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Abstract

This paper describes a new segmentation technique for very sparse surfaces
which is based on minimizing the energy of the surfaces in the scene. While
it could be used in almost any system as part of surface reconstruction/model
tecovery, the algorithm is designed to be usable when the depth information is
scattered and very sparse, as is generally the case with depth generated by stereo
algorithms. We show results from a sequential algorithm that processes laser
rangefinder data or synthetic data. \Ve then discuss a parallel implementation
running on the parallel Connection Machine.

The idea of segmentation by energy minimization is not new. However,
prior techniques have relied on discrete regularization or Markov random fields
to model the surfaces to build smooth surfaces and detect depth edges. Both of
the aforementioned techniques are ineflective at energy minimization for very
sparse data. In addition, this method does not require edge detection and is
thus also applicable when edge information is unreliable or unavailable. Qur
model is extremely general; it does not depend on a model of the surface shape
but only on the energy for bending a surface. Thus the surfaces can grow in a
more data-directed manner.

The technique presented herein models the surfaces with reproducing kernel-
based splines which can be shown to solve a regularized surface reconstruction
problem. From the functional form of these splines we derive computable bounds
on the energy of a surface over a given finite region. The computation of the
spline, and the corresponding surface representation are quite efficient for very
sparse data. An interesting property of the algorithm is that it makes no at-
tempt to determine segmentation boundaries; the algorithm can be viewed as
a classification scheme which segments the data into collections of points which
are “from” the same surface. Among the significant advantages of the method
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is the capacity to process overlapping transparent surfaces, as well as surfaces
with large occluded areas.

1 Segmentation: Introduction and Background
Segmentation is one of the most pervasive and most difficult problems in com-
puter vision. It rears it ugly head in such subareas as: edge/region detection,
motion detection, determination of textures, shape-from-X (for almost all X),
calculation of disparity fields (stereo matching), model recovery, surface recon-
struction and medical imaging. Unfortunately, the segmentation problem in
each of these areas will not, in general, be solvable by the same techniques. One
reason for the failure of the methods to extend to different the segmentation
problems in the various subareas is because the assumptions about the data
vary dramatically:

o In edge/region detection, the data is the intensity values of the image ir-
radiance and assumptions used for segmentation must be related to the
process of image formation.

¢ In motion detection, the data can be either spatio-temporal intensity images
or spatio-temporal sutrface information, and the segmentation assumptions-
must be related either to the flow of intensities as objects/self undergo
motion (for spatio-temporal intensities images) or to object models and
the physics of motion of said objects.

o In surface reconstruction, the assumptions used for segmentation must be
related to models of world surfaces.

¢ In the recovery of disparity fields, assumptions must be tied to either a
model of disparity fields, or a combination of models of world surfaces and
the pair of image formation equations used to obtain the disparity field.

e etc. ...

Of these, the segmentation tasks in surface reconstruction, disparity field
recovery and certain classes of motion detection prohlems, have been approached
using segmentation coupled with recovery using an energy-based smoothness as-
sumption, for example see [Terzopoulos 84],

(Hoff and Ahuja 85], [Anandan and \Veiss 85], (Blake and Zisserman 86},
(Chou Brown 88], [Kanade 88]. In each of these cases, the attempt at seg-
mentation can be roughly described as follows:

Step 1 Do a initial smoothness-based reconstruction (this is generally a mini-
mal energy surface or configuration).

Step 2 Mark those parts of the reconstruction which are “not locally smooth”
(generally with a gradient like operator) as discontinuities.

Step 3 Adjust the reconstruction mechanism to deal with the newly marked
discontinuities and go to Step 1.

Other segmentation approaches for surface reconstruction have incorpo-
rated smooth measures implied by volumetric models, for example, see (Pentland 86],
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[Bajcsy and Solina 87]. [Rao, Nevatia and Medioni 87], or local smoothness prop-
erties such as planarity or curvature consistency, see [Besel and Jain 86].

2 Motivation and a Different Formulation

This paper proposes a different mode! of segmentation which has some funda-
mental differences in the formulation of the problem. This section discusses this
model, and also provides some motivation for it. In defining this model, the
section introduces the energy-based segmentation approach wherein the energy
of reconstructed surface(s) is directly used to segment the data.

