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Abstract
We present a general approach to shape deformation based on energy minimization, and applications of this ap-
proach to the problems of image resizing and 2D shape deformation. Our deformation energy generalizes that
found in the prior art, while still admitting an efficient algorithm for its optimization. The key advantage of our
energy function is the flexibility with which the set of “legal transformations” may be expressed; these transfor-
mations are the ones which are not considered to be distorting. This flexibility allows us to pose the problems
of image resizing and 2D shape deformation in a natural way and generate minimally distorted results. It also
allows us to strongly reduce undesirable foldovers or self-intersections. Results of both algorithms demonstrate
the effectiveness of our approach.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

We consider the problem of computing a natural shape defor-
mation, where the “naturalness” is guided not only in terms
of pure geometric considerations, but also by external data,
such as an image in which the shape lives. To illustrate, con-
sider the following scenario: we are given an image and an
object segmented from the image. The user interface allows
us to adjust the positions of some “control points” within the
object; given this user input, we would like to compute a nat-
ural deformation of the object which conforms to the new
positions of the control points (see Fig. 1 (right)). Clearly,
the image content should play a role in the deformation.
Where the image is highly textured, we would expect a fairly
minor geometric deformation, namely, something which is
close to isometric; whereas in homogeneous regions, where
it is less noticeable, we might be willing to tolerate a greater
amount of deformation.

In this paper, we present a framework to approach shape
deformation problems with external or image-based consid-
erations. The framework consists of two components: a de-
formation energy, and an algorithm for minimizing this en-
ergy. The deformation energy captures the image-based con-
siderations through sets of allowed transformations, which
specify – for each point in the shape – which types of de-
formations are deemed acceptable. The deformation energy
then measures the quality of a given deformation by com-
puting, for each point, the deviation of the deformation from
the set of allowed transformations, and summing over all
points. It turns out that this energy can be optimized using
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a simple alternating least-squares algorithm of the type used
in [SA07], inter alia, sometimes called a “local-global” al-
gorithm. The latter name derives from the fact that the al-
gorithm consists of two stages per iteration, where the first
stage involves local computations on the individual elements
of the domain discretization (usually triangles or quads), and
the second stage involves the solution of a global linear sys-
tem.

One important aspect of our approach is its ability to in-
corporate the external or image-based considerations into the
local step of the algorithm. As we shall show, it is actu-
ally more natural to define the deformation energy in such
a way that these considerations affect the global step. How-
ever, this leads to two key drawbacks. First, it generates
deformations which do not depend strongly on their local
image-based terms; this is because the global step is essen-
tially a Poisson-type system, with a corresponding averaging
operation, so that the local effects of image-based terms are
averaged out. Second, it tends to cause foldovers (or self-
intersections) of the underlying mesh, a critical numerical
problem which produces unacceptable artifacts in the re-
sults, for which existing works have proposed only heuris-
tic remedies, e.g. [WTSL08]. By contrast, when the image-
based considerations are incorporated directly into the local
step, both of these problems are strongly mitigated.

A second important aspect of the approach is its flexibil-
ity, hence its applicability to a variety of applications. We
present two such applications: image resizing, and image-
sensitive object deformation. In image resizing (see Fig. 1
left), the objective is to modify the aspect ratio of an im-
age in as natural a way as possible, i.e. preserve, as much as
possible, the correct (i.e. original) aspect ratio for the “im-
portant” sections of the image. This problem can be cast in
our framework, and we show that the resulting algorithm im-
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Figure 1: Left: Image resizing. Right: 2D shape defomation; the user constraints are shown as red points.

proves upon the results of the state of the art, [WTSL08] and
[AS07]. In image-sensitive shape deformation (henceforth,
simply “shape deformation” - see Fig. 1 right), the goal is to
deform a shape within an image in a natural way – i.e., by
taking into account the image details – subject to user input
in the form of control points that the user has moved. (This is
the application sketched in the first paragraph.) This problem
may also be cast within our framework, and the results per-
form well against the methods of [SMW06] and [IMH05].

1.1. Prior Work

Shape deformation is an important subfield of computer
graphics, and its 3D version is useful for modeling and pos-
ing 3D shapes, particularly in animation systems. The inter-
ested reader is referred to [SA07] for an extensive survey
of 3D methods. Methods for 2D shape manipulation, in par-
ticular for applications of image deformation and manipula-
tion, have been developed in parallel. An early example is
the work of [AG99], who show how traditional image pro-
cessing operations, such as sharpening, may be obtained by
a warp of the image domain, without explicitly modifying
the image content per se. This contrasts with the classical
“signal processing” approaches, where the signal undergoes
any number of modifications. More recent examples include
work on 2D shape deformation [IMH05,SMW06, GSCO06,
ESA07,FH07,WXXC08,WBCG09], as well as image resiz-
ing [AS07, RSA08, WGCO07, WTSL08]. We will relate the
more relevant prior art to ours in the body of the paper, par-
ticularly in the sections dealing with experimental results.

1.2. Summary of Contributions

1. Flexibility and Generality of the Deformation Frame-
work:

a. Image-Based Terms: The framework allows for the
incorporation of external considerations, such as the
saliency of the image, within the deformation compu-
tation.

b. Generalization of Prior Approaches: The frame-
work generalizes previous approaches, including
[SA07, LZX∗08]. In particular, the deformation en-
ergy admits minimization via a local-global optimiza-
tion technique.

2. Numerical Effectiveness of the Deformation Compu-
tation:

a. Local Step: The image-based effects are incorporated

into the local step, rather than the global step. This has
the following consequences:

b. Controllable Deformations: The deformation locally
depends much more finely on the local image terms
when these terms enter the computation through the
local step. If the terms enter through the global step,
their effect is much more diffuse.

c. Foldover Avoidance: The computation does not pro-
duce foldovers in the relevant meshes. This is impor-
tant, as avoidance of foldovers is difficult for many
algorithms.

3. Successful Applications of the Framework

a. Image resizing: Results improve upon the state of the
art, [WTSL08] and [AS07].

b. Image-Sensitive Object Deformation: Results per-
form well against the methods of [SMW06] and
[IMH05].

