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Abstract: Adversarial examples (AEs) bring increasing concern on the security of deep-learning-based
synthetic aperture radar (SAR) target recognition systems. SAR AEs with perturbation constrained to
the vicinity of the target have been recently in the spotlight due to the physical realization prospects.
However, current adversarial detection methods generally suffer severe performance degradation
against SAR AEs with region-constrained perturbation. To solve this problem, we treated SAR AEs
as low-probability samples incompatible with the clean dataset. With the help of energy-based
models, we captured an inherent energy gap between SAR AEs and clean samples that is robust
to the changes of the perturbation region. Inspired by this discovery, we propose an energy-based
adversarial detector, which requires no modification to a pretrained model. To better distinguish
the clean samples and AEs, energy regularization was adopted to fine-tune the pretrained model.
Experiments demonstrated that the proposed method significantly boosts the detection performance
against SAR AEs with region-constrained perturbation.

Keywords: synthetic aperture radar; automatic target recognition; deep neural network; adversarial
examples; adversarial detection; energy-based model

1. Introduction

Deep neural networks (DNNs) have achieved remarkable performance on synthetic
aperture radar (SAR) target recognition [1]. However, adversarial attacks [2] have drawn
wide public concern on the security of applicable DNN models. By adding imperceptible
perturbation to a clean image, the so-called adversarial example (AE) can fool a pretrained
DNN model into outputting any predictions specified by the attacker. Classic adversarial
attacks [3–6] have become benchmarks to measure the robustness of neural networks. The
latest research has proven that optical attacks maintain high performance when attacking
DNN-based SAR image recognition models [7–10].

To meet the challenges posed by adversarial attacks, researchers have paid attention to
adversarial defense. Current defenses can be decomposed to construct robust models and
detect malicious inputs, i.e., adversarial detection. The first aims to improve the adversarial
robustness of DNN models and correctly identify the real label of AEs [11–13]. The second
only determines whether the test samples are AEs, such as the local intrinsic dimensionality
detector (LID) [14] and Mahalanobis detector (MD) [15] in optics and the soft threshold
detector (STD) [16] for remote sensing images. Adversarial detection endows DNN models
with the ability to perceive the on-going adversarial attacks and has received more attention
on SAR image recognition in adversarial situations.

Different from optical images, each pixel in a SAR image represents the scattering
energy of electromagnetic waves reflected from the imaging area. For the physical realiza-
tion, global perturbation AEs require changing the scattering characteristics of the entire
imaging region, which is a rather costly task. A feasible idea is to restrict the perturbation to
a certain region, and the corresponding research has recently been carried out. The current
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discussion focuses on generating adversarial perturbations near the target [17] and correlat-
ing the adversarial perturbation with electromagnetic signals [18] to reduce the physical
realization difficulty of SAR AEs. Although no mature physical AE implementation method
has been proposed yet, it is necessary to explore the security threat of region-constrained
SAR AEs. From a defensive standpoint, we found that current detection methods expose
performance degradation against SAR AEs with regional constraints. Designing defense
methods robust to region-constrained adversarial perturbation is an ongoing challenge.

In this paper, we considered AEs to be low-probability samples that are incompatible
with the clean dataset. Through energy-based models [19–21], we converted the probability
criterion to an energy criterion, where a sample with higher energy corresponds to a
stronger adversarial degree. Further, we found that there is an inherent energy gap between
the distributions of clean samples and AEs on a pre-trained model, even when regional
constraints are imposed on AEs. Based on this discovery, we propose the energy-based
detector (ED) and the fine-tuned energy-based detector (FED) to solve the problem of
detecting region-constrained SAR AEs. The contribution of this paper can be summarized
as follows:

1. We designed a novel energy feature space for SAR adversarial detection, where the
adversarial degree of a sample is positively related to its energy.

2. We propose an energy-based detector (ED), which requires no modification to the
pretrained model. Compared with another unmodified detector, STD, the proposed
method showed superior performance.

3. On the basis of ED, we propose to fine-tune the pre-trained model with a hinge energy
loss item to further optimize the output energy surface. Compared with the LID
and MD, the proposed fine-tuned energy-based detector (FED) was experimentally
demonstrated to boost the detection performance against SAR AEs, especially for
those with regional constraints.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the
adversarial attack and adversarial detection methods used in this paper. In Section 2.3,
we explore generating SAR AEs with region-constrained perturbation and analyze the
weakness of current adversarial detection methods. In Section 3, we propose our energy-
based detector (ED) and fine-tuned energy-based detector (FED). In Section 4, we provide
the details of the experiment. Finally, the discussion and conclusion are summarized in
Section 5.

2. Preliminaries
2.1. Adversarial Attack

Adversarial attacks can be divided into targeted attacks and untargeted attacks. The
prediction of a targeted AE in the model is specified by the attacker, while the prediction
of an untargeted AE is any category other than its true label. In practical applications,
defenders cannot know which category the upcoming attack will target. When evaluating
the performance of adversarial detection, generating untargeted AEs is a common process
to ensure that the defense covers each category. Since this paper is on the defensive side,
we introduced adversarial attacks in an untargeted manner.

