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A novel sensor network source localization method based on acoustic energy measurements is presented. This method makes use
of the characteristics that the acoustic energy decays inversely with respect to the square of distance from the source. By comparing
energy readings measured at surrounding acoustic sensors, the source location during that time interval can be accurately esti-
mated as the intersection of multiple hyperspheres. Theoretical bounds on the number of sensors required to yield unique solution
are derived. Extensive simulations have been conducted to characterize the performance of this method under various parameter
perturbations and noise conditions. Potential advantages of this approach include low intersensor communication requirement,
robustness with respect to parameter perturbations and measurement noise, and low-complexity implementation.
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1. INTRODUCTION

Distributed networks of low-cost microsensors with signal
processing and wireless communication capabilities have a
variety of applications [1, 2]. Examples include under wa-
ter acoustics, battlefield surveillance, electronic warfare, geo-
physics, seismic remote sensing, and environmental moni-
toring. Such sensor networks are often designed to perform
tasks such as detection, classification, localization, and track-
ing of one or more targets in the sensor field. These sensors
are typically battery-powered and have limited wireless com-
munication bandwidth. Therefore, efficient collaborative sig-
nal processing algorithms that consume less energy for com-
putation and communication are needed.

An important collaborative signal processing task is
source localization. The objective is to estimate the positions
of a moving target within a sensor field that is monitored by a
sensor network. This may be accomplished by (a) measuring
the acoustic, seismic, or thermal signatures emitted from the
source—the moving target, at each sensor node of the net-
work; and then (b) analyzing the collected source signatures
collaboratively among different sensor modalities and differ-
ent sensor nodes. In this paper, our focus will be on collabo-
rative source localization based on acoustic signatures.

Source localization based on acoustic signature has broad
applications: in sonar signal processing, the focus is on lo-
cating under-water acoustic sources using an array of hy-
drophones [3, 4]. Microphone arrays have been used to lo-
calize and track human speakers in an indoor room environ-
ment for the purpose of video conferencing [5, 6, 7, 8]. When
a sensor network is deployed in an open field, the sound
emitted from a moving vehicle can be used to track the lo-
cations of the vehicle [9, 10].

To enable acoustic source localization, two approaches
have been developed: for a coherent, narrowband source, the
phase difference measured at receiving sensors can be ex-
ploited to estimate the bearing direction of the source [11].
For broadband source, time-delayed estimation has been
quite popular [6, 9, 10, 12, 13, 14].

In this paper, we present a novel approach to estimate the
acoustic source location based on acoustic energy measured
at individual sensors. It is known that in free space, acoustic
energy decays at a rate that is inversely proportional to the
distance from the source [15]. Given simultaneous measure-
ments of acoustic energy of an omnidirectional point source
at known sensor locations, our goal is to infer the source lo-
cation based on these readings.
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While the basic principle of this proposed approach is
simple, to achieve reasonable performance in an outdoor
wireless sensor network environment, the following number
of practical challenges must be overcome.

(i) In an indoor environment, sound propagation may
be interfered by room reverberation [16] and echoes. Simi-
lar effects may also occur in an outdoor environment when
man-made walls or natural rocky hills are present within the
sensor field.

(ii) In an outdoor environment, the sound propagation
may be affected by wind direction [17, 18] and presence of
dense vegetation [19].

(iii) The sensor locations may not be accurately mea-
sured.

(iv) The acoustic energy emissionmay be directional. For
example, the engine sound of a vehicle may be stronger on
the side where the engine locates. The physical size of the
acoustic source may be too large to be adequately modeled
as a point source.

(v) In an outdoor environment, strong background noise
including wind gust may be encountered during operation.
In addition, the gain of individual microphones will need to
be calibrated to yield consistent acoustic energy readings.

(vi) If there are two or more closely spaced acoustic
sources, their corresponding acoustic signals may interfere
each other, rendering the energy decay model infeasible.

In this paper, we first propose a simple, yet powerful
acoustic energy decay model. A simple field experiment re-
sult is reported to justify the feasibility of this model for the
sensor network application. A maximum-likelihood estima-
tion problem is formulated to solve the location of a sin-
gle acoustic source within the sensor field. This is solved by
finding the intersection of a set of hyperspheres. Each hyper-
sphere specifies the likelihood of the source location based on
the acoustic energy readings of a pair of sensors. Intersecting
many hyperspheres formed by a group of sensors within the
sensor field will yield the source location. This is formulated
as a nonlinear optimization problem of which fast optimiza-
tion search algorithms are available.

This proposed energy-based localization (EBL) method
will potentially give accurate results at regular time inter-
val, and will be robust with respect to parameter perturba-
tions. It requires relatively few computations and consumes
little communication bandwidth, and therefore is suitable
for low power distributed wireless sensor network applica-
tions.

This paper is organized as follows. In Section 2, we review
several existing source localization algorithms. In Section 3,
an energy decay model of sensor signal readings is provided.
An outdoor experiment to validate this model is also out-
lined. The development of the EBL algorithm is specified
in Section 4, where we also elaborate the notion of the tar-
get location circles/spheres and some properties associated
with them. A variety of search algorithms for optimizing the
cost function are also proposed in this section. In Section 5,
simulation is performed with the aim of studying the ef-
fect of different factors on the accuracy and precision of
the location estimate. A comparison of different search al-
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Figure 1: Illustration of CPA-based localization (a) 1D CPA local-
ization, (b) 2D CPA localization.

gorithms applied on our energy-based localizer is also re-
ported.

2. EXISTING SOURCE LOCALIZATIONMETHODS

In a sensor network, a number of methods can be used to
locate and track a particular moving target. Some existing
methods are reviewed in this section.

2.1. CPA-based localizationmethod

In its original definition, a CPA (closest point of ap-
proach) point refers to the positions of two dynamically
moving objects at which they reach their closest possible
distance (see, http://www.geometryalgorithms.com/Archive/
algorithm 0106/algorithm 0106.htm). In a sensor network
application, a CPA position is a point on the trajectory of a
moving target that is closest with respect to a stationary sen-
sor node. Refer to Figure 1, using CPA point to estimate the
target location can be accomplished in two different ways.

(i) One-dimensional CPA localization: if a target is moving
along a road with known coordinates, the CPA point
with respect to a given sensor node is a coordinate on
this road that is closest to this observing sensor. Given
the sensor coordinate and the road coordinates, this
CPA point can be precomputed prior to operation. As-
suming that the signal intensity will reach maximum
when a target is in the closest position, the time in-
stant, when the target is on the CPA point, can be esti-
mated from the time series observed at the sensor. Al-
ternatively, the 1D CPA detection can be realized using
a tripped-wire style sensing modality, such as a polar-
ized infrared (PIR) sensor.

http://www.geometryalgorithms.com/Archive/algorithm_0106/algorithm_0106.htm
http://www.geometryalgorithms.com/Archive/algorithm_0106/algorithm_0106.htm
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(ii) Two-dimensional localization: in a two-dimensional
sensor field, if the coordinate of the target trajectory
is not known in advance, the target position cannot
be precomputed. However, if the single intensity mea-
sured at neighboring sensors during the same time in-
terval can be compared, the sensor whichmeasures the
highest acoustic signal intensity should be the one that
is closest to the target. Then the location of that sensor
may be used as an estimate of the target location. This
is equivalent to the partition of the sensor field into N
Voronoi regions where N is the number of sensors. If
the target is in ith region, the corresponding ith sen-
sor’s location will be used as an estimated location of
the target.

To use the CPA style localization method, it is desirable that
sufficient number of sensors are deployed within a given sen-
sor field. Otherwise, the accuracy of the localization results
may be too coarse to yield less accurate results.

