

tempt to cross barriers ω0 are correlated with cell protrusivity

and active shape fluctuations, which are determined in large

part by the cell’s individual biochemical makeup. For sim-

plicity, we assume that ω0 and ε are single-cell properties that

are constant throughout the tissue, although other choices are

possible and would be interesting directions of future study. In

contrast, the distribution of energy barriers, ρ(∆u), is clearly

a collective property determined by cell-cell interactions and

the geometry of cell packing inside the tissue, as described in

the previous section.
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Fig. 3 (a) Two-time correlation functions for

ε/ε0 = [2.00,1.10,1.32,1.06,1.02] in the trap model. As ε → ε0,

the correlations persist for increasingly long times, leading to glassy

behavior. (b) Colored lines are the caging time τ in the SGR model.

In the limit b/(ω0ε0)→ 0, the SGR model becomes the trap model

(thick black line). Inset: τ as a function of b/(ω0ε0) at ε/ε0 = 1.1
(black dashed line in the main figure). (c) Mean squared

displacement for a random walk where the step sizes are determined

by the two-time correlation function Ctrap(0, t). Here we have used

b/(ω0ε0) = 0.01 and ε/ε0 values ranging from 1.001 to 1.01. The

solid red line indicates slope 1. (d) Non-Gaussian parameter α2

(described in text) for random walk tracks shown in (c). α2 first rises

to a peak that coincides with the caging time τ(ε,b) and decays to

0 as the system becomes diffusive. α2 = 0 means diffusive behavior.

We first use a simple ‘trap’ model for glasses18 to predict

waiting times for cell migration. In the trap model, a competi-

tion between ρ(∆u) and the Arrhenius rate (Eq. (4)) that sam-

ples this distribution18 determines the dynamics. For tissues

where ρ(∆u) has an exponential tail (Eq. (3)), the distribution

of the average time τ̃ spent in a metastable state is given by18:

f (τ̃) ∝ τ̃−ε/ε0 , (5)

where τ̃ = R−1 is the inverse of the Arrhenius rate (Eq. (4)).

When ε < ε0, Eq. (5) cannot be normalized, this means the

system cannot relax to an equilibrium state, resulting in solid-

like glassy behavior.

For ε > ε0, one can calculate the two-time correlation func-

tion Ctrap(0, t), which is the probability for a cell to rearrange

after spending time t in a state. In Fig. 3(a), Ctrap(0, t) exhibits

glassy or caging behavior at short times, but decays to zero at

longer times, indicating fluid-like behavior. The time scale of

this relaxation behavior depends on ε . We can define a caging

time as the value of τ such that Ctrap(0,τ) = e−1. As a ε → ε0,

the system approaches a glass transition and τ(ε) diverges, as

shown by the black solid line in Fig. 3(b).

We next augment this simple model to account for an ad-

ditional feature of single-cell motility: single cells on sub-

strates tend to move along the same direction for long periods

of time due to polarization of the mechanical components that

generate traction forces30,31. This directed motion has been

shown to be important in other models for embryonic tissues11

and occurs in addition to the random fluctuations induced by

changes to the cell shape that are modeled by ε . Therefore we

include directed cell motion in an SGR-like framework19.

We use the energy barrier height ∆u to label the state of a

T1 four-cell region (see Fig. S2). We model self-propelled,

directed motion by assuming the cell by assuming that the cell

actively increases the system’s potential energy at a constant

rate b. At time t, then the effective barrier height ∆u − bt.

There is also a finite probability for it to undergo a rearrange-

ment due to non-directed fluctuations in its shape; we describe

this as an activated process controlled by a temperature-like

parameter ε 29. Then the rate for overcoming a barrier at time

t can be written as:

R = ω0e−(∆u−bt)/ε . (6)

After escaping a trap with the rate given in Eq. (6), the T1 four-

cell region enters into a new trap chosen from the distribution

ρ(∆u) as given by Eq. 3.