2. The Deformation Energy and its Minimization

2.1. The Deformation Energy

We begin by considering an energy function defined on de-

formations of the Euclidean space R
d . A deformation of R

d

is simply a C1 function f : R
d → R

d . To define the defor-
mation energy E[ f ], we require a collection of sets of al-

lowed transformations which act on R
d , {Gx}, one set for

each x ∈ R
d . The set Gx contains the actions on the space

which we do not consider distorting at the point x. For ex-
ample, we might wish to compute a deformation which is
close to locally isometric, in which case Gx would be the
set of rigid transformations. However, Gx can also incorpo-
rate external or image-based considerations, which will be
the approach we take here. For example, at a point x where
the image is homogeneous, Gx might be a very large class of
transformations, thus imposing very little restriction on the
deformation at that point; whereas if the image at x is highly
detailed, we might wish for Gx to be closer to the set of rigid
transformations.

The energy of a deformation f is defined as

E[ f ] =
∫

x∈Rd

{

min
g(x)∈Gx

∥

∥J f (x)−g(x)
∥

∥

2

F

}

dx (1)

where J f (x) is the Jacobian of f at x, and ‖ ·‖F is the Frobe-
nius norm of a matrix. Note the slight abuse of notation:
g(x) is a matrix representation of the linear transformation
g(x), rather than the transformation itself. (Note also that the
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above functional is well-defined only for Euclidean space
deformations; although it is possible to derive an energy for
more general deformations on manifolds, such a derivation
is beyond the scope of this paper.)

The term ‖J f (x)− g(x)‖2
F captures the idea that locally,

the energy measures the deviation of the transformation f
from the action of an element of Gx. Thus, for example, if Gx

is the set of rotations SO(n), then E measures the deviation
of the deformation f from a (locally) isometric deformation.
On the other hand, if d = 2 and Gx is the set of similarity
transformations, then E measures how close the deformation
f is to being conformal. In our applications, Gx will contain
image-based information, thus also depend strongly on x, in
the manner alluded to above.

In summary, then, the deformation energy E[ f ] given in
(1) is quite general. In fact, it is not hard to show that it is the
generalization of a number of current approaches, such as
the “As-Rigid-As-Possible” (ARAP) technique of [SA07] (a
simple version of this for 2D was first proposed in [IMH05]),
where Gx = SO(2) for all x; and of the 3D mesh parameteri-
zation technique of [LZX∗08] for 3D triangle meshes, where
Gx is either the set of rigid or similarity transformations.

2.2. Minimization of the Energy: the Local-Global
Algorithm

Our goal is to minimize the deformation energy given some
user-defined constraints expressing what the user wishes the
deformation to achieve. Typically, the user wishes to map

some “control points” in the space R
d to new locations, i.e.,

for some fixed xi, i = 1, . . . ,k,

f (xi) = x
0
i

In this case, we would like to solve:

min
f

E[ f ] subject to f (xi) = x
0
i , i = 1, . . . ,k (2)

Sorkine and Alexa [SA07] proposed an alternating least-
squares algorithm, the so-called “local-global” algorithm,
for solving an instance (the “As-Rigid-As-Possible” defor-
mation) of this problem. In their algorithm, which operates
on a triangular discretization of a manifold 3D surface, the
algorithm alternates between a “local” stage, where a small
optimization problem is solved per triangle, and a “global”
stage, where a large linear system is solved for the entire set
of triangles. Variants of this algorithm were also proposed
by Igarashi et al. [IMH05], who proposed to apply just one
iteration, and Wang et al. [WXXC08], who used a simple
heuristic global step. We now show that an extension of this
technique is possible in the more general setting.

Denote (overloading the E symbol of (1)):

E[ f ,g] =
∫
∥

∥J f (x)−g(x)
∥

∥

2

F
dx (3)

and the constraints as

f (·) ∈ Γ

Then the optimization problem (2) can be rewritten as

min
f ,g

E[ f ,g] subject to f (·) ∈ Γ (4)

where in the end, we are actually only interested in f . Our
algorithm for solving this optimization is given by the itera-
tive scheme in Figure 2. Note that the initialization stage is
application specific. This will be discussed in Sections 3.4
and 4.4.

Initialize Initialize f = f0.
Local Step Given ft−1, minimize E with respect to g:

gt = argmin
g

E[ ft−1,g]

Global Step Given gt , minimize E with respect to f :

ft = argmin
f

E[ f ,gt ] subject to f (·) ∈ Γ

Convergence If convergence has been reached (up to some
tolerance), end. Otherwise, go to the Local Step.

Figure 2: The alternating least squares “local-global” al-
gorithm.

Note that there are additional constraints on f and g in (4),

thus also on ft and gt in the iterations: f should be C1, and,
locally, g should behave at x like some g(x) ∈ Gx.

While seemingly obvious, the correctness of this algo-
rithm requires proof (see Appendix for proofs of all theo-
rems in this paper).

Theorem 1 The algorithm in Figure 2 converges to a local
minimum of E. �

Having established our framework for computing defor-
mations, we now move on to two applications of this frame-
work, image resizing and image-sensitive shape deforma-
tion. In both cases, the key st andep will be proper defini-
tion of the sets of allowed transformations, {Gx}. Given the
definitions, we can derive explicit versions of the local and
global steps of the algorithm for each case. On the way, we
will comment on the fact that the image-based information
is incorporated in the local step, as well as what that entails:
more controllable deformations without foldovers.

3. Image Resizing

The problem of image resizing may be posed as follows.
Given an image, the user is allowed to move the bottom right
corner of the image from its original position to a desired
location, while the top left corner is fixed. This essentially
rescales the x- and y-axes, possibly changing the image as-
pect ratio. This type of operation is already common in pho-
tographic printing on different paper sizes, and in the conver-
sion of video content from one format to another (e.g. stan-
dard 4:3 to HD 16:9). It will become more common as im-
provements in printing technologies encourage customized
printing, which in turn will require the embedding of given
image content into different template sizes, on demand. The
simplest uniform resizing will stretch all parts of the im-
age equally. Standard algorithms for converting 4:3 format
to 16:9 format stretch the image non-uniformly: the stretch
is minimal in the center of the image, where it is more no-
ticeable by the viewer, and gradually increases towards the
periphery. However, it may be desirable to resize different
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parts of the image differently, depending on the image con-
tent. For example, where there is interesting detail, we may
not wish to deform the image too much; namely, we will
desire a close to isotropic scaling. However, where there is
not much in the way of interesting detail, we will not mind
stretching. Indeed, the stretching in these regions may be
even greater than that implied by the original user constraint.