2.2. Target localization based on time delay
estimation

Sound signal travels at a finite speed. The same signal reaches
sensors at different locations with different amount of delays.
Denote v to be the source signal propagation speed rs and
ri, respectively, to be the target location and ith sensor’s lo-
cation, and ti to be the time lags experienced at ith sensor.
Then the time delay between the source and received signal
at sensor i is ti = |rs − ri|/v + ni, where ni is used to model a
random noise due to measurement error. While the absolute
value of ti cannot be measured without knowing the source
location rs, the relative time delay measured with respect to a
reference sensor r0 can be measured as

v
(
ti − t0

) = vt̃i =
∣∣rs − ri

∣∣− ∣∣rs − r0
∣∣ + ñi. (1)

Given N + 1 sensors, N equations like (1) can be formulated.
Then, one may estimate the unknown parameters v and rs
using maximum likelihood estimation [6, 10, 14, 20].

Alternatively, (1) can be expressed as

[
− 2
(
ri − r0

)T∣∣ri − r0
∣∣2 − 2

(
ti − t0

)]
x

= aTi x =
(
ti − t0

)2 = bi, 1 ≤ i ≤ N,
(2)

where x = [(rs− r0)T1/|v|2|rs− r0|/v]T is a (d+2)× 1 vector
with d being the dimension of the sensor and target loca-
tion vector. Note that elements of x are interdependent. With
N + 1(> d + 2) sensors, the target location can be found by
solving a constrained quadratic optimization problem: find x
to minimize C = ‖Ax− b‖2 subject to

xd+1 ·
( d∑

i=1
x2i

)
= x2d+2, (3)

where A = [a1a2 · · · aN ]T and b = [b1b2 · · · bN ]T . The con-
straint described by (3) is due to the interdependent relations

between elements of the x vector. The target location can be
estimated as rs = r0+[x1 · · · xd]T , and the propagation speed
can be solved simultaneously as v = 1/

√
xd+1. If constraint

(3) is ignored, one would need only to solve an overdeter-
mined linear system Ax = b using the least square method
[9]. This method has also been refined using iterative im-
provement method and the Cramér-Rao bound of param-
eter estimation error has been derived [20]. Time-delayed
estimation-based source localization methods require ac-
curate estimation of time delays between different sensor
nodes. To measure the relative time delay, acoustic signatures
extracted from individual sensor node must be compared. In
the extreme case, this will require the transmission of the raw
time series data thatmay consume toomuchwireless channel
bandwidth. Alternative approaches include cross-spectrum
[8] and range difference method [21].

3. ENERGY-BASED COLLABORATIVE SOURCE
LOCALIZATION ALGORITHM

Energy-based source localization is motivated by a simple
observation that the sound level decreases when the distance
between sound source and the listener becomes large. By
modeling the relation between sound level (energy) and dis-
tance from the sound source, one may estimate the source
location using multiple energy readings at different known
sensor locations.

3.1. An energy decaymodel of sensor signal readings

When the sound is propagating through the air, it is known
that [15] the acoustic energy emitted omnidirectionally from
a sound source will attenuate at a rate that is inversely pro-
portional to the square of the distance. To verify whether
this relation holds in a wireless sensor network system with a
sound generated by an engine, we conducted a field experi-
ment. In the absence of the adverse conditions laid out in the
introduction above, the experiment data confirms that such
an energy decay model is adequate. Details about this exper-
iment will be reported in Section 3.2.

Let there beN sensors deployed in a sensor field in which
a target emits omnidirectional acoustic signals from a point
source. The signal energy measured on the ith sensor over a
time interval t, denoted by yi(t), can be expressed as follows:

yi(t) = gi · s
(
t − ti

)∣∣r(t − ti
)− ri

∣∣α + εi(t). (4)

In (4), ti is the time delay for the sound signal propagates
from the target (acoustic source) to the ith sensor, s(t) is a
scalar denoting the energy emitted by the target during time
interval t; r(t) is a d × 1 vector denoting the coordinates of
the target during time interval t; ri is a d × 1 vector denoting
the Cartesian coordinates of the ith stationary sensor; gi is the
gain factor of the ith acoustic sensor; α(≈ 2) is an energy de-
cay factor, and εi(t) is the cumulative effects of the modeling
error of the parameters gi, ri, and α and the additive obser-
vation noise of yi(t). In general, during each time duration t,
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many time samples are used to calculate one energy reading
yi(t) for sensor i. Based on the central limit theorem, εi(t)
can be approximated well using a normal distribution with a
positive mean value, denoted by, say, µi (> 0), that is no less
than the standard deviation (STD) of the background mea-
surement noise during that time interval. The STD of εi(t)
may also be empirically determined.

3.2. Experiment that validates the acoustic energy
decaymodel

To validate the model described in (4), we conducted a field
experiment. We used a lawn mower at stationary position as
our acoustic energy source. Two sensor nodes with acous-
tic microphone used in a DARPA SensIT project are placed
at different distances (5m, 10m, 15m, 20m, 25m, 30m)
away from the energy source. The microphones are placed
at about 50 cm above the ground and face the energy source.
The weather is clear with gentle breeze, and the temperature
is about 24 ◦C.

The time series of both the acoustic sensors was recorded
at a sampling rate of 4960.32Hz. Then the energy readings
were computed offline as the moving average (over a 0.5-
second sliding window) of the squaredmagnitude of the time
series. These energy readings then were fitted to an exponen-
tial curve to determine the decaying exponent α, as shown in
Figure 2.

For both acoustic sensors, within the 30-meter range, the
acoustic energy decay exponents are α = 2.1147 (with mean
square error 0.054374) and α = 2.0818 (withmean square er-
ror 0.016167), respectively. This validates the hypothesis that
the acoustic energy decreases approximately as the inverse of
the square of the source sensor distance.

We here assume α to be constant, which is valid if the
sound reverberation can be ignored and the propagation
medium (air) is roughly homogenous (i.e., no gusty wind)
during the process of experiment.

3.3. Maximum likelihood parameter estimation

Assume that εi(t) in (4) are independent, identically dis-
tributed (i.i.d.) normal random variables with known mean
µi (> 0) and known variance σ2i , then each yi(t) will be an
i.i.d. conditional normal random variable with a probability
density functionN(gis(t)/|r(t)−ri|α+µi, σ2i ). We also assume
that the time delay discrepancies among sensors are negligi-
ble, that is, ti = 0. Then, the likelihood function or, equiv-
alently, the conditional joint probability can be expressed as
follows:

�
(
s(t), r(t)

)
= f

(
y0(t), . . . , yN−1(t) | σ2, {s(t), r(t)}

)
∝ exp

− 1
2

N−1∑
i=0


[
yi(t)− µi − gis(t)/

∣∣r(t)− ri
∣∣α]2

σ2i


.
(5)

The objective of the maximum likelihood estimation is to
find the source energy reading and the source locations
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Figure 2: Acoustic energy decay profile of the lawn mower and the
exponential curve fitting.

{s(t), r(t)} to maximize the likelihood function. Since we as-
sume that the mean µi and the variance σ2i of εi(t) are known,
this is equivalent to minimizing the following log-likelihood
function:

L
(
s(t), r(t)

)∝ N−1∑
i=0


[
yi(t)− µi − gis(t)/

∣∣r(t)− ri
∣∣α]2

σ2i

.
(6)

Given {yi(t), gi, ri, µi, σ2i ; 0 ≤ i ≤ N − 1} and α, the goal
is to find s(t) and r(t) to minimize L in (6). This can be ac-
complished using a standard nonlinear optimization method
such as the Nelder-Mead simplex (direct search) method im-
plemented in the optimization package in Matlab.

3.4. Energy ratio and target location hypersphere

In the above formulation, we solve for both the source loca-
tion r(t) and source energy s(t). In this section, we present
an alternative approach that is independent of the source en-
ergy s(t). This is accomplished by taking ratios of the energy
readings of a pair of sensors in the noise-free case to cancel
out s(t). We refer to this approach as the energy ratio formu-
lation.
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Figure 3: Two sensors are located at (−1, 0) and (1, 0). Four κ values
are used 0.4, 0.6, 0.7, and 0.8. The corresponding target location
circles and their centers are also shown.