Given a sample x with a ground truth label y, an discriminative model f estimates the
category of x by calculating the conditional probability of the sample x on the category y:

p(y|x) = e fy(x)

∑
i

e fi(x)
(1)
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where fi(x) represents the i-th component of the model’s output f (x). The essence of ad-
versarial attack is to increase a model’s cross-entropy loss by adding an l-norm constrained
perturbation η on a clean image x:

max
η
−∑

i
q(i) · log p(i|x + η)

s.t. ‖η‖l < ε
(2)

where q(i) represents the ground truth probability of label i and p(i|x + η) represents the
conditional probability of x + η on label i. For one-hot-encoded labels, Equation (2) can be
simplified to:

max
η
− log p(y|x + η)

s.t. ‖η‖l < ε
(3)

That is, the AE fools DNN classifiers by reducing the conditional probability of sample
x + η on the ground truth label y.
The core of the adversarial attack is to design a suitable perturbation function η(·):
• FGSM: The fast gradient sign method (FGSM) [3] normalizes the gradients of the in-

put with respect to the loss of model f to the smallest pixel depth as a perturbation unit:

ηFGSM(x) = sign(∇xLoss( f (x), y)) (4)

• BIM: The basic iterative method (BIM) [4] optimizes the FGSM attack as an
iterative version:

ηBIM(xi+1) = sign(∇xi Loss( f (xi), y)) (5)

• DeepFool: Moosavi-Dezfooli et al. [5] added iterative perturbations until the AE
crosses a linearly assumed decision boundary, and the perturbation in each iteration is
calculated as

ηDeepFool(xi+1) = min
k

fy(xi)− fk(xi)

∇y fy(xi)−∇k f (xi)
(6)

• CW: To avoid clamping AEs between (0, 1) in every iteration, Carlini and Wagner [6]
introduced a new variable w to express the AE as 1

2 (tanh(w) + 1), which maps the
value of the AE smoothly lying between (0, 1). The perturbation is expressed as:

ηCW(x) = 1
2 (tanh(w) + 1)− x (7)

2.2. Adversarial Detection

Adversarial detection is essentially a binary classification problem where clean samples
are treated as positives and AEs are negatives. Given a test sample x, the detector D judges
its adversarial property according to a well-designed metric function M and a threshold α:

D(x) =
{

adversarial,
clean,

M(x) ≥ α,
M(x) < α.

(8)

The core of adversarial detection is to find a suitable metric function M:

• Local intrinsic dimensionality detector (LID): Ma et al. [14] supposed that the AEs
lie in the high-dimensional region of the feature manifold and, therefore, own higher
local intrinsic dimensionality (LID) values compared with clean samples. Given a test
sample x, the LID method randomly picks k samples in the training set and calculates
the LID value of sample x as follows:

MLID(x) = −(1
k

k

∑
i=1

log
ri(x)
rk(x)

)

−1

(9)
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where ri(x) represents the featurewise Euclidean distance from sample x to its i-th
nearest neighbor.

• Mahalanobis detector (MD): Lee et al. [15] adopted the featurewise Mahalanobis
distance to measure the adversarial degree of a test sample x under the assumption
that clean samples obey the class conditional Gaussian distribution in the feature
space, while the AEs do not. With the feature vector before the classification layer of
sample x defined as V(x), the metric function of the MD method is calculated as

MMD(x) = (V(x)− µk)∑−1
(V(x)− µk)

T (10)

where µk is the mean feature vector of the predicted label k of x on the training set and
∑ is the feature covariance matrix.

• Soft threshold detector (STD): Li et al. [16] found that there are differences in classifi-
cation confidence between clean samples and AEs, and a lower confidence corresponds
to a higher adversarial degree. Based on this finding, the authors recreated a new
dataset consisting only of classification confidence and binarized labels and trained a
logistic regression classifier to obtain the best confidence threshold α for each class.
The metric function M of the STD method can be expressed as

MSTD = −p(argmax f (x)|x) (11)

The LID [14] and MD [15] require disassemble the model to extract the intermediate
layer features, so they are usually considered as modified methods, while the STD [16] only
checks the output of the model, which is an efficient unmodified method.

2.3. Problem of Detecting SAR AEs under Regional Constraint

The regional constraint of the perturbation has attracted wide attention when generat-
ing SAR AEs. Different from the physical implementation method of optical AEs, such as
directly pasting adversarial patches [22–24], SAR images reflect the energy distribution of
the scattered points formed by the electromagnetic echo of the target after being processed
by the Fourier transform. Although there is yet no physical implementation method for
SAR AEs, a feasible idea is to constrain the adversarial attack to a specific region to reduce
the difficulty of coupling the perturbation with signals. How to defend against SAR AEs
with the region constraint is a practical problem that needs to be studied urgently. In this
paper, we explored the influence of four different regional constraint functions, as shown
in Figure 1. Under the regional constraint, the objective function of the adversarial attack
in Equation (3) will be different:

max
η
− log p(y|x + R� η)

s.t. ‖R� η‖p < ε
(12)

where the constraint term R can be understood as a mask with the specified pixels of 1 and
others of 0 and works by taking the Hadamard product � with the original perturbation
η. The open SAR dataset MSTAR [25] and its publicly accessible segmentation annotation
SARbake [26] were used as an auxiliary to design the region constraint mask R.
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Figure 1. Illustration of region-constrained perturbation. Global, no constraint to the perturbation
region. R1, constrain the perturbation to a 64 × 64-size candidate box (orange) that contains the
target. R2, constrain the perturbation to the target region (blue) and the shadow region (red). R3,
constrain the perturbation to the target region (blue).