In the following four sections, we define a natural defor-
mation energy, describe the deformation algorithm using a
discretization based on a quadrangular mesh, discuss imple-
mentation issues, and show results.

3.1. The Deformation Energy

3.1.1. Measure of Image Detail

We wish to adapt the energy of Eq. (1) to the problem of
image resizing. To capture our preference for less distortion
where there is more image detail, we use the following mea-
sure of image detail:

λ(x) = Kλ‖∇I(x)‖,

i.e., the magnitude of the image gradient, where we choose
Kλ so that 0 ≤ λ(x) ≤ 1. Previous papers [WTSL08] have
used more complex measures, such as the saliency measure
of [IKN98], but we have found that this simple measure
works just as well. Extensions could easily include more
complicated notions of saliency or level of detail.

3.1.2. A Natural, but Problematic, Formulation

Given this notion of image detail, λ(x), it is quite natural to
incorporate it as a weight in the integrand of the deformation
energy, i.e., redefine E as

E[ f ,g] =
∫

λ(x)
∥

∥J f (x)−g(x)
∥

∥

2

F
dx

Solving Problem (4) is now a simple weighted linear least-
squares problem, whose solution may be efficiently obtained
by solving a linear system of normal equations. We do not,
however, follow this route. The reason is that incorporating
the image detail in such a way will imply that its only effect
is in the global step, as we shall see in Sections 3.2 and 3.3.
This, in turn, leads to very little local control based on vary-
ing λ(x); instead, the effects of the image detail are averaged
out, due to the Poisson nature of the global step. Addition-
ally, nothing prevents the solution from containing unaccept-
able “foldover” artifacts, where the mapping is not injective.

3.1.3. Our Formulation

Rather than following the above line of logic, we incorporate
λ(x) in Gx, the set of allowed transformations. This means
that the optimization will now be more complex, i.e. the full
iterative “local-global” algorithm of Fig. 2, because now a
local step is required to accommodate it.

The relevant space is the plane, R
2. Assume that the user

chooses to stretch the x-axis more than the y-axis; the re-
verse situation can be treated analogously, by switching the
roles of the variables. Suppose that the x-axis is stretched by
a factor of sx, and the y-axis by a factor of sy; then if we

define r = sx/sy, our assumption is equivalent to the condi-
tion that r ≥ 1. Now, the sets of allowed transformations Gx

consist of axis-aligned affine transformations which can be
anything from isotropic scaling up to γr more scaling in the
x-direction than in the y-direction, where γ is a small num-
ber larger than 1. Typically, γ will be chosen in the range of
1.5−2.5.

More specifically, for a given real number ρ ≥ 1, we de-
fine the set of axis-aligned affine transformations Gaxis(ρ)
by

Gaxis(ρ) =

{

g =

[

a 0
0 b

]

: a,b ≥ 0, 1 ≤
a

b
≤ ρ

}

Given λ(x), we wish to allow ρ to vary with λ. In particular,
we let ρ = ψ(λ), where ψ satisfies

ψ(0) = γr, ψ(∞) = 1, ψ′(·) < 0

This captures the idea that where there is no interesting detail
(λ = 0), we allow a stretch of γr, that is, effectively γ times
more than uniform resizing would prescribe. By contrast, if
there is a significant detail (λ → ∞), we try to eliminate
stretching altogether. For example, we may use

ψ(λ) =
βλ+ γr

βλ+1

where β is a free parameter which controls the rate of de-
crease of ψ. Finally, we define the sets of allowed transfor-
mations by

Gx = Gaxis(ψ(λ(x)))

3.2. The Local Step

Although the formulation of the energy in Eq. (1) is continu-
ous, we now adapt it to the relevant discrete structure for the
problem of image resizing: the quadrangle mesh, which is
initially a grid of axis-aligned squares. For this, we relax our

definition of f to f ∈C0 (but C1 within each quad). If we as-
sume that the deformation f is affine on a given quad, then
the Jacobian is constant, and it is straightforward to show
that ∫

x∈q
‖J f (x)−g(x)‖2

F dx ∝

∑
i∈q

‖( f (xi+1)− f (xi))−gq(xi+1 − xi)‖
2

where q refers to the quad in question, i is a vertex in that
quad, i + 1 is the next vertex over in the (say) clockwise di-
rection, and gq is the deformation of the quad q, taken from
Gaxis(ψq). Therefore, the energy E can be rewritten as

E = ∑
q

∑
i∈q

‖( fi+1 − fi)−gq(xi+1 − xi)‖
2

(5)

where ψq = ψ(λq) where λq is the salience of q, and we have
replaced f (xi) with the shorthand fi. Note that this holds
under the assumption that f is affine on a given quad. In
what follows, we drop this assumption, and let each of the
vertices of a given quad be set independently.
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The local step is therefore

min
gq∈Gaxis(ψq)

∑
i∈q

‖( fi+1 − fi)−gq(xi+1 − xi)‖
2

Note that we have dropped the t index, implying that f and
x should be taken from the previous iteration.

This can be rewritten as

min
aq,bq

{

∑
i∈q

[

( f
1
i+1 − f

1
i )−aq(x

1
i+1 − x

1
i )
]2

+
[

( f
2
i+1 − f

2
i )−bq(x

2
i+1 − x

2
i )
]2
}

subject to: 1 ≤ aq/bq ≤ ψq, aq,bq ≥ 0

where x
j
i indicates the jth coordinate of xi. This is a quadratic

optimization problem with linear inequality constraints.

Note that one of the constraints in the above formula-
tion is aq,bq ≥ 0, that is, that the resizing is non-negative
in both directions. This seemingly innocuous constraint is
what strongly mitigates the problem of foldovers. Several
techniques, such as [WTSL08], try to prevent foldovers in
a heuristic fashion. By contrast, we explicitly constrain the
local step to produce a legal (i.e. not folded over) transfor-
mation. It is still possible that a foldover could enter through
the global step; however, such foldovers are never observed
in practice.