Approximating the additive noise term εi(t) in (4) by its
mean value µi, we can compute the energy ratio κi j of the ith
and the jth sensors as follows:

κi j :=
((

yi(t)− µi
)
/
(
yj(t)− µj

)
gi(t)/g j(t)

)−1/α
=
∣∣r(t)− ri

∣∣∣∣r(t)− r j
∣∣ . (7)

Note that for 0 < κi j �= 1, all the possible source coordi-
nates r(t) that satisfy (7) must reside on a d-dimensional
hypersphere described by the equation∣∣r(t)− ci j

∣∣2 = ρ2i j , (8)

where the center ci j and the radius ρi j of this hypersphere
associated with sensor i and j are given by

ci j =
ri − κ2i j r j

1− κ2i j
, ρi j =

κi j
∣∣ri − r j

∣∣
1− κ2i j

. (9)

For convenience, we will call this hypersphere a target lo-
cation hypersphere. When d = 2, such a hypersphere is a cir-
cle. When d = 3, it is a sphere. In Figure 3, several examples
corresponding to d = 2 and κi j < 1 are illustrated. As κi j in-
creases, that is, as yj(t)/g j(t) → yi(t)/gi(t), the center of the
circle moves away from the sensors, and the radius increases.

In the limiting case when κi j → 1, the solution of (7)
form a hyperplane between ri and r j

r(t) · (ri − r j
) = ∣∣ri∣∣2 − ∣∣r j∣∣2

2
or equivalently,

r(t) · γi j = ξi j ,

(10)

where

γi j = ri − r j , ξi j =
∣∣ri∣∣2 − ∣∣Rj

∣∣2
2

. (11)

So far, we have established that using the ratio of energy read-
ings at a pair of sensors, the potential target location can be
restricted to a hypersphere whose center and radius are func-
tions of the energy ratio and the two sensor locations. If more
sensors are used, more hyperspheres can be determined. If all
the sensors that receive the signal from the same target are
used, the corresponding target location hyperspheres must
intersect at a particular point that corresponds to the source
location. This is the basic idea of the energy-based source lo-
calization. Note that since the source energy is cancelled dur-
ing the energy ratio computation, this method will not be
affected even if the source energy levels vary dramatically be-
tween successive energy integration time intervals.

3.5. Single target localization usingmultiple energy
ratios andmultiple sensors

Suppose that N acoustic sensors detected the source sig-
nal emitted from a target during the same time intervals,
N(N − 1)/2 pairs of energy ratios can be computed. Based
on M (≤ N(N − 1)/2) these sensor energy ratios, our ob-
jective is to estimate the target location r(t) during that time
interval. Using a least square criterion, this problem leads to
a nonlinear least square optimization problemwhere the cost
function is defined as

J(r) =
M1∑
m=1

∣∣∥∥r − cm
∥∥− ρm

∣∣2 + M2∑
n=1

∣∣γTn r − ξn
∣∣2,

M1 +M2 =M,

(12)

where m and n are indices of the energy ratios computed
between different pairs of sensor energy readings, M1 is the
number of hyperspheres, and M2 is the number of hyper-
planes. In practice, when |1− κ2i j| becomes too small, it may
cause numerical problem when evaluating r and ρ using (9).
In this case, the hyperplane equation (10) should be used in-
stead. In our simulation, a value of 10−3 was set as the thresh-
old to switch between these two type of error terms.

Note that if two sensors are both close to the target,
their energy readings have higher SNRs. Therefore, the en-
ergy ratio κi j computed from these energy readings will be
more reliable than that computed from a pair of sensors far
away from the target. Using the energy decay model, we may
use the relative magnitudes of energy readings as an indica-
tion of the target-sensor distance. As such, the error term in
(12) that correspond to sensors with higher-energy readings
should be given more weight than sensors that have lower-
energy readings.

Statistically, to employ the least square formulation in
(12), one must assume that both the hypersphere estima-
tion error ‖r− cm‖−ρm and the hyperplane estimation error
γTn r − ξn are linear, independent Gaussian random variables
with zero mean and identical variance. Obviously, such an
assumption may not be true in practice and hence may cause
some performance degradation.

The cost function in (12) is nonlinear with respect to the
source location vector r. In this work, we experimented with
three nonlinear optimization methods to solve for r.
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(a) Exhaustive search over grid points within a pre-
defined search region in the sensor field. This approach is the
most time consuming, yet most simple to implement. The
grid size determines the accuracy of the results.

(b) Multiresolution search. First a coarse-grained ex-
haustive search is conducted to identify likely source loca-
tions. Then a detailed fine-grained search is performed to re-
fine the localization estimate.

(c) Gradient-based steepest descent search method.
Based on an initial source location (perhaps the previously
estimated position in the last time interval), say r(0), per-
form the following iteration:

r(k + 1) = r(k)− µ∇r J(r). (13)

The gradient of J(r) can be expressed as

∇J(r)2
M1∑
m=1

r − cm∥∥r − cm
∥∥(∥∥r − cm

∥∥− ρm
)
+ 2

M2∑
n=1

γn
(
γTn r − ξn

)
.

(14)

In addition to the above methods, other standard optimiza-
tion algorithms, such as the quasi-Newton’s method, conju-
gate gradient search algorithm, andmany others can be used.
For comparison purpose, in the simulation, we also apply the
Nelder-Mead (direct search) method implemented inMatlab
optimization toolbox to minimize J(r).

In summary, there are two different methods to solve the
energy-based, (single) source localization problem.

(1) Direct minimization of the nonlinear log-likelihood
function L as in (7). With a number of acoustic energy mea-
surements, this method is capable of simultaneously estimat-
ing the source location r(t) as well as the source energy s(t),
and the energy decay parameter α.

(2) Direct minimization of the cost function defined in
(12). A potential advantage of this method is thatN(N−1)/2
pairs of energy ratios can be used for the localization purpose
rather than the N energy readings used for minimizing the
likelihood function.

3.6. Unconstrained least square formulation

Consider two hyperspheres based on (8)

∣∣r(t)− ci0
∣∣2 = ρ2i0,

∣∣r(t)− cj0
∣∣2 = ρ2j0. (15)

They are formed from the sensor pairs (i, 0) and ( j, 0).
Subtract each side and cancel the term |r(t)|2, we have a
hyperplane equation

2
(
ci0 − cj0

)
r(t) = (c2i0 − ρ2i0

)− (c2j0 − ρ2j0
)
. (16)

Substitute the definition in (9), the above equation is simpli-
fied to

ui jr(t) = θi j (17)

which is a linear hyperplane equation with

ui j = 2ri
1− κ2i

− 2r j
1− κ2j

, θi j =
∣∣ri∣∣2
1− κ2i

−
∣∣r j∣∣2
1− κ2j

. (18)

Then, the cost function in (12) can be replaced by a linear
least square cost function

jLinear(r) =
M1∑
m=1

∣∣uTn r − θn
∣∣2 + M2∑

n=1

∣∣γTn r − ξn
∣∣2. (19)

Note that there is no constraint imposed in (19). Given the
coefficients, a solution of r can be found in closed form.

4. IMPLEMENTATION CONSIDERATIONS

4.1. Preprocessing: node and region energy detection

In a microsensor network, multiple acoustic sensors are de-
ployed in a sensor field. Sensors within the same geograph-
ical region will form a group. One sensor node in a group
will be designated as a manager node where the collaborative
energy-based source localization will be performed.

During operation, individual sensor nodes will perform
energy-based target detection algorithm. For example, a con-
stant false alarm rate (CFAR) detection algorithm [22, 23]
can be applied. Pattern classifiers may also be used to identify
the type of a detected target based on its acoustic or seismic
signatures.

Upon detection of a potential target, the sensor node
will report the finding to the manager node in the region. If
the number of detections reported by sensors within the re-
gion exceeds a predefined threshold, the manager node then
decides that a target is indeed detected by the region. This
implements a simple voting-based detection fusion within
the region. Only after a region-wide detection is confirmed,
the manager node will proceed to perform energy-based
source localization. Since the energy is computed on individ-
ual nodes, there is no need to recompute the acoustic energy
readings at the manager node.