Taking the FGSM AE as an example, we discuss the impact of regional constraints on
three classical adversarial detection methods [14–16], as shown in Figure 2:

Figure 2. Influence of regional constraints on detection performance against CW adversarial examples.
The area under the receiver operating characteristic curve (AUROC) is used as a metric to measure
the detection performance.

• Impact on the LID and MD: The LID and MD implement detection by examining the
intermediate features of the test samples. However, as the regional constraint became
tightened, the detection performance of the LID and MD showed a significant drop,
with the AUROC dropping by nearly 20% in the worst case. This reveals that SAR
AEs under the regional constraint not only expose smaller visual observability, but
also have less difference in intermediate features from clean samples.

• Impact on the STD: The STD method detects AEs by checking the output confidence.
It can be seen that the regional constraint had relatively less impact on the output
layer of the model. However, since the STD method is still based on the condi-
tional confidence p(y|x), it did not perform as well as the LID and MD, despite its
computational efficiency.

3. Proposed Method

As discussed in Section 2.3, the regional constraints bring severe performance degra-
dation to the detection methods based on intermediate features [14,15]. Although the
output confidence-based method [16] is less affected by the regional constraint, it yet has
limited performance due to checking the conditional probability p(y|x). We hope to find a
method combining both high performance and robustness to regional constraints. Different
from the conditional probabilities p(y|x) at the output level, we believe that p(x) is a more
reasonable choice to measure the adversarial degree of a test sample.
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3.1. Interpretability of p(x)

As shown in Equation (3), the essence of an adversarial attack is to reduce the condi-
tional probability p(y|x) (confidence) of a clean sample as the true class, so that the model
misjudges the corresponding AE as the wrong class. However, researchers [3,6] have shown
that AEs also have high confidence (nearly 100%) in the wrong category, which results in
the inability of conditional-probability-based criteria to distinguish high-confidence AEs.

Given a training set consisting of clean samples ς =
{
(x, y)|x ∈ Rw×h, y ∈ R

}
, the

marginal distribution p(x) is usually thought of as the probability of x being sampled in
the training set ς. By decomposing p(x) into the sum of joint distributions p(x, i) on a
k-classification model, we provide a new perspective on p(x):

p(x) =
K

∑
i

p(x, i) (13)

The joint distribution p(x, i) measures the probability that sample x and label i occur
at the same time or how much sample x is compatible with label i. Then, p(x) can be
interpreted as the compatibility of x with the entire training set ς. It is well known that
AEs and clean samples are visually similar xadv ≈ x, but their predicted labels in a DNN
model are quite different yadv 6= y. Hence, our core idea is that AEs are incompatible with
the clean training set ς, indicating a low p(x).

3.2. Energy-Based Detector on Pretrained Model

It is intractable to calculate p(x) through the sum of the joint distribution by Equation (13)
on a discriminative model. Energy-based models [19–21] offer a new approach to this
problem. LeCun et al. [19] pointed out that any probability density p(x) for x ∈ R can be
expressed in the form of an free energy function:

p(x) =
e−E(x)∫

x
e−E(x)dx

=
e−E(x)

Z
, (14)

where E(·) is the free energy function, which maps a sample x to a scalar value. The constant
Z =

∫
x

e−E(x)dx is known as the partition function, which normalizes the probability

between 0 and 1. After taking the logarithm of both sides of Equation (14), we can find that
log p(x) is linearlyaligned with E(x):

log p(x) = −E(x)− log Z (15)

where a larger p(x) corresponds to a smaller E(x). Hence, the problem of solving p(x) can
be transformed into solving E(x). Will et al. [20] revealed that one can reinterpret a standard
discriminative classifier of p(y|x) as an energy-based model for the joint distribution p(x, y):

p(x, y) =
e fy(x)

Z
(16)

where fy is the y-th component of the model’s output f (x) and Z is the constant partition
function. According to the Bayes rule and Equation (1):

p(x, y) = p(x) · p(y|x) = e−E(x)

Z
· e fy(x)

K
∑

i=0
e fi(x)

(17)
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where K is the total number of categories. By connecting Equations (16) and (17), we obtain
the explicit expression for E(x):

E(x) = − log
K

∑
i=0

e fi(x) (18)

where the energy E(x) is defined by the model’s output f (x). For clean samples, the
logarithm of its probability p(x) is larger, corresponding to lower energy E(x), while AEs
have a smaller p(x), corresponding to a higher E(x).