Returning to the optimization problem, note that techni-
cally this problem is a quadratic program. However, due to
the small number of optimizing variables (two), we are able
to solve the problem explicitly, as follows. First, note that
without the constraints, the solution is

âq = E
1
q/D

1
q, b̂q = E

2
q/D

2
q

where

D
j
q = ∑

i∈q

(x
j
i+1 − x

j
i )

2, E
j
q = ∑

i∈q

(x
j
i+1 − x

j
i )( f

j
i+1 − f

j
i )

We can now use the solution to the unconstrained system
to obtain the constrained solution to the local step in a “local-
global” iteration.

Theorem 2 The local step is as follows. Given the solution

to the unconstrained problem (âq, b̂q), define

ãq =
E1

q +E2
q

D1
q +D2

q

, b̃q = ãq

and

ăq =
ψ2

qE1
q +ψqE2

q

ψ2
qD1

q +D2
q +λq(ψ2

q −1)
, b̆q =

ăq

ψq

Also let Γ(a,b) = D1
qa− 2E1

q a + D2
qb− 2E2

q b. Then the so-

lution (a∗q ,b∗q ) to the constrained problem is as follows:

1. If b̂q ≤ âq ≤ ψqb̂q and âq, b̂q ≥ 0, then (a∗q ,b∗q ) =

(âq, b̂q).
2. Otherwise:

a. If ãq, b̃q > 0 and either (i) ăq < 0 or b̆q < 0; or (ii)

Γ(ãq, b̃q) ≤ Γ(ăq, b̆q), then (a∗q ,b∗q ) = (ãq, b̃q).

b. If ăq, b̆q > 0 and and either (i) ãq < 0 or b̃q < 0; or

Γ(ăq, b̆q) < Γ(ãq, b̃q), then (a∗q ,b∗q ) = (ăq, b̆q).
c. Otherwise, (a∗q ,b∗q ) = (0,0).

�

3.3. The Global Step

The global step is quite straightforward. Taking the deriva-
tive of (5) with respect to fi gives the normal equations:

∑
j∈N (i)

[

( fi − f j)−gq(i, j)(xi − x j)
]

= 0

where N (i) is the set of vertex neighbours of i in the quad
mesh, and q(i, j) is the quad containing the half-edge (i, j).
This is a Poisson-type system of linear equations in the fi.

Note, of course, that this system of equations must be
solved subject to the constraints, which in this case fix the
upper left and lower right vertices, as well as one coordinate
of each of the vertices along the boundaries of the image (x-
coordinate of the left and right boundaries, y-coordinate of
the top and bottom boundaries). In this case, the equations
corresponding to the coordinates in question are replaced by
the constraints. Note also that the Poisson system is sparse,
and any change in g or the user-specified constraints changes
only the right-hand side of the equation. Thus the system is
amenable to efficient sparse linear solvers, and the fixed sys-
tem matrix may be prefactored, so that simple and very effi-
cient back-substitution may be used in subsequent solves.

3.4. Implementation and Results

We begin by noting the technique we use to initialize the
local-global algorithm. In this case, there is a natural choice,
uniform resizing, which we use in all of the experiments.

Our first experiment justifies the incorporation of the im-
age information in the local step, which led to a more com-
plicated iterative algorithm (compared to a simple linear sys-
tem when the image information is incorporated in the global
step). Figure 3 shows the result when an image is resized
by a factor of 2.4 along the horizontal axis. Using the im-
age information in the global solution results in foldovers,
which after rendering lead to a highly cropped image. With
our more sophisticated algorithm, such foldovers do not oc-
cur.

We compared our deformation-based image resizing
method with the two latest advances in this field: the “seam-
carving” (SC) method of [AS07] (recently improved by
[RSA08]) which removes the less significant top-down and
left-right seams from the image, and the “optimized scale-
and-stretch” (OSS) method of [WTSL08] which operates
under principles similar to ours. The latter, however, uses
quite different energy terms and minimization algorithm,
which may generate significantly different results. A com-
parison of the algorithms on a number of images appears
in Figure 4. The OSS results were obtained using software
kindly provided by the authors, and the SC results from the
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Figure 3: Incorporation of image information when resizing. Left: Original image. Middle: Image resized using global incor-
poration, which leads to foldovers (rendered as crops). Right: Image resized using local incorporation.

current implementation in Adobe Photoshop CS4 Extended
(version 11.0.1).

There are a number of important differences between the
SC family of algorithms and those based on discrete resiz-
ing. First and foremost, SC may be viewed as a “0/1” al-
gorithm. When “shrinking” an image, it either completely
removes pixels from the image or completely leaves them in
the image. This extreme removal policy implies some infor-
mation loss. When “expanding” an image, it similarly cre-
ates new pixels, introducing some redundancy. In contrast,
the family of algorithms based on a more continuous type
of optimization, such as ours and OSS, never removes pixels
completely or creates completely new ones; all pixels in the
output are some filtered version of pixels in the input.

A second significant difference between the two fami-
lies of algorithms is the somewhat unnatural behavior of SC
in scenarios where the expected results seem obvious. The
most striking difference is in the case where the user speci-
fies uniform scaling in both dimensions. The natural result to
expect would indeed be uniform scaling (as this introduces
no distortion at all), and this is exactly what OSS and our
method do. SC, in contrast, produces quite different results.
This manifests also in the following scenario: Changing the
aspect ratio of an image, e.g. by shortening its horizontal
dimension, in two different ways: 1) The “direct” way -
shortening its horizontal dimension. 2) The “indirect” way -
lengthening its vertical dimension and then uniformly down-
scaling the result. While equivalent in OSS and our methods,
SC produces dramatically different results for the two vari-
ants. In our comparisons, we have run both the direct and
indirect versions of SC, although we show results of only
the more natural direct SC, which seems to typically pro-
duce better results.