4.2. Minimumnumber of collaborating sensors and
number of energy ratios used

In general, given N sensors, at maximal N(N − 1)/2 pairs of
energy ratios can be computed, and equal number of target
location hyperspheres (including some hyperplanes) can be
determined accordingly. The target location is the unique in-
tersection of all these target location hyperspheres if the en-
ergy readings do not contain any measurement noise.

However, many of these relationships are actually redun-
dant. In order to uniquely identify a single target location, in
this section, we want to determine (i) the constraint on the
sensor location configuration; and (ii) the minimum num-
ber of sensors required in theory to arrive at a unique source
location estimate. Regarding sensor location configuration,
we have the following results.

Lemma 1. Denote d to be the dimensionality of the sensor coor-
dinate ri. If allN sensors locate on a subspace with a dimension
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d′ < d, then the centers of every target location hyperspheres
must lie within the same subspace.

Proof. From (10), since ci j is a linear combination of sensor
coordinates ri and r j , it must lie within the same subspace as
ri and r j . Hence this lemma is proved.

Specifically, in a 2D (d = 2) sensor field, if all sensors lo-
cate on a straight line, then all the centers of the correspond-
ing target location circles must locate on the same straight
line. Since circles with their centers locating on the same
straight line cannot have a single point as their intersection
(either no intersection, or two or more points in the inter-
section), it is impossible to uniquely determine the target lo-
cation. The exception is when the target location is also on
the same straight line. In a 3D (d = 3) sensor field, if all sen-
sors locate on the same plane, then all the centers of the cor-
responding target location spheres must locate on the same
plane as well. Since spheres with their centers locating on the
same plane cannot intersect at just a single point in general,
it cannot uniquely determine the target location. Similarly,
the exception is when the target locates on the same plane.
These observations lead to the theorem below which is stated
without proof.

Theorem 1. In order to estimate a unique target location, not
all the sensors should be placed on a subspace whose dimension
is smaller than that of the sensor field unless the target location
is restricted in the same subspace as well.

Next, we consider the question of the minimum number
of sensors needed to locate a single target.

Lemma 2. Given three arbitrary placed sensors (say, 1, 2, and
3) in a 2D sensor field, the centers of every target location circles
c12, c23, and c31 must lie on the same straight line. Moreover, the
corresponding three target location circles may intersect at two
points if the target does not locate on the same straight line, or
at exactly one point if the target does locate on the same straight
line.

Proof. Performing linear combination of c12 and c23 in order
to eliminate r2 and using the relations κ12κ23κ31 = 1, one has

1− κ212
κ212

c12 +
(
1− κ223

)
c23

= 1− κ212
κ212

[
r1 − κ212r2
1− κ212

]

+
(
1− κ223

)[ r2 − κ223r3
1− κ223

]
= r1

κ212
− κ223r3

= κ223κ
2
31r1 − κ223r3

= −κ223
(
1− κ231

)[ r3 − κ231r1
1− κ231

]
= −κ223

(
1− κ231

)
c31

= 1− κ212κ
2
23

κ212
c31.

(20)

But

1− κ212
κ212

+
(
1− κ223

) = 1− κ212κ
2
23

κ212
. (21)

Since c31 = βc12 + (1 − β)c23, c12, c23, and c31 must lie on
the same straight line, next, note that the true target location
must be a point in each of the three corresponding target
location circles. In addition, three circles with their centers
located on the same straight line can intersect at most two
points, or not to intersect at all. Hence, these three circles
must intersect at exactly two points. When the target locates
on the same straight line where the centers of these circles lo-
cate, the two points of their intersection collide into a single
point. Hence, this lemma is proved.

Lemma 2 implies that, even though three sensors are not
on the same straight line, the centers of the correspond-
ing target location circles (or spheres) still lie on the same
straight line. Using the argument in the proof of Theorem 1,
clearly three sensors are insufficient to estimate a unique tar-
get location in a 2D sensor field. It appears that at least four
sensor energy readings will be needed.

Lemma 2 addresses the 2D sensor field case. It can easily
be generalized to the 3D sensor field case.

Lemma 3. Given four arbitrary placed sensors in a 3D sen-
sor field, the centers of every target location spheres must lie on
the same plane. Moreover, the six corresponding target location
spheres may intersect at two points if the target does not locate
on the same plane. Otherwise, their intersection contains ex-
actly one point if the target also locates on the same plane.

Proof. Label these four sensors from 1 to 4. With four sensor
energy readings, six energy ratios can be computed. Using
Lemma 2, we conclude that

(i) c12, c13, and c23 must reside on the straight line La;

(ii) c12, c14, and c24 must reside on the straight line Lb;

(iii) c13, c14, and c34 must reside on the straight line Lc.

Lines La and Lb share the same point c12. Hence, they must
lie on the same plane. Line Lc share one point to each line
La(c13) and line Lb(c14), respectively. Therefore, Lc must lie
on the same plane as La and Lb. The intersection regions be-
tween spheres with centers on La, Lb, and Lc, respectively, are
circles, respectively. With three circles in a 3D space, their
intersection contains at most two points. If the target also lo-
cates on the same plane, then these two points collide into
one.

Lemma 2 also reveals the redundancy among different
energy ratios. This critical observation can be stated as a
corollary as follows.

Corollary 1. Given energy ratios κ1i and κ1 j , the energy ratio
κi j is redundant and can be removed without affecting the so-
lution of the target location.
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Proof. Since κ1iκi jκ j1 = 1. Using Lemma 2, the intersection
between the target location circle (sphere), corresponding to
κi j with any of the other two circles (spheres), will be iden-
tical to the intersection between the circles (spheres) corre-
sponding to κ1i and κj1. Hence, the inclusion of target lo-
cation circle (sphere) of κi j does not contribute to any new
information to refine the solution space. Therefore, it is re-
dundant.

Corollary 1 naturally leads to an important result in this
section.

Lemma 4. Given K sensors in a sensor field, then at most K−1
pairs of energy ratios are independent in that the target location
circles (or spheres) corresponding to remaining energy ratios do
not further reduce the intersection region formed by the K − 1
target location circles (or spheres) of those independent energy
ratios.

Proof. Denote sensor #1 as a reference sensor. Then denote
{κ1i; 2 ≤ i ≤ K} for the set of K − 1 independent energy
ratios. Any other energy ratio κjk, 2 ≤ j, k ≤ K , j �= k will
be redundant according to Corollary 1. Thus, this lemma is
proved. Note that the set of K − 1 independent energy ratios
is not unique and can be chosen differently.

Theorem 2. Using the energy-based target localization meth-
od, at least four sensors not locating on the same straight line
are required to locate a single target in a 2D sensor field; and at
least five sensors not all locating on the same plane are required
to locate a single target in a 3D sensor field.

Proof. In a 2D sensor field, at least 3 (= K − 1) circles are
needed to form a single point intersection. Thus, at least four
sensor energy readings are needed. In a 3D sensor field, the
intersection of two spheres is a circle. The intersection be-
tween a sphere and a circle consists of at least two points (if
the intersection exists). Therefore, at least 4 (= K−1) spheres
are needed to yield a single point intersection. Thus the min-
imum number of sensor energy readings needed in a 3D sen-
sor field is five.

Figure 4 shows a simulation of target localization in a 2D
sensor field using four sensors and three energy ratios.

4.3. Nonlinear optimization search parameters

In developing nonlinear optimization methods to minimize
the cost function, a few parameters must be set properly to
ensure the performance of this proposed algorithm.