To confirm our assumption, we visualize the energy distribution of clean samples
and AEs on the test set, as shown in Figure 3. It can be observed that there is an “energy
gap” between the energy distributions of clean samples and AEs even when the regional
constraint is imposed on AEs. The high-energy AEs and low-energy clean samples naturally
belong to two different distributions. By setting an appropriate decision threshold α, it
is feasible to achieve the distinction between AEs and clean samples. Hence, we trained
a logistic regression model on a small validation set ςval , where clean samples and the
corresponding AEs are labeled as positives and negatives, respectively. Then, the energy
value corresponding to a 95% true positive rate is set as the threshold α. We provide the
pseudocode for training our energy detector (ED) in Algorithm 1.

1 
 

 

Figure 3. Framework of energy-based detection on a pretrained model. The above energy map
is generated by clean samples and their CW adversarial examples with the R3 constraint on the
ResNet34 network. The two blue dashed lines are positioned at the mean energy values of the clean
samples and AEs, respectively. More visualizations can be found in Section 4.7.

Algorithm 1: Energy-based adversarial detector (ED).
input :

a pretrained model f ;
validation set ςval ;

output :
Detector (ED);

1 Epos =[ ], Eneg =[ ];
2 ςadv ← Attack (ςval ) ; /* Generate known AEs on validation set */
3 for Xclean, Xadv in ςval , ςadv do
4 E(Xclean), E(Xadv)← Xclean, Xadv ; /* By Equation (18) */
5 Epos.append[E(Xadv)] ;
6 Eneg.append[E(Xclean)] ;
7 end
8 Detector (ED) = train a logistic regression classifier on (Epos, Eneg)
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3.3. Energy-Based Detector on Fine-Tuned Model

Although there is an inherent energy difference between AEs and clean samples on a
pretrained model, we hope to increase this “energy gap”. Hence, we define a new objective
function to fine-tune a pretrained model:

min
θ

LCE + λLEG (19)

The former item LCE is the simplified cross-entropy loss derived from Equations (2)
and (3), which keeps the classification accuracy of the model for clean samples:

LCE = − log p(y|x) (20)

The latter item LEG is the energy loss, which enlarges the energy gap between the
clean samples and AEs, and λ is the regularization coefficient. We used the hinge function
to define the energy loss:

LEG = max(0, E(xclean)− ELB) + max(0, EUB − E(xadv)) (21)

where ELB and EUB are the lower bound and upper bound of energy, respectively. This
loss function is designed to penalize clean samples with an energy higher than the lower
bound and AEs with an energy lower than the upper bound, so that an optimized energy
surface can be obtained. The mean energy of clean samples and their corresponding AEs
is calculated, respectively, in the validation set ςval as the lower bound ELB and upper
bound EUB:

ELB =
1
N

N

∑
i=0

E(xclean)

EUB =
1
N

N

∑
i=0

E(xadv)

x ∈ ςval

(22)

We verified the effectiveness of the proposed fine-tuning method on the same test set
in Section 3.2. The flowchart of the FED detector and visualization of energy distributions
are shown in Figure 4. It can be observed that, after fine-tuning by Equation (19), the energy
gap between AEs and clean samples are significantly enlarged. The details of acquiring our
fine-tuned energy detector are provided in Algorithm 2.

Figure 4. Framework of energy-based detection on a fine-tuned model. The energy map is generated
by the same samples in Figure 3.
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Algorithm 2: Fine-tuned energy-based detector (FED).
input :

a pretrained model f with parameters θ;
validation set ςval ;
learning rate β;
training epoch N

output :
fine-tuned energy-based detector (FED)

1 ςadv ← Attack (ςval ) ; /* Generate AEs on validation set */
2 ELB ← ςval , EUB ← ςadv ; /* Estimate energy bound by Equation (22) */
3 for i to N do
4 for Xclean, Xadv in ςval , ςadv do
5 LCE ← Xclean ; /* By Equation (20) and Equation (1) */
6 LEG ← (Xclean, Xadv, ELB, EUB) ; /* By Equation (21) */
7 loss = LCE + λ · LEG;
8 θ = θ − β · ∂

∂θ loss
9 end

10 end
11 Detector (FED)← Algorithm 1 ( f , ςval)

4. Results

In order to facilitate the reader’s understanding, we first introduce the overall experi-
mental context. In Section 4.1, we describe the dataset details. In Section 4.3, we illustrate
the training details of the original models and the parameters of the AEs. In Section 4.3,
we introduce the evaluation metrics used in this paper. In Section 4.4, we explore the
robustness of current attack methods towards regional constraints under a similar pertur-
bation scale. In Section 4.5, we verify the detection performance of the proposed ED and
FED methods against four classic AEs with three different regional constraints on three
networks. In Section 4.6, we analyze the sensitivity of the parameter λ and the convergence
of the objective function Equation (19). In Section 4.7, we visualize the criteria distributions
of different detection methods. In Section 4.8, we explore the detection performance of the
proposed method against AEs with variable perturbation scales. In Section 4.9, we explore
the robustness of the proposed method against adaptive attacks.