Note that the original image for each example in Figure
4 has been uniformly rescaled so that it will fit in the ta-
ble of images; however, this step is not a part of any pre-
processing done by any of the algorithms, and is merely for
display purposes. The first two rows of Figure 4 show the re-
sults of all the algorithms on two images used by [WTSL08],
when significantly shrinking along the horizontal dimension.
(We were able to reproduce exactly the OSS results shown
by [WTSL08] using the software supplied by the authors.)
The shortcomings of SC are obvious, for example the break-
ing of straight line features in the “car” image and the break-
ing of the left side of the building and loss of some of the
legs of the girl wearing black pants in the “girls” image.

Our results are somewhat similar to OSS in the top two
rows of Figure 4. However, as the next four rows show, there
are images for which we generate significantly better results.
The input image of the third row, depicting a shoreline with
sky, is taken from [AS07]; when significantly shrunk along
the horizontal dimension, OSS disproportionately increases
the sky region. In the “dolphin” example of the fourth row
(input image also taken from [AS07]), the image is stretched
along the horizontal dimension to double its original size; in
this case, OSS shrinks the top portion of the image, includ-
ing some of the dolphin, in an extreme manner, effectively
truncating it. (This may also be due to a foldover problem).
The fifth row shows the “camera” image, in which OSS in-
troduces a rounding out of the desk underneath the camera,
as well as leaving the camera too small compared to the rest
of the image. In this case, SC also leads to a distortion of the
contour of the desk, as well as an inexplicable shortening
of the lens barrel of the camera. In the “Garfield” example
of the sixth row, in which the input image has been shrunk
along the horizontal dimension to half of its original size,
OSS prefers to strictly preserve the aspect ratio of the car-
toons, shrinking them almost uniformly to half their original
size, creating a large amount of white space in the result,
somewhat defeating the purpose of the application.

In our implementation we partition each image into a
grid of identical squares of between 15-20 pixels in both di-
mensions. The iterative algorithm terminated when all grid
points did not move by more than half a pixel between it-
erations. To gauge the speed of the algorithm, we ran – in
addition to the experiments below – 50 further resizings.
We found that the average number of iterations until con-
vergence was 7.4, with a maximum of 12.

4. 2D Shape Deformation

In this application, we are interested in the following prob-
lem, typically within an image. A segment of an image has
been selected, either manually or using a semi-automatic
tool such as GrabCut [RKB04]. The user wishes to deform
this segment (usually for animation keyframing) by manu-
ally moving a small number of “control points” within the
segment – typically points on the boundary, though not nec-
essarily. We wish to compute a “good” deformation of the
segment by minimizing an appropriate deformation energy.
As in the image resizing scenario, the energy should also
take into account the fact that we would prefer to introduce
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Original Uniform (direct) SC OSS Ours

Figure 4: Comparison of image resizing algorithms.
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less distortion where the image segment has more detail. In
relatively flat regions of the segment, we are willing to toler-
ate more deformation, as this will typically go unnoticed.

We begin by defining a deformation energy which is a
special case of (1). We then derive the local and global steps
for this energy, the latter using a discretization based on a
triangle mesh. Finally, we discuss implementation issues and
show results.

4.1. The Deformation Energy

As in the case of image resizing, we measure the level of im-
age detail by the image gradient, λ(x) = Kλ‖∇I(x)‖. In or-
der to define the set of allowed transformations, {Gx}, con-
sider the following. Given a triangular region of the image
segment, a good deformation will just rotate and translate
the triangle. This rigid transformation will introduce no dis-
tortion into that region of the image, since all proportions are
preserved. Some distortion will be introduced if the triangle
undergoes a similarity transformation, as then the triangle
changes its relative size (but not aspect ratio). The most dis-
tortion is introduced when the triangle undergoes an affine
transformation to another arbitrary triangle. This is the rank-
ing of linear transformations that our energy function will
capture.

Specifically, we choose two thresholds, λs and λr, with
0 < λs < λr < 1. In the region λ(x) ∈ [0,λs], the set of al-
lowed transformations Gx moves smoothly from any possi-
ble affine transformation (λ(x) = 0) to the set of similarity
transformations (λ(x) = λs). In the region λ(x) ∈ [λs,λr],
the set of allowed transformations Gx moves smoothly from
the set of similarity transformations (λ(x) = λs) to the set of
rigid transformations (λ(x) = λr). And finally, if λ(x) ≥ λr,
the set of allowed transformations Gx is the set of rigid trans-
formations.

We capture these ideas formally as follows. If λ(x) ∈

[0,λs], then let α(x) =
λ(x)
λs

, so that 0 ≤ α(x) ≤ 1. We de-

fine

Gas(α) =

{

g = USV
T

: U,V ∈ SO(2); S =

[

σ1 0
0 σ2

]

,

ℓ(α) ≤
σ1

σ2
≤ u(α), σi ≥ 0

}

where the bounds ℓ(·) and u(·) must satisfy:

ℓ(0) = 0, ℓ(1) = 1, ℓ′(·) > 0

u(0) = ∞, u(1) = 1, u′(·) < 0

Let us elaborate a bit on the structure of Gas(α). The
transformation elements are represented in their SVD for-
mat, and we constrain the ratio of singular values σ1/σ2 to
lie between ℓ(α) and u(α). When α = 0, the ratio can take
on any value, and so Gas(0) is simply the set of 2×2 matri-
ces, representing all possible affine transformations. When
α = 1, the ratio must be exactly 1, thus the singular values
must be identical; hence, Gas(1) is the set of all similarity
transformations. For α’s in between 0 and 1, we interpolate
smoothly between these two cases. In practice, we choose

ℓ(α) = αη and u(α) = α−η for a positive η, usually taking
η = 1.

We deal with the case λ(x) ∈ (λs,1] in a similar fashion.
Now, we define:

β(x) =

{

λ(x)−λs

λr−λs
if λs < λ(x) ≤ λr

1 if λ(x) > λr

and

Gsr(β) = {g = σR : R ∈ SO(2);ℓ(β) ≤ σ ≤ u(β)}

where ℓ(·) and u(·) are as above. For the case β = 0, we allow
σ to take on any (positive) value, spanning the set of similar-
ity transformations; hence, as desired, Gas(1) = Gsr(0). For
the case β = 1, σ is constrained to be exactly 1, spanning
only the set of rigid transformations. As β moves from 0 to
1, the set of transformations moves smoothly between these
two extremes.