The traditional view of the surface segmentation problem is one of de-
termining the “discontinuity boundaries” in surface depth, surface orientation
and/or surface curvature. This approach usually requires some reconstruction
of the surface, which is related to an a priori chosen measure of surface en-
ergy. Unfortunately, in order to correctly generate a surface reconstruction,
knowledge of data segmentation is generally required. This results in a difficult
chicken-and-egg problem. Thus, researchers may assume the scene consists of a
specific class of surfaces (such as planar or convex). To make matters worse, the
quality of the reconstruction in the neighborhood of an unmarked (i.e. as yet,
undetected) discontinuity is generally poor. Thus the localization of the discon-
tinuity of iterative reconstruct/segment approaches, see e.g. [Terzopoulos 84]
or [Hoff and Ahuja 87), will be questionable. Moreover, data from scenes with
transparent surfaces cannot easily fit to these models.

A second shortcoming of the traditional approach is that it will require
considerable post processing to handle extended multiply connected objects (say
an object behind a picket fence) and may never be able to handle transparent
surfaces where locally there are only a few points on any one surface.

A final remark about traditional segmentation is related to the definition
of “boundaries™. It is well known that the perceived “boundaries” of surfaces
in depth share many characteristics with subjective contours, see [Julesz 71],
[Marr 81). This suggests that a definition of “boundaries” in depth might be
accomplished by some secondary processing which is shared with “boundary”
detection from other visual modalities. Therefore the energy-based method of
this paper can be combined with a secondary boundary-detection process to
obtain both the shape and the outline of each surface.

To accommodate the above mentioned prohlems, this paper proposes that
segmentation of 3D information should not attempt to determine boundaries.
Rather, the segmentation should simply classify points as belonging to the same
surface. The determination of boundaries will be relegated to some secondary
process which is not discussed here. Of course this view cannot be taken too
far, as there are limits both to the number of possible “transparent” surfaces
and the number of times a background object is blocked by foreground objects.
Psychological experiments have already demonstrated that such limits exist in
the human visual system.

As mentioned above, what is desired is some measure which can be applied
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to groups of points to determine if they are part of the same physical surface.
This section presents one such measure, surface bending energy, and discusses
its appropriateness. The authors acknowledge that other measures might be
used and the end of this section touches upon some of these alternatives.

Segmentation has been extensively studied in the context of image segmen-
tation, and one might wonder if the algorithm herein is new / applicable to that
domain. The crucial part of our algorithm is the use of “surface energy” to
heuristically (though reliably) determine if two points are part of the same “ex-
tended region”. Unfortunately, such measures have proven illusive for intensity
images.

In computer vision, as well as other domains, researchers have used minimal
surface bending-energy as an assumption to aid in surface recovery, for example
see (Grimson 81], [Franke 82], (Terzopoulos 84],
[Wahba 84], [Hoff and Ahuja 85], [Choi and Kender 85}, [Lee 85],
[Blake and Zisserman 86), [Boult 86). Bending energy thus seems a natural
choice for the “measure” to determine if a group of points belong to the same
surface. The bending energy of a thin-plate surface f is given by:
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Of course, the use of bending energy can only be a partial basis for a

practical measure for segmentation. Other issues that must be also be addressed
include:

o What is the allowable class of functions for bending energy.

o How to determine the effect of surface size, or the area over which the
energy is measured.

¢ What is the relationship between the energy and the number of data pointa
and surface area.

o How to set the threshold for separation of a group, or alternatively to define
the tradeoff between the number of surfaces and sum of the energies of these
surface.

e When is the energy of a collection of points “too big”.

o How does one locate the fewest number of “culprit” point(s) in the group,
i.e., the credit assignment problem.

o What is the relationship between “depth” discontinuities and “orientation”
orientations, and how do these characteristics effect the energy measure
discontinuities.

3 An Energy-based Segmentation Algorithm
This section describes one way to realize an energy based segmentation algo-
rithm given that one accepts the assumption of minimizing bending energy.
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However, the algorithm is easily modified to handle many related measures
such as those described in [Boult 86] and [Bonlt 87]. The section describes the
mathematical background of the algorithm. The discussion of advantages and
disadvantages of this approach are relegated to a separate section following this
one.