4.1. Dataset

We conducted our experiment on the most commonly used SAR dataset, the Moving
and Stationary Target Acquisition and Recognition (MSTAR) dataset [25], which was
funded by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL). MSTAR contains ten types of military targets at different
azimuth and elevation angles, and each image is formed with one-channel amplitude
information and a size of 128 × 128. In the original dataset, images with a depression angle
of 17◦ are used for training and images with depression angle of 15◦ are used for testing.
The optical and corresponding SAR images are shown in Figure 5.
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(a) 2S1 (b) BMP2 (c) BRDM2 (d) BTR60 (e) BTR70

(f) D7 (g) T62 (h) T72 (i) ZIL131 (j) ZSU234

Figure 5. Optical images and corresponding SAR images of MSTAR dataset.

4.2. Experiment Setups

We trained ResNet34 [27], VGG16 [28], and DenseNet121 [29] as the original mod-
els with the Adam optimizer. For FGSM and BIM, the perturbation scale was set as
‖η‖∞ = 8/255 and ‖η‖∞ = 4× 2/255, respectively. For DeepFool and CW, we used the
L2-norm attack with the maximum number of iterations set as 30. The learning rate of
w in CW and the overshoot in DeepFool were 0.01. We used the LID [14], MD [15], and
STD [16] to detect the successful AEs whose predictions on the models were inconsistent
with their true labels. Similar to the LID and MD, we added Gaussian noisy samples
with the same perturbation scale as AEs to the test set to approximate the real application
scenario. One-fifth of the test set was divided as the validation set. We used the Adam
optimizer with a learning rate of 10−6 to fine-tune the energy surface of the pretrained
model for 30 epochs. The energy regularization term λ was set as 0.1.

4.3. Evaluation Metric

• ASR: We used the attack success rate (ASR) to measure the attack performance of the
methods [2,4–6]:

ASR =
nsuccess

ntotol
× 100% (23)

where ntotol and nsuccess represent the number of generated AEs and the number of
successful AEs, respectively.

• AUROC: The AUROC measures the area under the receiver operating characteristic
curve, which takes a value between 0.5 and 1. The AUROC reflects the maximum
potential of the detection methods.

• TNR@95%TPR: Since normal samples are in the majority and AEs are in the minority
in practical applications, the detection rate against AEs (TNR) should be improved
under the premise of maintaining the detection rate of normal samples (TPR), as
shown in Table 1. Hence, we chose the true negative rate (TNR) at a 95 % true positive
rate (TPR) to measure the performance of the detection methods.
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Table 1. Illustration of evaluation metric for detection.

Adversarial: 0 Ground Truth

Clean & Noisy: 1 1 0

Prediction
1 True Positive (TP) False Positive (FP)

0 False Negative (FN) True Negative (TN)

Indicator TPR = TP
TP + FN × 100% TNR = TN

FP + TN × 100%

4.4. Influence of Regional Constraint on Attack Performance

Firstly, we investigated the influence of the regional constraint on the attack perfor-
mance. As shown in Table 2, among four classic attacks, the regional constraint of the
adversarial perturbation led to a general decrease of the ASR for SAR AEs, especially for the
DeepFool [5] attack. This phenomenon may be related to the weakening of the perturbation
strength that the regional constraint brings. The decreasing perturbation area caused less
gradient rise and ultimately resulted in the decreasing of the ASR. Still, it is worth noting
that the CW [6] attack maintained a considerable ASR even for R3 with a high constraint
level, which shows promising prospects for designing practical SAR AEs.

Table 2. Influence of regional constraint on attack performance (ASR(%)).

Constraint Global R1 R2 R3

ResNet34

FGSM 96.0 65.9 28.2 3.0
BIM 97.3 83.6 39.1 3.4
CW 100 100 97.0 51.9

DeepFool 98.9 73.1 56.29 9.6

DenseNet121

FGSM 93.1 97.2 70.0 20.6
BIM 100 100 95.3 30.8
CW 99.9 99.9 99.8 87.7

DeepFool 99.9 95.9 55.4 4.4

VGG16

FGSM 97.8 71.4 35.2 4.8
BIM 99.1 84.0 46.6 5.9
CW 100 100 96.6 31.6

DeepFool 96.3 64.7 33.1 0.7
Note: AEs with an ASR less than 10% are bolded.

4.5. Detection Performance

In this section, we evaluated the detection performance of the proposed method (ED
and FED) against SAR AEs with the regional constraint. The proposed ED method requires
no change to the original model, which is an unmodified method like the STD [16], while
our FED method fine-tunes the parameters of the original model, which is a modified
method like the LID [14] and MD [15]. To rule out the randomness, we did not detect AEs
with an ASR less than 10%, because there was too little image to fine-tune the model.

As shown in Tables 3 and 4, the proposed energy-based detector (ED) and fine-tuned
energy-based detector (FED) achieved the highest score on the TNR@95%TPR and the
AUROC among four classic adversarial attacks with four regional constraints on three
models in most cases.

For unmodified detection, the proposed ED exhibited stronger performance than the
STD [16], bringing average improvements by 10% on the TNR and AUROC. Different from
the STD, which checks the conditional probability p(y|x), our energy detector (ED) checks
the energy E(x) of a test sample, which is linearly aligned with logp(x) and is more robust
to adversarial attacks.
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Table 3. Comparison of the AUROC against SAR AEs between the proposed methods and classic
methods (%).