Finally, to summarize our construction:

Gx =

{

Gas(α(x)) if 0 ≤ λ(x) ≤ λs

Gsr(β(x)) if λs < λ(x) ≤ 1

Typically, we will choose λs = 0.33 and λr = 0.75.

4.2. The Local Step

From (3), the local step at x computes the function g(x):

arg min
g(x)∈Gx

∥

∥J f (x)−g(x)
∥

∥

2

F

Depending on the value of λ(x), we can substitute either
Gas(α(x)) or Gsr(β(x)) for Gx. We will address each of these
cases in turn.

If λ(x) ≤ λs, we would like to solve

min
g∈Gas(α(x))

‖J −g‖2
F (6)

where we have written the Jacobian simply as J. Due to the
constraints on σ1 and σ2, this is a relatively involved prob-
lem; we simply state the solution here, with the proof de-
ferred to the Appendix. Let the singular value decomposi-

tion of J be J = USV T , with the singular values of J denoted
σ1,σ2:

Theorem 3 Given σ1,σ2, and α(x). Let us abbreviate ℓ =
ℓ(α(x)), u = u(α(x)), and define σ̂1, σ̂2 as follows:

(σ̂1, σ̂2) =















(

u2σ1+uσ2

u2+1
, uσ1+σ2

u2+1

)

if σ2 < σ1

u

(σ1,σ2) if σ1

u ≤ σ2 ≤
σ1

ℓ
(

ℓ2σ1+ℓσ2

ℓ2+1
, ℓσ1+σ2

ℓ2+1

)

if σ2 > σ1

ℓ

Let Ŝ be the diagonal matrix with σ̂1 and σ̂2 on its diagonal.

Then g = UŜV T is the solution to the minimization problem
(6). �

If λ(x) > λs, we would like to solve

min
g∈Gsr(β(x))

‖J −g‖2
F (7)

This situation is somewhat less complicated, though still
non-trivial:
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Theorem 4 Given σ1,σ2, and β(x). Let us abbreviate ℓ =
ℓ(β(x)), u = u(β(x)). Let σ̄ = (σ1 + σ2)/2 and define σ̂ as
follows:

σ̂ =







ℓ if σ̄ < ℓ

σ̄ if ℓ ≤ σ̄ ≤ u

u if σ̄ > u

Let Ŝ = σ̂I where I is the identity matrix. Then g = UŜV T is
the solution to the minimization problem (7). �

Let us again return to the issue of foldovers. By expliciting
constraining the transformations so that their singular values
are positive (see the definitions of Gas(·) and Gsr(·)), we en-
sure that the output of the local step is a legal (i.e. not folded
over) transformation. As in the case of image resizing, this
strongly mitigates the problem of foldovers.

4.3. The Global Step

In this application, we discretize by triangulating the 2D
shape, given as a simple polygon. The triangulation may in-
clude as many interior points as necessary. We therefore as-
sume that the deformation f is piecewise-linear in the natural
way, so that the Jacobian J f , and hence the allowed transfor-
mation g, are constant over the triangles, indexed by τ. With
the assumption of piecewise-linearity of f and the allowed
transformations taken as given (coming from the local step),
the global step then reduces to

min
f

∑
τ

A(τ)
∥

∥J f (τ)−g(τ)
∥

∥

2

F

where A(τ) is the area of the triangle τ. Using a standard
result of [PP93], we can rewrite the global step as

min
f

∑
τ

3

∑
i=1

µ
i,i+1
τ ‖( f (xv(τ,i+1))− f (xv(τ,i)))

−g(τ)(xv(τ,i+1) − xv(τ,i))‖
2

(8)

where τ refers to a triangle in the mesh; i is an index from 1 to

3, where v(τ, i) is the ith vertex of triangle τ (and the term i+
1 is taken in a cyclic sense, so that 3+1 = 1); and xv(τ,i) are

the coordinates of vertex v(τ, i) in the original mesh. (Note,
however, that not all of the vertices so defined are unique, as
most belong to more than one triangle τ.) Finally, the term

µ
i,i+1
τ is the well known cotangent weight, i.e. the cotangent

of the angle opposite edge joining vertices v(τ, i) and v(τ, i+
1) within the triangle τ.

It is clear that the minimization in (8) is quadratic in the
f ’s, and therefore the solution to the minimization problem
will be obtained from a linear set of normal equations. In
fact, Liu et al. [LZX∗08] show that the above sum may be
written as a sum over half-edges, and that the resulting lin-
ear system can be written as n 2D equations, of which the

following is the ith:

∑
j∈N (i)

[

cot(θi j)+ cot(θ ji)
]

( fi − f j)

= ∑
j∈N (i)

[

cot(θi j)g(τ(i, j))+ cot(θ ji)g(τ( j, i))
]

(xi − x j)

where there are n vertices, N (i) are the vertices which are
neighbours of i; τ(i, j) is the triangle containing half-edge
(i, j); θi j is the angle opposite half-edge (i, j) in triangle
τ(i, j); and fi is shorthand for f (xi). Solution of this linear
system for the unknowns fi is the global step - the Poisson
equation.

Note, of course, that this system of equations must be
solved subject to the user-specified constraints, which in this

case take the form fik = f 0
ik

for k = 1, . . . ,m. In this case, the
equations corresponding to the indices ik are replaced by the
constraints.

As in the image resizing application, the Poisson system
matrix is sparse and does not change between iterations, or
when the user input changes. Thus the matrix may be pref-
actored and back-substitution used in subsequent solves.

4.4. Implementation and Results

The local-global algorithm brings us to a local minimum
of the deformation energy. In order to ensure that the lo-
cal minimum is a reasonable one, i.e. is sufficiently close
to the global minimum, it is important to properly initialize
the algorithm. We use the well known Least Squares Con-
formal Map (LSCM) technique of Levy et al. [LPRM02] for
this purpose. This has already been shown to be equivalent
to minimizing a deformation energy which allows similar-
ity transformations [LZX∗08], and is a simple sparse linear
system.