Simple extensions of the SGR analysis19 can be used to

derive Ctrap(0, t), which is again the probability for a cell to

rearrange after spending time t in a state. Similar to the trap

model, a caging time τ can be defined. As shown by the col-

ored lines in Fig. 3(b) adding a polarization energy b decreases

the caging time; in the limit of b→ 0, the SGR model becomes

the trap model (a full contour plot of τ(ε,b) is also shown in

Fig. S3. In Fig. 3(b)(inset), we show that as a function of in-

creasing b and constant ε , the caging time has a power-law

decay.
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One possible way of implementing the trap model and com-

paring to direct experimental results of cell motility is to carry

out a random walk using the the two-time correlation function

Ctrap(0, t). First, at each time step, the state of a cell is de-

termined by drawing a random state according to Ctrap(0, t):
it is either caged with probability Ctrap(0, t) and takes a small

step chosen from a χ2 distribution or it migrates with prob-

ability 1 −Ctrap(0, t) and takes a larger step chosen from a

Gaussian distribution. In Fig. 3(c) we show the mean squared

displacements of these random walk tracks near the glass tran-

sition. Cells are caged at small time scales and diffusive be-

havior dominates at longer times; the transition between the

two regimes occurs at the time τ(b,ε) (Fig. 3(b)). To better

demonstrate cage breaking, we also analyzed the non-gaussian

parameter α2
11 for these random walks as shown in Fig. 3(d).

The peaks in α2 also coincide with the average time of cage

breaking events, directly set by τ(b,ε). As the glass transi-

tion is approached at ε → ε0, the peak shifts further to larger

times, demonstrating a slowing down of dynamics in the sys-

tem. Similar mean-squared displacements and non-gaussian

parameters have been seen in three-dimensional zebrafish em-

bryos11 and 2D epithelial sheets32, suggesting that our simple

model can explain those glassy features.

Both the trap and SGR-like models suggest that the en-

ergy barrier distribution we found in our simulations can lead

glassy cell dynamics, and that waiting times for cell migration

increase as the average barrier height (parameterized by ε0)

decreases.

Discussion and Conclusion We have simulated confluent

tissue monolayers and numerically calculated the energy bar-

riers required for cell rearrangements. We show that the dis-

tribution of energy barriers, ρ(∆u), is exponential and that ∆u

depends on a cell’s number of neighbors in a monolayer tissue.

Building on these results, we show that two minimal models19

predict glassy dynamics, as measured by temporal correlation

functions and waiting times, and a simple random walk based

on these statistics reproduces features seen in experiments on

confluent tissues.

It should be possible to test these predictions in experiments

on confluent monolayers. Both the models predict that cell mi-

gration rates increase as the energy barriers decrease. There-

fore, Fig. 2(c) predicts that cells are more likely to change

neighbors if they are in regions with high topological measure

(lower number of excess neighbors for S1 and S2). Although

it is difficult to track cell membranes in confluent tissues, one

could estimate cell topologies by taking a voronoi tessellation

of nuclei positions, and directly test this prediction.

Furthermore, both models make predictions about two-time

correlation functions, which could be studied experimentally

by looking at the decay in the overlap between a cell’s initial

and current voronoi areas as a function of time33. One could

decrease cell activity by adding drugs such as blebbistatin, and

compare directly to Eq. (6). In addition, there is a large-scale

cutoff for the exponential tail in our simulations which corre-

lates with the largest edge length in the tissue. This suggests

that in real tissues we should always expect expect the two-

time correlation function to decay to zero provided one waits

long enough.

Here we only model the simplest transition path leading to

a T1 transition by shortening (and subsequently growing) the

edges between cells. Realistically, the transition path can be

more complicated. For example, protrusions can be made as

the cell establishes new integrin bonds with the substrate, de-

veloping more complicated patterns such as Rosettes15. We

have studied a few such pathways using Surface Evolver and

find that they generically cost more energy, though a more sys-

tematic study is needed. In addition, we could analyze ex-

perimental cell shapes during T1 events to determine which

transition pathways the cells actually take, and estimate the

transition barrier across those pathways in silica.