Attack Setup Unmodified Modified

Network Attack Region STD ED LID MD FED

DenseNet121

FGSM

Global 73.2 74.6 98.3 99.5 99.6
R1 69.7 70.2 91.1 88.8 98.8
R2 76.4 78.3 79.7 74.3 96.8
R3 89.6 91.9 64.3 53.1 96.7

BIM

Global 89.6 73.0 99.3 99.4 98.9
R1 93.1 82.5 99.8 99.2 97.3
R2 55.7 64.7 96.8 94.9 98.2
R3 52.6 72.3 82.2 88.3 89.6

CW

Global 74.7 63.8 99.9 99.9 99.9
R1 62.3 70.4 98.4 99.2 99.5
R2 66.5 80.6 95.9 97.9 98.6
R3 69.0 81.6 89.1 90.9 98.2

DeepFool

Global 95.2 97.5 78.1 91.3 97.7
R1 94.5 96.6 62.8 67.6 99.7
R2 92.7 95.4 76.8 97.5 98.5
R3 / / / / /

ResNet34

FGSM

Global 60.5 82.7 94.5 95.5 97.5
R1 65.5 86.8 91.5 89.7 97.5
R2 67.3 87.2 81.3 87.8 95.8
R3 / / / / /

BIM

Global 60.2 60.8 96.2 93.8 95.3
R1 82.2 62.9 98.3 81.7 93.8
R2 66.0 87.5 84.1 87.3 96.6
R3 / / / / /

CW

Global 66.3 62.1 98.0 95.9 96.8
R1 60.5 78.4 96.3 88.7 97.8
R2 65.5 87.1 93.4 91.8 98.3
R3 68.4 87.8 86.6 90.6 98.1

DeepFool

Global 60.0 97.6 81.8 98.2 98.8
R1 65.4 98.3 78.1 98.5 98.8
R2 62.2 98.2 74.2 98.5 98.7
R3 / / / / /

VGG16

FGSM

Global 58.1 59.2 83.7 91.5 96.7
R1 63.6 65.9 92.1 79.4 95.2
R2 64.2 63.5 78.6 70.7 89.9
R3 / / / / /

BIM

Global 56.5 57.6 89.8 74.0 95.3
R1 60.2 55.8 94.2 77.4 95.0
R2 65.5 62.6 84.7 72.9 93.6
R3 / / / / /

CW

Global 65.2 78.9 99.7 99.5 99.9
R1 60.0 61.9 97.4 84.1 97.0
R2 70.9 71.5 92.8 87.3 97.3
R3 68.3 71.7 80.0 76.1 90.9

DeepFool

Global 86.8 88.4 53.9 63.8 97.3
R1 71.1 86.0 69.4 75.6 96.4
R2 76.4 82.2 67.5 75.0 93.4
R3 / / / / /

Note: The best results are bolded.
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Table 4. Comparison of the TNR@95%TPR against SAR AEs between the proposed methods and
classic methods (%).

Attack Setup Unmodified Modified

Network Attack Region STD ED LID MD FED

DenseNet121

FGSM

Global 37.4 45.7 95.7 99.6 98.9
R1 23.0 37.9 53.0 31.5 94.6
R2 26.2 42.9 16.4 3.2 85.4
R3 39.1 61.8 4.1 0.35 80.6

BIM

Global 74.2 46.1 98.1 98.4 96.4
R1 84.1 63.3 99.6 97.2 91.7
R2 29.3 16.1 86.4 77.6 93.5
R3 8.1 15.3 37.8 33.6 56.3

CW

Global 61.1 48.4 99.5 99.6 99.6
R1 18.7 30.5 92.3 98.6 98.8
R2 34.1 51.3 79.8 90.4 94.2
R3 33.5 48.4 66.8 77.2 91.7

DeepFool

Global 69.1 85.8 36.1 19.2 88.7
R1 57.2 77.8 5.2 0.2 99.7
R2 50.3 63.0 26.2 91.6 96.9
R3 / / / / /

ResNet34

FGSM

Global 30.0 50.3 89.1 85.5 89.3
R1 24.1 48.0 80.6 80.7 88.4
R2 19.6 44.6 61.8 51.9 78.5
R3 / / / / /

BIM

Global 44.8 22.3 83.8 63.0 76.5
R1 65.8 25.0 93.0 44.6 73.4
R2 11.9 35.2 42.5 39.0 79.4
R3 / / / / /

CW

Global 40.7 18.9 90.2 72.7 85.9
R1 14.0 32.5 80.4 64.6 90.9
R2 11.5 51.6 69.8 72.4 92.8
R3 16.3 43.6 51.8 51.2 90.5

DeepFool

Global 62.5 96.3 59.8 94.7 98.9
R1 65.4 95.4 49.7 94.9 98.6
R2 62.2 95.0 46.3 96.3 97.3
R3 / / / / /

VGG16

FGSM

Global 12.6 25.4 53.4 73.1 86.1
R1 18.7 22.0 66.7 27.6 78.4
R2 19.4 15.2 34.9 17.0 55.8
R3 / / / / /

BIM

Global 12.1 13.7 62.2 42.2 76.5
R1 9.7 6.7 77.0 26.8 72.4
R2 10.0 11.1 41.8 17.6 67.0
R3 / / / / /