Our application loads an image and the user manually
draws a polygonal contour around the region of the shape
to be deformed (automatic segmentation may also be used).
The interior of the contour is triangulated at some user-
specified triangle density. For each triangle the application
estimates its importance by averaging the gradients of the
pixels in its interior. Interactively specifying positional con-
straints at a few triangulation vertices by moving them in
the image plane, the shape is deformed by applying the op-
timization algorithm to minimize the deformation energy.

We ran our deformation algorithm with and without
saliency information, and compared the results to other algo-
rithms which aim to preserve isometries in the deformation.
The only exception is the simple “As-Similar-As-Possible”
LSCM algorithm, which preserves similarities, but is easy
to compute (using a sparse linear solver), thus convenient
to use as an initial guess for other iterative algorithms. The
more elaborate algorithms are those of [IMH05] (ARAP),
which is essentially equivalent to just one iteration of our
energy-based deformation (EBD) algorithm (initialized us-
ing the LSCM result) and the rigid version of the MLS de-
formation algorithm of [SMW06], which does not operate on
a triangulation. Rather, it generates a continuous mapping of

R
2 to R

2 based on just the control points.

Figure 5 shows the results on a number of sample images.
The control points are shown as colored dots and are identi-
cal in all deformations of the same image. For all images, the
LSCM result will typically contain artificial scaling in many
image regions, due to the conformal nature of the mapping.
The MLS result, not respecting the boundary of the image
region, and taking into account only Euclidean distances in
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Original LSCM ARAP MLS (Rigid) EBD EBD (salient)

Figure 5: Comparison of image deformation algorithms.

the plane, is clearly inferior. The Clock sequence depicts an
attempt to “bend” an image of a clock a-la Dali. Since a large
number of control points are used, all the results are some-
what similar. However, our EBD result has the advantage
of no foldovers in the image (in the concave region), and a

better deformation of the winding head. The KoolaidT M and
Frog sequences show cartoon characters which are modified
to form a keyframe for an animation sequence. Our EBD
result is clearly more pleasing than ARAP, as it better pre-
serves isometries in the image (note the hand and hair of
Koolaid and the right eye of the frog). The saliency improves
the result somewhat. In the Candle sequence, our EBD result
with saliency better preserves the isometry of the region next
to the candle wick, resulting in a more natural bend of the
flame.

With regard to performance, the iterative algorithm termi-
nated when all grid points did not move by more than half
a pixel between iterations. To gauge the speed of the algo-
rithm, we ran an experiment similar to that run for resizing
(see Section 3.4). We found that the average number of itera-
tions until convergence was 10, when initialized with LSCM.

In an interaction application, where the user "drags" the con-
trol points continuously in the plane, and the deformation is
constantly updated to reflect the changing positions of the
constraints, the iterative solver may be initialized with these
positions from the previous event in time. This reduces the
number of iterations required to 3-4.

5. Conclusions

We have provided a very general framework for content-
aware image deformation by energy minimization. The en-
ergy function incorporates the key elements of what is con-
sidered a good deformation. This energy has been shown
to generalize a number of energies used in the literature so
far, and proven to be useful in a number of important ap-
plications, generating results which are generally superior to
competing state-of-the-art algorithms. The alternating least-
squares “local-global” algorithm for minimizing such an en-
ergy is extremely simple to implement, and quite efficient in
practice.

The framework is general enough to work in any dimen-
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sion, thus the next natural step would be to apply it to 3D
shape deformation.
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Appendix

Proof of Theorem 1

Define the sequence {Es} by E2t−1 = E[ ft−1,gt ] and E2t =
E[ ft ,gt ]. Then by definition of the local step, E[ ft−1,gt ] ≤
E[ ft−1,g] for all g, so that in particular, E[ ft−1,gt ] ≤
E[ ft−1,gt−1], so that E2t−1 ≤ E2t−2 for any t. Similarly, by
definition of the global step, E[ ft ,gt ] ≤ E[ f ,gt ] for all f , so
that in particular, E[ ft ,gt ] ≤ E[ ft−1,gt ], so that E2t ≤ E2t−1

for any t. In summary, then, Es+1 ≤ Es for all s. Note also
that the functional E[·, ·] is bounded below by 0. Then by the
Monotone Convergence Theorem of analysis, the sequence
{Es} converges to a finite limit E∗, to which there is a cor-
responding pair of arguments ( f ∗,g∗). (Note: it is possible
to construct a case in which {Es} converges to a finite limit
E∗, but the arguments ( f ∗,g∗) do not themselves converge.
However, in this case, we will be equally happy to take any
such ( f ∗,g∗), as they all yield the same value E∗ of the
deformation energy. (In fact, this case is never observed in
practice.))

To see that this limit is local optimum of E[·, ·], proceed
by contradiction, i.e. suppose that ( f ∗,g∗) is not a local op-
timum. Then there exists an f such that E[ f ,g∗] < E[ f ∗,g∗]
(or a g such that E[ f ∗,g] < E[ f ∗,g∗]; the cases are symmet-
ric). But then f ∗ 6= argmin f E[ f ,g∗], which is a contradic-
tion. (And again, this argument is easily extended to the case
in which the arguments themselves do not converge.) �

Proof of Theorem 2

Using the notation of Section 3.2 and dropping the q sub-
scripts for convenience, the optimization problem is easily
shown to be equivalent to

min
a,b

D
1
a

2 −2E
1
a+D

2
b

2 −2E
2
b = Γ(a,b)

subject to the constraints b ≤ a ≤ ψb, and a,b ≥ 0. This is
a standard non-linear programming problem, for which the
usual techniques (e.g. Karush-Kuhn-Tucker conditions) can
be shown to generate the solution given in the theorem. In
particular, (ã, b̃) is the point on the line a = b which min-

imizes Γ(a,b), while (ă, b̆) is the point on the line a = ψb
which minimizes Γ(a,b). The results follow. �

Proof of Theorem 3

We begin with a lemma.

Lemma: Let A and Â be 2× 2 matrices with singular value

decompositions A = USV T and Â = Û ŜV̂ T . Suppose that Ŝ

is fixed, but we can choose Û and V̂ . Then for any S and Ŝ,

‖A− Â‖2
F is minimized when Û = U and V̂ = V .