4.3.1 Search area

The region of the potential target location can often be de-
termined in advance, based on prior information about the
target, the region to be monitored, and the sensor locations.
Since acoustic energy decays exponentially with respect to
distance, the receptive field of an acoustic sensor (micro-
phone) is limited. This range can be estimated based on the
maximum acoustic energy the target of interests may emit,

1.510.50−0.5
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Energy-based collaborative target localization
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Figure 4: Localization of the target (star) at (1, 1) position us-
ing four sensors (triangle). The centers of the circles are small cir-
cles. Three circles corresponding to three independent equations are
generated. These three circles intersect at the target position as pre-
dicted. Parameters used s(t) = 1, gi = 1, and α = 2.

and the averaged background noise level due to wind and
other natural or man-made sound. Furthermore, due to the
need of collaborative region detection, a target is not consid-
ered detected unless a certain number of sensors voted pos-
itive detection. Hence the area that a target may be detected
should be the intersection of a minimum number of sensors
receptive fields.

If a target’s movement is restrictive, such as along a road,
then the search area can further be restricted to those ar-
eas where the target is allowed to move. These additional re-
strictions will enhance the accuracy of the source localization
process.

4.3.2 Search accuracy

Depending on the size of the potential target and its speed,
the required accuracy of localization may vary. For example,
for a target with a dimension (say, length of a truck) larger
than 5meters, it would bemeaningless to try to locate the tar-
get within a 1-meter grid. In addition, if the target is moving
more than 10m/s (about 20mph), and the time duration to
compute one energy reading is 0.5 second, then the ambigu-
ity regarding the actual location of the target during this time
period will be at least 5 meters. In this situation, any attempt
to locate the target within 5 meters will not be meaningful.
Therefore, in practical implementation, one should choose
appropriate accuracy measure.
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4.3.3 Initial search location

For gradient-based search algorithms and other greedy
search algorithms, the initial search position is important.
One way to select the initial target location estimate is to use
the sensor location where the energy reading is themaximum
among all other sensors. The heuristic is that if the sensor
receives higher energy, then the true target location will be
closer to that sensor. In a localize-and-track scenario, the fu-
ture target location can be predicted based on its trajectory.
In that case, the most likely position of the target during the
present time window may be chosen as the initial search po-
sition.

4.4. Distributive implementation

This proposed EBL algorithm would require at least four
sensor readings in order to yield a unique target loca-
tion. Therefore, when implemented in a distributive sen-
sor network, the acoustic energy readings will have to be
reported to a centralized location to facilitate localization
processing. To be deployed into a distributed wireless sen-
sor network, it is desirable that a decentralized implemen-
tation of this proposed algorithm can be devised. By “de-
centralized,” we hope to devise a computation scheme such
that

(i) not all the energy readings need to be reported a cen-
tralized fusion center;

(ii) not all the computation required to evaluate the cost
function (12) need to be carried out at a centralized
processing center.

This can be accomplished by noting that the cost function
in (12) consists of summation of independent square error
terms. Given a potential target location r, each of the square
error term can be evaluated within a sensor node as soon
as it computes the k value after receiving the acoustic en-
ergy reading at a neighboring sensor node. Hence, instead of
transmitting the raw energy reading to the fusion center, the
partially computed cost function can be transmitted instead.
This way, the task of computation can be evenly distributed
over individual sensors. This scheme, however, may increase
the amount of internode wireless communications due to the
need to pass around the partially computed cost function for
each search grid.

5. PERFORMANCE ANALYSIS

A number of factors may affect the performance of the
energy-based target localization algorithm. Due to the non-
linear nature and the complexity of the model, an analyti-
cal expression is difficult to obtain and may not reveal the
respective impacts of individual factors on the overall per-
formance. In this section, extensive simulation will be con-
ducted to compare the effectiveness of different optimization
algorithms as well as the sensitivities of the location estimates
with respect to perturbations of various parameters of the
model.

5.1. Comparison of different search algorithms

In this simulation, we compare four different optimization
algorithms for a single target, acoustic source localization
problem. For this purpose, 20 sensors are uniform randomly
distributed in a 50-meter by 50-meter sensor field. The loca-
tion of the target is assumed to be within this sensor field.

The objective function is the energy ratio cost function
shown in (12). Two differentmodes are chosen to implement
the cost function: in mode 0,N−1 independent energy ratios
(N : number of sensors) are used to form the cost function.
In mode 1, all possible N(N − 1)/2 energy ratios (with many
redundant measurements) are used to form the cost func-
tion. The hypothesis is that with redundant measurements
included in the cost function, it may better withstand param-
eter perturbations.

The following four search algorithms are implemented.

(1) Nelder-Mead (simplex) direct search (DS) algorithm:
the initial source location is obtained by an exhaustive
search at a grid size of 5 meters by 5 meters. For each
new target location, the DS method will evaluate the
cost function 11 × 11 = 121 times, and the DS search
will require additional cost function evaluations.

(2) Grid-based exhaustive search (ES) with a single grid
size of 1m× 1m. To estimate a target location, the ES
method will evaluate the cost function 51× 51 = 2601
times.

(3) Multiresolution (MR) search with three levels of reso-
lution (grid sizes) at 5 meters (5×), 2 meters (2×), and
1 meter (1×), respectively. The number of cost func-
tion evaluations for each new target location equals to
11× 11 + 6× 6 + 3× 3 = 166.

(4) Gradient descent (GD) search algorithm using the gra-
dient expression shown in (13). The initial location is
determined by ES at a grid size of 5 meters by 5 me-
ters. The step size µ = 0.05 and maximal steps = 200.
The number of cost function evaluations for each new
target location will be 11 × 11 = 121 times plus the
number of gradient search steps.

Provided that the local search steps using either DS or
gradient search is within 50 steps of either the DS or the
GD search method, then the three search algorithms DS,
MR, and GD will require approximately the same number of
cost function evaluations (∼170). On the other hand, the ES
method will require 15 times more cost function evaluations.

Four experiment configurations are designed to compare
these search methods. In each configuration, a known fixed
energy is emitting from the source. At each sensor, the re-
ceived energy is computed according to the exponential en-
ergy decay model described in (4) with K = 1 and εi = 0
(SNR = ∞). Three parameters in this model will be per-
turbed in configurations #2 to #4, respectively, as shown in
Table 1. Configuration # 1 is the control experiment with
no parameter perturbation. In configuration #1, the energy
decay constant α is sampled from a uniform distribution
[2 − ∆α, 2 + ∆α] with ∆α = 0.5. In configuration #3, each
sensor’s location r is subject to a random perturbation of
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Figure 5: Mean and standard deviation (STD) of target location estimation bias using different search algorithms.

Table 1: Parameter settings for different configurations to compare
four optimization search algorithms.

Configuration # ∆α ∆r ∆g

1 0 0 0

2 0.5 0 0

3 0 1 0

4 0 0 0.5

magnitude ±∆r (= ±1) in both the x and y coordinates. In
configuration #4, the sensor gain g is perturbed to vary be-
tween [1− ∆g, 1 + ∆g] with ∆g = 0.5.

Each experiment will be repeated 500 times using a cost
function evaluated with mode 0 setting and another 500
times with a cost function evaluated, using the mode 1 set-
ting. The mean and the STD of the estimation error on x-
and y-axis are summarized in Figure 5.

Averaged over the four different parameter settings listed
in Table 1, the mean and variance of each method in both
x and y directions are listed in Table 2. Using T-test, it is
found that the differences in terms of the mean values of the
position estimation errors among the four different search
methods are statistically insignificant. Hence, despite large
number of cost function evaluations, the ES method does
not offer significant benefit in terms of improving source
localization accuracy. Of course, this conclusion is condi-
tioned on the practice implemented in this experiment to
conduct initial coarse-grained ES (at 5 meters resolution) be-
fore commencing the three local search algorithms, namely,

Table 2: Mean and variance of four different optimization meth-
ods, averaged over four test conditions.

Mean-x Var-x Mean-y Var-y

ES 0.093925 5.939293 −0.042100 6.466883

MR 0.082425 6.242463 −0.030850 6.671392

DS 0.086488 8.287125 −0.053988 8.492783

GD 0.074825 3.145920 0.029475 3.343724

MR, DS, and GD.Without this initial ES, these methods may
be trapped in a local minimum solution that yields much
larger position estimation error.