The algorithm constructs initial approximations of the surfaces from the
local data cluster 3-space.” These approximate surfaces are updated by subse-
quent processing. The algorithm then heuristically determines which point to
add next (more below) and points are added to a surface as long as the addi-
tion does not cause the energy (see below) of said surface to exceed a certain
threshold. If the surface cannot accept any remaining points, a “new” surface is
created and the process repeats itself until all data points have been processed.
A variation of the algorithm develops several surfaces in parallel by placing a
point on several surfaces that can accept it without exceeding the threshold.

In its basic form, each pass of the algorithm computes the surface and
corresponding energy that would result if each remaining point were separately
added to the current surface. The system then adds the point which would cause
the minimal rise in surface bending energy, assuming it would not exceed the,
specified threshold. Because of the monotonic and commutative nature of the
energy measure, this approach will generally find the surface of minimal energy
given the starting basis and the threshold, though it can be computationally
expensive. This expense is being addressed in two ways. First, through a
parallel implementation. Second, we recognize that the true minima is not
always necessary, and we develop heuristics that develop the segmentation at
lower cost.

The discussion of algorithmic details can be divided into seven smaller con-
ceptual components which appear as separate subsections. These components
are:

1. Definition of the model of world surfaces.

2. Definition of the reproducing kernel-based spline which is used to recon-
struct the surfaces.

3. Definition of the energy measure.

4. Calculation of bounds on the energy of a reproducing kernel-based spline
surface,

5. Heuristics used for (a) basis point selection, (b) point selection, and (c)
culprit point selection, to remove some points and decrease the surface
energy.

6. Method to merge similar surfaces into one surface.

7. A short discussion of the ongoing parallel implementation.

*The sine of the cluster is user definable from 4-30 data-points. In general, the number
must be at least 1 more than the size of the dimension of the null space of the energy measurs.
A number of heuristics have been developed to pick the basis points. These generally select
an initial point along with a the subset of its neighbors in 3 space that produce the lowest
energy surface.
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3.1 Definition of the Model of World Surfaces
The assumed model of world surface is intimately related to techniques for regu-
larized surface reconstruction, see [Boult 86]. An important set of these classes
can be parameterized formally as those functions with their m'® derivative in
H", where H" is the Hilbert space of functions such that their tempered distri-
butions v in IR? have Fourier transform & that satis{y

//1112 (|r|2'"-]f/(f)|2 dr) < +00.

This class of functions, referred to as D™ H", is equipped with the m** Sobolev
semi-norm,

n L
Iho-=< [~ [~ Z(T)(%)') dz dy )

i+)=m

which, if 1 > 5 > 1 — m, results in a semi-Hilbert space. Note that if one
chooses m = 2,n = 0, then using the properties of Fourier transforms,.the'
above definitions yield exactly the space D?L? which was used by Grimson and
Terzopoulos.

Let us now give an intuitive definition of these classes of functions. First,
note that the spaces of “functions” assume the existence of the m? derivative
of the function, in the distributional sense. This means, roughly, that the m*?
derivative of the functions exists except on sets of measure of zero (e.g., at iso-
lated points or lines). Then the classes D™ H?, which are also known as D™ L3,
simply assume that the power of these functions is bounded. For the classes
D™H" n > 0 we have that the square of the spectrum of the derivatives goes
to zero (as the frequency goes to co) faster than a specified polynomial of the
frequency. Thus, these functions have less high frequencies and are “smoother”
than functions which simply have m derivatives. For the classes D" H" n< 0
we see that the aspectrum of the derivatives is bounded away from zero, and
that as the frequency goes to oo, the derivatives go to infinity no faster than a
given polynomial. Thus, these functions have less low frequencies and are less
“smooth” than most functions with m derivatives.

In the work reported here, we consider the class DPH*¥ which, intuitively is
the space of functions which are smooth (almost everywhere) up to derivatives
of order approximately 1.5, i.e., they are significantly smoother than membrane
surfaces but are not as smooth as thin-plate splines. The motivation for this
choice of functions (i.e., this “intermediate” level of smoothing) is supported by
the results of [Boult 87).