CW

Global 10.3 49.5 99.8 100 100
R1 9.9 19.8 85.9 49.3 86.6
R2 10.7 14.4 68.6 57.2 88.1
R3 12.0 19.1 44.6 17.0 53.4

DeepFool

Global 37.9 41.8 40.4 45.3 85.5
R1 25.1 29.7 21.4 24.8 82.4
R2 21.3 25.7 20.0 22.3 63.1
R3 / / / / /

Note: The best results are bolded.
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For modified detection, the proposed FED outperformed the LID [14] and MD [15]
in most cases, especially for AEs with strong regional constraints, such as R2 and R3. Our
FED method significantly boosted the detection performance against SAR AEs with region-
constrained perturbation and achieved comparable performance against SAR AEs with
global perturbation. The superiority of the proposed method was attributed to the inherent
energy gap between AEs and natural samples.

Among four classic attacks, the proposed ED and FED had stable performance on
FGSM [2], CW [6], and DeepFool [5] for both modified and unmodified detections. How-
ever, for the iterative BIM [4] attack, the ED and FED only performed effective detection
against AEs with strong regional constraints (e.g., R2 and R3). This may be due to the reason
that the BIM attack updates the perturbation direction iteratively and the corresponding
AEs are more in line with the training set distribution.

As shown in Table 5, among the three DNN networks, all methods showed good appli-
cability on DenseNet121 [29], while their performance was generally weaker on VGG16 [28].
Since DenseNet121 owns the deepest network layers and least network parameters, while
VGG16 is exactly the opposite, we conjectured that the detection performance was posi-
tively correlated with the number of network layers and negatively correlated with the
amount of network parameters.

Table 5. Structure details of DenseNet121, ResNet34, and VGG16.

Network DenseNet121 ResNet34 VGG16

Parameter 6.96M 21.29M 134.3M
Layer 121 34 16

4.6. Sensitivity Analysis

Parameter λ characterizes the weight of regular term LEG in Equation (19). We ex-
plored the influence of parameter λ on the detection performance against FGSM AEs and
the classification accuracy for clean samples. Parameter λ takes a value from 0 to 1, and the
step size is 0.02 in (0, 0.2) and 0.05 in (0.2, 1). As shown in Figure 6a, as λ increased, the
TNR at a 95% TPR became stable on DenseNet121 and obtained a gradually decreasing
range of fluctuation on ResNet34. For VGG16, the TNR experienced a decline in interval
(0.1, 0.12) before convergence, which may be due to randomness in the generalization
process. As shown in Figure 6b, the classification accuracy of all three models remained
stable for different λ, which benefited from the cross-entropy term in Equation (19).

Objective function Equation (19) aims to enlarge the energy gap between AEs and
clean samples while ensuring the accuracy on clean samples. As shown in Figure 6c, the
fine-tuned loss on all three networks achieved convergence after 30 epochs, demonstrating
the validity of the proposed fine-tuned method.

(a) (b) (c)

Figure 6. Sensitivity analysis. (a) Influence of λ on detection performance; (b) influence of λ on
classification performance; (c) convergence of objective function Equation (19).
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4.7. Visualization of Energy Distribution

In order to better verify the effectiveness of the ED and energy FED, we extracted the
energy distribution of clean samples and the corresponding AEs with regional constraints
on DenseNet121 [29], as shown in Figure 7. The AEs were generated on the test set by
the FGSM method, and the energy of every sample was recorded in the form of a density
distribution map. It can be observed that there was an inherent energy gap lying between
clean samples and AEs; that was because the AEs did not belong to the natural training
set and corresponded to a low probability (high energy). Furthermore, as the regional
constraints became tightened, the distribution of the Mahalanobis distance and local in-
trinsic dimensionality of the AEs and clean samples became confused, while the energy
distribution was more robust to the changes of the perturbation region.

(a) Global (b) Region Constrain 1 (c) Region Constrain 2 (d) Region Constrain 3

Figure 7. Visualization of energy distributions of clean samples and FGSM AEs on DenseNet121.
The columns represent the four methods of the LID, MD, ED, and FED, and the rows represent four
different regional constraints. The dashed yellow line is positioned at a 95% true positive rate (TPR).



Remote Sens. 2022, 14, 5168 16 of 19

4.8. Detection against AEs with Variable Perturbation Scales

In Section 4.4, the ASR of globally perturbed AEs was close to 100%, while there
were only a few AEs having ASRs that exceeded the 10% detection threshold under the
R3 constraint. Therefore, we studied the effect of reducing the global perturbation scale
and increasing the R3 constraint perturbation scale. Specifically, for the convenience of
controlling the perturbation scale, FGSM AEs were generated for testing. We reduced the
global perturbation scale to 1/2 and 1/4 of the original scale, while under the R3 constraint,
we doubled and quadrupled the original scale, respectively. We calculated the ASR of
these AEs with variable perturbation scales, shown in Table 6 and measured the detection
performance, shown in Table 7.

Table 6. ASR of AEs with variable perturbation scale (%).