Proof: ‖A − Â‖2
F = tr((A − Â)T (A − Â)) = tr(AT A) +

tr(ÂT Â)− 2tr(AT Â). Now, tr(AT A) does not depend on Û

and V̂ ; furthermore, tr(ÂT Â) = σ̂2
1 + σ̂2

2, which also does not

depend on either Û or V̂ . Thus, it is sufficient to show that

tr(AT Â) is maximized when Û = U and V̂ = V .

Now, using the standard identity tr(XY ) = tr(Y X), we

obtain tr(AT Â) = tr(V SUTÛ ŜV̂ T ) = tr(UTÛ ŜV̂ TV S) =
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tr(Ũ ŜṼ S), where Ũ = UTÛ and Ṽ = V T V̂ are both orthog-
onal matrices. It is a matter of simple algebra to show that

tr(Ũ ŜṼ S) = σ̂1ũ11σ1ṽ11 + σ̂2ũ12σ1ṽ21 + σ̂1ũ21σ2ṽ12

+ σ̂2ũ22σ2ṽ22

= (σ̂1σ1 + σ̂2σ2)ũ11ṽ11 − (σ̂2σ1 + σ̂1σ2)ũ12ṽ12

≡ A1ũ11ṽ11 −A2ũ12ṽ12

where we have used the fact that ũ11 = ũ22 and ũ12 = −ũ21,
since Ũ is an orthogonal matrix, and likewise for the ṽ’s.
Due to the orthogonality, we have two further constraints,

namely ũ2
11 + ũ2

12 = 1, and and likewise for the ṽ’s. Writing
a Lagrangian and taking derivatives with respect to ũ11 gives
A1ṽ11 −λuũ11 = 0, where λu is the Lagrange multiplier on

the constraint ũ2
11 + ũ2

12 = 1. Taking the derivative with re-
spect to ṽ11 gives Auũ11 −λvṽ11 = 0. Combining these two
equations yields

(

1−
λuλv

A2
1

)

ṽ11 = 0

Thus, either λuλv = A2
1 or ṽ11 = 0. Taking derivatives of

the Lagrangian with respect to ũ12 and ṽ12 similarly yields

that either λuλv = A2
2 or ṽ12 = 0. Now, it is not possible

that λuλv = A2
1 and λuλv = A2

2 simultaneously, since in gen-
eral A1 6= A2. Further, it is not possible that ṽ11 = 0 and

ṽ12 = 0 simultaneously, since ṽ2
11 + ṽ2

12 = 1. Thus, either
(ṽ11, ṽ12) = (1,0) or (ṽ11, ṽ12) = (0,1). Using similar logic,
we can show from the derivatives of the Lagrangian that
when ṽ11 = 0, then ũ11 = 0, and the same for ṽ12 and ũ12.
Re-examining the relevant expression,

tr(Ũ ŜṼ S) = A1ũ11ṽ11 −A2ũ12ṽ12

= A1ũ
2
11 −A2ũ

2
12

and noticing that since σ1 ≥ σ2 and σ̂1 ≥ σ̂2, we must have
that A1 ≥ A2, so that the proper choice is ũ11 = 1. The rest of
the relations lead immediately to Ũ = Ṽ = I, which implies
Û = U and V̂ = V . �

Now, we are ready to prove the theorem:

Proof of Theorem 3: Let J = USV T . Looking at the struc-
ture of Gas(α) and using the lemma, we know that indepen-
dent of the choice of singular values for g, the optimal g will

be of the form g = UŜV T for some Ŝ. Given this, we have
that

‖J −g‖2
F = ‖U(S− Ŝ)V T ‖2

F

= tr(V (S− Ŝ)UT
U(S− Ŝ)V T )

= tr(V T
V (S− Ŝ)UT

U(S− Ŝ))

= tr((S− Ŝ)2)

= (σ̂1 −σ1)
2 +(σ̂2 −σ2)

2

Now, the goal is to minimize this function subject to the con-
straints. If σ1

u ≤ σ2 ≤ σ1

ℓ , then σ1 and σ2 satisfy the con-

straints of Gas(α), so the optimal choices are just σ̂i = σi for
i = 1,2. If on, the other hand, σ2 < σ1

u , then we must choose
the σ̂i to lie within the constrained region, yet be as close as

possible to σ1, thereby minimizing (σ̂1−σ1)
2 +(σ̂2−σ2)

2.

The solution is the point on the line σ̂2 = σ̂1

u which is closest

to (σ1,σ2), which is precisely the result stated in the theo-
rem. The third case follows analogously. �

Proof of Theorem 4

Our goal is to solve

min
g∈Gsr(β(x))

‖J −g‖2
F

Begin by noting that

‖J −g‖2
F = tr((J −g)T (J −g))

= tr(JT
J)+ tr(gt

g)−2tr(JT
g)

= tr(JT
J)+2σ2 −2σtr(JT

R)

where in the third line, we have used the fact that if g ∈
Gsr(β(x)), then g = σR; and that tr(RT R) = tr(I) = 2. Given
the fact that J is fixed, our minimization problem is thus
equivalent to

min
σ,R

2σ2 −2σtr(JT
R) (9)

subject to ℓ(β) ≤ σu(β) and R ∈ SO(2).

Now, let the singular value decomposition of J be J =

USV T . Then

tr(JT
R) = tr(V SU

T
R) = tr(UT

RV S) = tr(R̂S)

where R̂ = UT RV is also a rotation matrix. This implies that
R̂i j ≤ 1, so that

tr(R̂S) =
2

∑
i=1

R̂iiσi ≤
2

∑
i=1

σi

with equality when R̂ii = 1, i.e. when R̂ = I. The condition

R̂ = I implies that UT RV = I, which in turn implies that R =

UV T . To summarize, tr(JT R) is maximized when R =VUT ;
and its maximum value is σ1 +σ2.

Having chosen R optimally, we may turn to the problem of
choosing σ optimally. The optimization in (9) can be rewrit-
ten as

min
ℓ(β)≤σ≤u(β)

2σ2 −2σ(σ1 +σ2)

If σ is unconstrained, then setting the derivative to 0 gives
the condition σ = (σ1 +σ2)/2≡ σ̄. The constrained solution
follows in a straightforward manner. �
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