The simulation results can also be used to compare the
effectiveness of evaluating the cost function using mode #0
(usingminimumnumber ofN−1 energy ratios) versusmode
#1 (using maximum number of N(N − 1)/2 energy ratios)
configurations. The results are listed in Table 3.

When the gain variation results are included, mode #1
performs worse than mode #0. This is because the erroneous
energy reading will be used to compute N − 1 energy ratios
in the mode #1 configuration and only 1 energy ratio for the
mode #0 configuration. Hence the same amount of error on
a single sensor reading will have a bigger impact in mode #1
than mode #0. However, excluding the gain variation factor,
in general, mode #1 performs much better than mode #0.
This result indicates that gain calibration of microphone is
essential to the success of the energy-based source localiza-
tion method presented in this paper. This point is also clearly
illustrated in Figure 5.
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Table 3: Comparison between mode #0 and mode #1 results, aver-
aged over all the four different methods, with different parameter
variations.

Include dg Mean-x Var-x Mean-y Var-y

Mode-0 0.081675 4.087787 0.0216 4.115982

Mode-1 0.091267 9.244179 −0.10443 10.0473

Exclude dg Mean-x Var-x Mean-y Var-y

Mode-0 0.044933 2.959709 0.048542 2.694365

Mode-1 0.001889 0.573453 −0.00394 0.107678

5.2. Sensitivity analysis to parameter perturbations

In the previous section, we compared the performance of
four different search methods. In this section, we will inves-
tigate how the accuracy of the energy-based source localiza-
tion method will be affected by inaccurate measurements of
parameters or the presence of noise.

5.2.1 Factors affecting localization accuracy

(a) Energy decay exponent α. Although we have conducted
preliminary experiment and determined that the acoustic en-
ergy decay exponent α is approximately 2. However, this re-
sult is obtained using a point, omnidirectional sound source
in a favorable environment where the breeze is gentle and the
temperature is mild. It is likely that this parameter may be
varied at different situations. Thus, it is important to under-
stand how sensitive the localization result will be with respect
to inaccurate estimate of the value of α.

(b) Sensor coordinate measurement ri. Sensor coordinates
can be obtained using on board global positioning system
(GPS) readings if such a device is available. However, highly
accurate sensor location measurements would require long-
term averaging of GPS readings and may consume extensive
battery power. It is necessary to study what will be the im-
pact of sensor location inaccuracy on the accuracy of energy-
based target localization.

(c) Acoustic sensor gain measurement gi. Not all acoustic
sensors are identical. Different sensors may exhibit different
gain characteristics. Thus, it is crucial to calibrate the gain
factor of individual acoustic sensors. It is also important to
gauge the effect of gain calibration error on the target local-
ization accuracy.

(d) Acoustic energy measurement—signal-to-noise ratio
(SNR). As discussed earlier, the acoustic energy is usually av-
eraged over a predefined time window as the sum of squares
of acoustic time series data (with mean subtracted). Energy
readings estimated this way may contain the energy of the
background noise. Suppose that the noise time series is mod-
eled as a white Gaussian random process, its energy should
have a χ2 distribution. However, if the number of time sam-
ples within each time window is sufficiently large, using cen-
tral limit theorem, the noise energy can be modeled with an
equivalent Gaussian random process. Note that although the
noise energy level is likely to be the same over neighboring
sensor nodes, the source energy measured at different sen-

Table 4: Parameter settings for the experiments to examine the lo-
calization to perturbation.

Configuration # Grid size ∆α ∆r ∆g SNR (dB)

1 1 × 1 0 0 0 ∞
2 5 × 5 0 0 0 ∞
3 10 × 10 0 0 0 ∞
4 1 × 1 0.2 0 0 ∞
5 1 × 1 0.5 0 0 ∞
6 1 × 1 1 0 0 ∞
7 1 × 1 0 0.5 0 ∞
8 1 × 1 0 1 0 ∞
9 1 × 1 0 5 0 ∞
10 1 × 1 0 0 0.2 ∞
11 1 × 1 0 0 0.5 ∞
12 1 × 1 0 0 1 ∞
13 1 × 1 0 0 0 20

14 1 × 1 0 0 0 10

15 1 × 1 0 0 0 0

sor nodes are different according to the energy decay model.
In fact, due to energy decay, the SNR reduces by a factor
of (a log10 |r − ri|) provided that the background noise en-
ergy levels at every sensor are the same. If α ≈ 2, this means
2 dB SNR reductions for every additional 10 meters distance.
Hence, the SNR, measured at a sensor that is 50 meters away
from the source, will be 10 dB less than the SNR measured at
1 meter from the same source.

5.2.2 Simulationmethod

In this experiment, 20 randomly located sensors are used to
locate a randomly placed target. Both are located within a
predefined sensor field. We use the ES algorithm to min-
imize the cost function. As listed in Table 4, 15 configura-
tions are designed for this experiment. The first three config-
urations are designed to compare the effect of different grid
size for ES. Three grid resolutions 1 meter, 5 meters, and 10
meters are used. The purpose of configurations #4 to #6 is
to compare the algorithm sensitivity with respect to varia-
tions of exponential decaying factor α. The actual value of α
is randomly drawn from the interval [α − ∆α, α + ∆α] with
∆α = 0.2, 0.5, and 1. Configurations #7 to #9 are designed to
compare the effect of inaccurate sensor locations measure-
ment. Each sensor location vector r is randomly perturbed
as r + ∆r where ∆r = [∆x,∆y] and ∆x, ∆y are both random
variables uniformly distributed over an interval (in meters)
[−0.5, 0.5], [−1, 1], or [−5, 5]. In configurations #10 to #12,
we intend to examine the impacts of inaccuracy in acoustic
sensor gain variation. The actual sensor gain is drawn ran-
domly from a uniform distribution [1 − ∆g, 1 + ∆g]. Our
aim in designing configurations #13 to #15 is to examine
the effects of different SNRs. The energy variations in these
configurations, specified in dB, are measured at 1 meter away
from the source. As we discussed earlier, the actual SNR at
each sensor varies, depending on the relative distance to the
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Table 5: Mean (bias) and STD of simulation results using different grid sizes.

Bias
x-coordinate y-coordinate

1 × 1 grid 5 × 5 grid 10 × 10 grid 1 × 1 grid 5 × 5 grid 10 × 10 grid

(20, 19) 0.041 −0.0434 0.0649 0.0576 0.1755 0.1615

(10, 9) 0.009 0.0216 −0.0451 0.0396 0.2005 0.0915

(5, 4) 0.01 0.0516 0.1149 0.0316 0.0755 0.0115

(20, 190) −0.007 0.0216 −0.1151 0.0176 −0.0045 −0.0285
(10, 45) −0.006 −0.0134 −0.1151 0.0166 −0.0395 0.0015

(5, 10) −0.01 0.0366 −0.0151 0.0146 0.0305 −0.1285

STD
x-coordinate y-coordinate

1 × 1 grid 5 × 5 grid 10 × 10 grid 1 × 1 grid 5 × 5 grid 10 × 10 grid

(20, 19) 0.7792 2.7691 4.4097 0.7147 2.7548 4.2629

(10, 9) 0.673 2.4047 4.0726 0.6453 2.418 4.0569

(5, 4) 0.83 2.5052 4.0247 0.721 2.71 4.2094

(20, 190) 0.3036 1.4664 3.0664 0.296 1.4916 2.9337

(10, 45) 0.3054 1.5007 3.111 0.2978 1.5019 2.9642

(5, 10) 0.3307 1.5853 3.3359 0.3151 1.5612 3.2578

source. SNR= ∞ implies that there is no noise, that is, ε = 0.
SNR = 0 means that the noise energy is equal to that of the
source energy. The perturbations on r, g, and SNR are ap-
plied to all individual sensors.