Attack Global (ε/4) Global (ε/2) R3 (ε × 2) R3 (ε × 4)

Network
DenseNet121 39.2 87.4 49.3 69.4

ResNet34 12.6 43.6 28.1 60.9
VGG16 68.5 92.4 55.9 68.4

Table 7. Comparison of performance against AEs with various perturbation scales (AUROC%).

Attack Setup Unmodified Modified

Network Region STD ED LID MD FED

DenseNet121

Global (ε/4) 75.6 83.9 90.3 95.5 97.4
Global (ε/2) 78.2 85.1 97.1 99.0 98.4

R3 (ε× 2) 70.2 80.0 81.5 87.4 97.4
R3 (ε× 4) 70.9 78.7 78.7 74.8 97.3

ResNet34

Global (ε/4) 53.6 74.2 74.3 79.5 88.4
Global (ε/2) 68.4 84.7 87.8 92.1 96.4

R3 (ε× 2) 73.7 87.1 80.7 87.9 93.8
R3 (ε× 4) 76.2 88.4 87.3 89.6 97.5

VGG16

Global (ε/4) 65.4 63.7 87.1 76.8 94.1
Global (ε/2) 54.0 54.7 94.7 83.9 94.3

R3 (ε× 2) 68.5 55.5 83.6 81.6 93.9
R3 (ε× 4) 67.0 55.2 85.7 86.3 94.0

Note: The best results are bolded.

As shown in Table 7, the proposed ED and FED methods showed stable performance
for different scales of AEs on DenseNet121. On ResNet34, the performance of all detection
methods exposed degradation as the perturbation scale decreased, indicating that AEs with
a small perturbation scale had less difference with clean samples in both the feature space
and the output space. On VGG16, our ED method showed relatively weak performance,
while the FED method achieved high performance again after fine-tuning, which exhibited
the plasticity of the model’s energy surface.

4.9. Robustness to Adaptive Attacks

An adaptive attack assumes that the attacker knows the specific strategy of the de-
fender and modifies the original attack objective according to the defense objective. Usually,
the attack successful rate (ASR) of an adaptive attack will decrease compared with the
original attack under the same experimental settings. The more ASR falls, the harder the
defense is to break. In this section, we assumed that the attacker knows that the victim
model adopts an energy-based defense strategy (Equation (19)) and adds an energy regular
term to the attack objective of FGSM (Equation (4)) and BIM (Equation (5)), that is

ηFGSM_adp(x) = sign(∇x[Loss( f (x), y)− λ · E(x)]) (24)
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ηBIM_adp(xi+1) = sign(∇x[Loss( f (xi), y)− λ · E(x)]) (25)

The value of the weight parameter λ was taken as 0.1, which is the same as that in
Section 4.2.

As shown in Table 8, compared with their original versions, the ASR of adaptive
AEs was greatly reduced (less than the detection threshold of 10%), which shows that the
proposed method has a preliminary ability to resist adaptive attacks.

Table 8. Comparison of ASR between original attacks and adaptive attacks. (%)

Attack
FGSM BIM

Original Adaptive Original Adaptive

Network
DenseNet121 93.1 2.52 100 3.76

ResNet34 96.0 2.40 97.3 2.44
VGG16 97.8 8.52 99.1 8.66

Note: A lower ASR of adaptive attack indicates the greater robustness of defense.

5. Discussion

Over the past few years, research on SAR adversarial attacks [8,9,30,31] mainly trans-
ferred the methods in optics without considering the special properties of SAR images.
Adversarial perturbation added to the clean samples remains a high threat to the DNN
classifier after being captured by the cameras [4], while the perturbation of SAR images is
required to be coupled into the electromagnetic signals. Research on physically achievable
SAR adversarial examples (AEs) has recently emerged, and current discussions focus on
generating perturbations within a defined target region [17] and correlating digital per-
turbations with physical electromagnetic signals [18]. Aiming at the current hotspot of
SAR adversarial attacks, we explored the security threats brought by region-constrained
SAR AEs.

Through experiments, we found that current adversarial detection methods [14–16]
degrade severely when solving the detection problem of region-constrained SAR AEs. In
this paper, SAR AEs were regarded as unnatural low-probability samples, which expose
higher energy than clean samples. By rejecting the high-energy inputs, the proposed ED
and FED methods achieved more robust detection performance against SAR AEs with
region-constrained perturbation. In addition, we also found that there was an inherent
energy gap between the distributions of AEs and clean samples. From a thermodynamic
point of view, high energy indicates a state of disorder. Hence, the essence of our methods
is to reject high-entropy input and accept low-entropy input.

Meanwhile, we also found that the proposed method had relatively weak detection
against BIM AEs and also suffered degradation against small-perturbation SAR AEs on
the VGG16 network. In future work, we will improve our method on the generalization
towards multiple AEs and the robustness towards perturbation scales.

6. Conclusions

In conclusion, this paper proposed an energy-based detector (ED) and a fine-tuned
energy-based detector (FED) to solve the problem of detecting SAR AEs with region-
constrained perturbation. Compared with the optical defense methods, the proposed
methods significantly boosted the detection performance against SAR AEs, especially for
those with regional constraints. Our research provides a foundational work for the future
defense against physical SAR AEs.
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