For simplicity, our models and simulations make several as-

sumptions about cell activity and dissipation, which should

be checked and modified if necessary. For example, we as-

sume that dissipative processes, such as the actin network be-

ing remodeled by myosin, are not strongly dependent on cell

shapes/geometry and therefore we neglect them in our energy

functional. This could be checked using two point microrhe-

ology, and the model could be modified accordingly. Sim-

ilarly, we have assumed that the rate at which cells attempt

to cross energy barriers ω0, is also not geometry dependent.

However, since mechanosensing machinery influence cell po-

larization34 it is possible that local cell shapes systematically

affect attempt frequencies, and this would be an interesting

avenue of future research. Furthermore, our model postulates

that the single-cell mechanical parameters κ, p0 are indepen-

dent of the activities b and ε , but that is an assumption that we

intend to relax and study.

Finally, in writing down trap and SGR models, we have

implicitly assumed that the dynamics of cell monolayers are

dominated by the potential energy landscape (like a super-

cooled liquid or glass), in contrast to a higher temperature

normal liquid where rearrangements can happen anywhere

and are not strongly constrained by the potential energy land-

scape. This assumption is justified by the observations of

caging behavior and dynamical heterogeneities, but also by

the microscopic observation that cell structures are close to

that predicted by Eq. 223, and transition between these near-

equilibrium states quickly compared to the waiting times they

spend in each state11. Quantifying these transition times in

experiments (in addition to the waiting times) would therefore

be very useful.

Acknowledgements M.L.M. acknowledges the support

from NSF CMMI-1334611 and the Dean of A&S and the

Chancellor’s Fund at Syracuse University. J.H.L. and J.M.S.

1–6 | 5



acknowledge the support from NSF-DMR-0645373. The au-

thors acknowledge useful discussions with Rastko Sknepnek

and Shiladitya Banerjee. The authors would also like to thank

the anonymous reviewers for their valuable comments and

suggestions to improve the quality of the paper.

References

1 R. Farhadifar, J.-C. Rper, B. Aigouy, S. Eaton and F. Jlicher, Current

Biology, 2007, 17, 2095 – 2104.

2 E.-M. Schoetz, R. D. Burdine, F. Julicher, M. S. Steinberg, C.-P. Heisen-

berg and R. A. Foty, HFSP journal, 2008, Vol.2 (1), 1–56.

3 M. Poujade, E. Grasland-Mongrain, A. Hertzog, J. Jouanneau,

P. Chavrier, B. Ladoux, A. Buguin and P. Silberzan, Proceedings of the

National Academy of Sciences, 2007, 104, 15988–15993.

4 L. Schneider, M. Cammer, J. Lehman, S. K. Nielsen, C. F. Guerra, I. R.

Veland, C. Stock, E. K. Hoffmann, B. K. Yoder, A. Schwab, P. Satir and

S. T. Christensen, Cellular Physiology and Biochemistry, 2010, 25, 279–

292.

5 P. Friedl and D. Gilmour, Nat Rev Mol Cell Biol, 2009, 10, 445–457.

6 D. Irimia and M. Toner, Integr. Biol., 2009, 1, 506–512.

7 K. Keren, Z. Pincus, G. M. Allen, E. L. Barnhart, G. Marriott,

A. Mogilner and J. A. Theriot, Nature, 2008, 453, 475–480.

8 R. J. Petrie, N. Gavara, R. S. Chadwick and K. M. Yamada, The Journal

of Cell Biology, 2012, 197, 439–455.

9 T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg and

D. A. Weitz, Proceedings of the National Academy of Sciences, 2011,

108, 4714–4719.

10 K. D. Nnetu, M. Knorr, J. Käs and M. Zink, New Journal of Physics,

2012, 14, 115012.
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