As in the previous experiment, different numbers of sen-
sors and numbers of energy ratios may affect the localization
accuracy. To better understand their impact, we devised six
different modes and denoted this combination, using a vec-
tor (N,M), where N = number of sensors used and M =
number of energy ratios used. These modes are (20, 19),
(10, 9), (5, 4), (20, 190), (10, 45), and (5, 10). In the first three
modes, M = N − 1. In the last three, M = N(N − 1)/2.
For each configuration and each of the mode, 1000 indepen-
dent simulations are performed and the mean and STD of
the results in both x and y directions are computed for fur-
ther analysis.

5.2.3 Results and discussions

(a) Different grid size (search resolution). The simulation re-
sults corresponding to configurations #1 to #3 are listed in
Table 5.

The following two observations are worth noting.

(i) Bias—the energy-based source localization method
yields unbiased estimate at each of the three grid sizes.

(ii) Variance—suppose that the target location is uni-
formly and randomly distributed within a grid, then
the expected STD of position estimation error will be
�/
√
12 ∼= 0.2887� at each x- and y-direction. From

Table 5, it is clear that when the maximum number of
energy ratios are used, that is, M = N(N − 1)/2, the
position estimation error will approximate this lower
bound. On the other hand, when M = N − 1, the
variances are uniformly larger. This is more prominent
when the grid size is small. Our conjecture is that the

cost functions formed, using N − 1 energy ratios does
not, have the same global minimum as the cost func-
tion formed using N(N − 1)/2 energy ratios.

(b) Variation on α—the results corresponding to config-
urations #1, 4, 5, and 6 are listed in Table 6.

Again, we make two observations on this table.

(i) Bias—the variation of the energy decay exponent α has
little effect on the bias of the estimation error.

(ii) STD—the variations of α did impact the results when
M = N − 1. It seems that the more sensors are used,
the larger the STD is. On the other hand, when M =
N(N − 1)/2, the variation of α as large as 1, that is, the
values of α varies between 1 and 3, has little effect on
the STD of the location estimation error. This is an im-
portant evidence to justify the use of a nominal value
of α = 2 provided the maximum number of energy
ratios is included in the cost function definition.

(c) Variations on sensor position error r—the results are
summarized in Table 7.

As in the previous cases, the sensor location errors will
not impose any bias to the location estimates. What is dif-
ferent from the previous cases is that the STD of estima-
tion errors seem to be similar using either M = N − 1 or
M = N(N − 1)/2 energy ratios.

(d) Variations on sensor gain g—the results are summa-
rized in Table 8.

Consistent with the results obtained in the previous ex-
periment, the energy-based source localization algorithm is
quite sensitive to the error in gain calibration. In particular,
in terms of STD, two important trends can be observed from
Table 8.

(i) More sensors give worse results. Apparently, more sen-
sors with wrong gain factor will impact significantly
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Table 6: Mean and STD of position estimate errors due to variation of α.

Bias
x-coordinate y-coordinate

∆α = 0 ∆α = 0.2 ∆α = 0.5 ∆α = 1 ∆α = 0 ∆α = 0.2 ∆α = 0.5 ∆α = 1

(20, 19) 0.041 −0.07 −0.0347 −0.2275 0.0576 0.0279 −0.0236 −0.0062
(10, 9) 0.009 −0.086 −0.0047 −0.0875 0.0396 0.0189 −0.0116 −0.0082
(5, 4) 0.01 −0.055 0.0593 −0.0395 0.0316 0.0229 0.0104 −0.0252
(20, 190) −0.007 0.004 −0.0177 0.0075 0.0176 0.0039 −0.0026 −0.0072
(10, 45) −0.006 0.003 −0.0097 0.0035 0.0166 0.0099 −0.0046 −0.0002
(5, 10) −0.01 0.004 −0.0027 0.0145 0.0146 0.0129 −0.0076 −0.0002

STD
x-coordinate y-coordinate

∆α = 0 ∆α = 0.2 ∆α = 0.5 ∆α = 1 ∆α = 0 ∆α = 0.2 ∆α = 0.5 ∆α = 1

(20, 19) 0.7792 0.8585 1.4971 2.9646 0.7147 0.9253 1.4706 2.9502

(10, 9) 0.673 0.7729 1.1727 2.183 0.6453 0.7842 1.205 2.1486

(5, 4) 0.83 0.7788 1.2808 2.1823 0.721 0.8247 1.4049 1.993

(20, 190) 0.3036 0.3007 0.2841 0.2935 0.296 0.2993 0.2962 0.291

(10, 45) 0.3054 0.3037 0.2833 0.2979 0.2978 0.2996 0.3007 0.2898

(5, 10) 0.3307 0.3225 0.3273 0.3549 0.3151 0.3259 0.3276 0.3286

Table 7: Mean and STD of source location estimation error due to different sensor location errors.

Bias
x-coordinate y-coordinate

d(r) = 0 d(r) = 0.5 d(r) = 1 d(r) = 5 d(r) = 0 d(r) = 0.5 d(r) = 1 d(r) = 5

(20, 19) 0.041 0.0245 −0.0088 −0.0186 0.0576 0.0136 −0.0121 0.1262

(10, 9) 0.009 0.0195 −0.0848 0.0074 0.0396 0.0586 0.0149 0.1362

(5, 4) 0.01 0.0505 −0.0538 0.0274 0.0316 0.0546 −0.0031 −0.0088
(20, 190) −0.007 0.0005 0.0232 −0.0876 0.0176 −0.0064 0.0109 0.0852

(10, 45) −0.006 0.0185 0.0132 0.0154 0.0166 −0.0074 0.0829 0.0092

(5, 10) −0.01 0.0235 −0.0378 0.1484 0.0146 0.0176 −0.0211 −0.0978

STD
x-coordinate y-coordinate

d(r) = 0 d(r) = 0.5 d(r) = 1 d(r) = 5 d(r) = 0 d(r) = 0.5 d(r) = 1 d(r) = 5

(20, 19) 0.7792 0.873 1.0054 3.5845 0.7147 0.842 1.0074 3.5751

(10, 9) 0.673 0.8418 1.0797 3.7525 0.6453 0.8391 1.0405 3.594

(5, 4) 0.83 1.061 1.6229 4.093 0.721 1.1529 1.6245 4.4003

(20, 190) 0.3036 0.3672 0.5774 4.8538 0.296 0.3664 0.5541 4.9591

(10, 45) 0.3054 0.4718 0.8653 4.0243 0.2978 0.4458 0.8016 3.8904

(5, 10) 0.3307 0.8271 1.5717 3.9941 0.3151 0.8392 1.7502 4.2185

the shape of the cost function and therefore the loca-
tion of its minimum.

(ii) Using M = N − 1 or M = N(N − 1)/2 yields approx-
imately the same quality of the results. The favor is
slightly tilted toward the former. However, the differ-
ence is not statistically significant.

The key lesson learned from these three configurations is
that sensor gain calibration is crucial to the success of this al-
gorithm. Hence, each sensor should be calibrated before de-
ployment in the field.

(e) Variations on SNR—the results are summarized in
Table 9.

The effect of additive background noise is similar to that
of sensor gain perturbation: both will affect the accuracy of
energy measurements at each sensor. From Table 9, one ob-
serves that

(i) the more sensors are used, the larger the STD. Appar-
ently, the energy estimation errors do not cancel each
other when more sensor readings are used.

(ii) other than SNR = ∞, the two modes M = N − 1 and
M = N(N − 1)/2 yield approximately the same stan-
dard deviation. The differences increase when more
sensors are being used.

We must note that for practical vehicle target, the SNR at
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Table 8: Mean and STD of localization error for different sensor gain values.

Mean
x-coordinate y-coordinate

d(g) = 0 d(g) = 0.2 d(g) = 0.5 d(g) = 1 d(g) = 0 d(g) = 0.2 d(g) = 0.5 d(g) = 1

(20, 19) 0.041 0.0869 0.0152 0.0727 0.0576 0.0148 0.0143 0.3178

(10, 9) 0.009 0.0369 −0.0058 0.0977 0.0396 0.0268 0.0043 0.1988

(5, 4) 0.01 0.0619 0.0512 −0.0553 0.0316 −0.0582 0.0253 0.1958

(20, 190) −0.007 0.1429 0.1452 0.0217 0.0176 0.0168 0.2463 0.5738

(10, 45) −0.006 0.0519 0.1922 0.1137 0.0166 0.0808 0.1133 0.2618

(5, 10) −0.01 0.0489 0.0292 0.0067 0.0146 −0.0022 0.0233 0.2008

STD
x-coordinate y-coordinate

d(g) = 0 d(g) = 0.2 d(g) = 0.5 d(g) = 1 d(g) = 0 d(g) = 0.2 d(g) = 0.5 d(g) = 1

(20, 19) 0.7792 1.3112 0.852 9.0153 0.7147 1.2086 3.5631 9.1049

(10, 9) 0.673 1.5515 3.2465 6.5942 0.6453 1.5616 3.1859 6.3942

(5, 4) 0.83 2.0879 3.213 4.9774 0.721 1.9148 3.2588 4.992

(20, 190) 0.3036 2.9657 7.4987 10.2708 0.296 2.7917 7.0885 10.0506

(10, 45) 0.3054 2.3371 4.2964 6.0754 0.2978 2.1831 4.1489 5.9161

(5, 10) 0.3307 2.2247 3.3303 4.526 0.3151 2.1157 3.3239 4.3258

Table 9: Mean and STD of position estimation error due to background noise.

Mean
x-coordinate y-coordinate

SNR = ∞ SNR = 20 dB SNR = 10 dB SNR = 0 dB SNR = ∞ SNR = 20 dB SNR = 10 dB SNR = 0 dB

(20, 19) 0.041 −0.1776 0.1094 −0.082 0.0576 0.2093 0.0268 0.5168

(10, 9) 0.009 −0.2166 0.1604 0.08 0.0396 0.1833 0.0228 0.2688

(5, 4) 0.01 −0.1146 0.1784 −0.035 0.0316 0.0243 −0.1152 0.1878

(20, 190) −0.007 −0.6146 0.4334 −0.202 0.0176 0.2893 −0.0312 0.7268

(10, 45) −0.006 −0.1546 0.3234 −0.111 0.0166 0.3033 −0.0822 0.3788

(5, 10) −0.01 −0.0896 0.1784 −0.103 0.0146 −0.0397 −0.0312 0.1738

STD
x-coordinate y-coordinate

SNR = ∞ SNR = 20 dB SNR = 10 dB SNR = 0 dB SNR = ∞ SNR = 20 dB SNR = 10 dB SNR = 0 dB

(20, 19) 0.7792 5.6954 8.1004 9.837 0.7147 5.5849 7.5979 9.4387

(10, 9) 0.673 3.8446 5.6287 6.7225 0.6453 3.9481 5.2083 6.4093

(5, 4) 0.83 2.8921 4.4332 5.2167 0.721 3.1086 3.9147 5.2041

(20, 190) 0.3036 10.9375 12.6961 13.5552 0.296 10.9602 12.4986 13.3184

(10, 45) 0.3054 5.1254 6.5798 7.2908 0.2978 5.2017 6.5202 7.1348

(5, 10) 0.3307 3.0126 4.5768 5.0284 0.3151 3.1965 4.1028 4.9295

the source is often much higher than 40 dB. The condi-
tion of 0 dB or worse may occur when strong wind directly
blowing into a microphone without wind-damper protec-
tion, or the microphone is hit by blowing debris or similar
interferences.

5.2.4 Discussion

Based on the above two experiments, one may deduce the
following guidelines for the proper implementation of the
energy-based acoustic source localization algorithm:

(i) proper definition of the sensor field where the poten-
tial target localization will lie;

(ii) careful calibration of sensor gain factor;
(iii) use one of the fast search algorithm MR, GD, or sim-

plex DSmethod after first conducting a coarse-grained
ES within the sensor field;

(iv) using few reliable energy readings from a few sensor
is preferred to using many unreliable energy readings
from more sensors. If one may assess the accuracy of
individual energy reading, it will be possible to prune
out unreliable sensor readings to enhance the overall
localization accuracy;

(v) using more energy ratios (i.e.,M = N(N − 1)/2) often
yield more reliable results.
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Figure 6: Comparison between EBL and CPA localization method.

5.3. Comparisonwith other acoustic localization
methods

The energy-based single acoustic source localization method
presented above differs from other existing method in a
number of important aspects, as follows.

(1) Target positions are estimated at constant time inter-
val—with the CPA-based approach, a new target lo-
cation is obtained only when the moving target passes
through another sensor. If the target stopped and re-
main stationary for a period of time, no additional
CPA detection will be made.With energy-based source
localization method, as long as the target continue to
emit acoustic energy, its location will be estimated on
a regular time interval, even when the target vehicle is
idling and remain stationary. This significantly simpli-
fies the task of the tracking algorithm.

(2) Energy-based method reduces communication require-
ments over wireless channels, and hence conserves
power—energy is a scalar quantity that is computed
over a number of data samples. The frequency of how

often an energy reading is computed can be easily ad-
justed to meet the performance requirement and com-
munication bandwidth as well as energy consump-
tion constraints. Time delay-based localization meth-
ods will require accurate estimate of relative time de-
lays (or phase difference in frequency domain) be-
tween different sensors. Hence, they may require more
raw data samples or corresponding frequency compo-
nents to be exchanged between sensor nodes.

We conducted a preliminary experiment comparing the
proposal EBL algorithm with the 2D CPA algorithm. A sen-
sor field of 300 meters by 300 meters is deployed with eight
acoustic sensors at random locations. The target location is
also randomly chosen within the same sensor field. Both sen-
sor locations and target locations are drawn from a uniform
distribution. Themeasured sensor locations, however, are as-
sumed to suffer a measurement error that is uniformly dis-
tributed over [−0.5, 0.5] meters. The acoustic sensor gain g
is assumed to vary between 0.6 and 1.2 compared to a cal-
ibrated value of 1. Each sensor is also subject to a 20 dB
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Table 10: Mean and STD of the estimation error.

EBL CPA

Mean value −0.14873 −0.60246 0.41733 −0.72433
STD 49.0514 46.5717 48.292 53.8862

additive Gaussian random noise with zero mean. The source
energy level is fixed at a value of 1000.

For the 2D CPA method, the measured sensor location
corresponding to the sensor receivingmaximum acoustic en-
ergy will be used as an estimate of the target location. For the
EBL method, a search grid of 10 meters, each side will be
used to enable an ES. The experiment contains 1000 inde-
pendent trials. In each trial, the sensor locations, the target
location, the perturbations on sensor location measurement,
sensor gain variation, and additive noise are generated ac-
cording to the specified distribution.

The mean and STDs of the target position estimation er-
rors of these two methods are listed in Table 10.

The results are summarized in Figure 6. The ellipses in
the top row specify the covariance matrices of these errors
with each grey dot representing error incurred in a partic-
ular try. The histograms of the magnitudes of the position
estimation errors are depicted at the bottom row.

6. DISCUSSION AND CONCLUSION

In this paper, we have presented the energy-based source lo-
calization algorithm, and derived theoretical results on the
number of sensors required to yield a unique location esti-
mate. We have also conducted extensive simulation to com-
pare different search algorithms and to study the parameter
sensitivity characteristics of this proposed algorithm.

An implicit advantage of this proposed algorithm is its
simplicity: only acoustic energy measured during a specific
period is needed. However, this simplicity also implies many
practical difficulties that need to be mitigated. In particular,
we note that the microphone gain calibration and SNR es-
timation are two key factors that affect the accuracy of this
proposed algorithm.

Currently, we are working to apply this algorithm to real
data obtained in the test ground. We are also studying poten-
tial extension of this algorithm to localize more than a single
target within the sensor field.
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