3.2 Definition of Reproducing Kernel-Based Spline

An essential ingredient of the current algorithm, at least from the point of view

of efficient serial implementation, is the use of the reproducing kernel-based
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spline reconstruction as described in [Boult 86]. This section introduces some
aspects of that algorithm necessary for later discussions.

We do not choose to interpolate the data, instead we follow the “regulariza-
tion” approach of minimizing a smoothness term (the m** Sobolev semi-norm)
a weighted sum of squares of the distance of the surface from the data, i.e. we
find the sutface from our class of surfaces which minimizes:

A3 I 4 ofon ®

where the data z at point (z;,%), i = 1,...,n is assumed to be on one surface.
The global smoothing parameter, A, should depend on the overall error in the
initial data, and the factors é; allow for individual points to have greater “noise”;
the factor A effects the overall tradeoff between surface smoothness (as measured
by the norm || - ||p>) and the fidelity to the data points z; while the factor §;
effects the contribution of a single data point so as not to penalize the surface
as much (or to penalize it more, depending on the value of §;) for not closely
approximating the data at that point. Techniques for choosing these parameters
have been discussed by other researchers, see [Bates and Wahba 82].

One solution to the above reconstruction problem is a reproducing kernel-
based spline. It can be shown, see [Meinguet 83], that for the above model of
world surfaces, the appropriate reproducing kernel here is

K(z,y:u.v) = y((z = u)? + (y = v))?}
for some constant «

Given the above kernel, the spline (i.e., the reconstruction of the 2§D
sketch) which approximated the data

=2yt = {f(zl\yl)vf(zzvy?)v"'v](zk-y!)! i= l)ak}
can be developed as:
3 3
o= aiK(z,yizi,w)+ Y Bipil.y) (4)
i=sl i=1

where py(z,y) = 1,pa(z.y) = z.pa(z.y) = y. The constants a; and j; are the
solution to the system of linear equations:
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where

Aii= & [/ (eA8m)yi=1,... k
Aij = aj(K(zj,y;: 20, i), i=l....kj=1,...ki#7j;
B;; = Cj.i = Bipi(zi, ui) i=1,...k 7=1,...,3;
and Di;=01i=1,....3j=1,....3;
(5)
The important properties of the above solution to the surface reconstruction
problem are:

N

1. The algorithm is efficient for very sparse data (anything more than 3 non-
collinear points will do, and the fewer the number of points, the faster the
surface can be computed).

2. The surface is defined by the solution to a linear system which depends only
on the location of the data. If the solution to this system can be updated
quickly, the surface can also be updated quickly.

3. The surface is given in a functional form, thus the evaluation of deriva-
tives is trivial, and bounds on the energy of the surface can be computed
analytically.

4. The surfaces are independent of the “boundaries” of discontinuities, and
depend only on the data values. However, the actual surface will change if
the number/value of data points on the boundary are changed.

3.2.1 Short discussion of the updatable QR algorithm This section

btiefly discusses the way the algorithm updates the linear system to allow for
an efficient update of the surface for serial implementations. The algorithm
begins by doing a QR decomposition of the initial linear system. Then, using
Givens rotations, the algorithm can allow for the addition or deletion of any
row/column (in fact, it can handle any rank one modification). The computa-
tion of the initial QR decomposition for k data points requires time O( yk%)!.
The addition/deletion then costs O(k?), and the recomputation of the solution
with the new system costs O(k3). The algorithm is numerically stable which
is important since the condition number for reproducing kernel-based spline
problems can be moderately large.

!While the decompasition could in fact be computed by adding every row one at a timae,
this doubles the cost of the decomposition, and may slightly effect the quality of the solution.
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A secondary advantage of using the QR decomposition is that changing
the values of the data (while leaving the position unchanged) requires only
O(k?) to recompute the solution. While the algorithm is not new, the authors
hope that this brief disclosure will alert the vision community to its potential
uses. The algorithm is precisely defined in [Daniel et al. 76} and widely available
implementations can be found in various mathematical libraries, e.g. IMSL.

3.3 Definition of the Energy Measure
The basic form of the energy measure is given by equation 2 except that the
region of integration may be different than that expressed therein.

The energy of the surface will depend on the size of the region in IR over
which the energy norm is computed. The two most natural choices are IR2 itself,
and the convex hull of the data defining the “current” surface. Unfortunately,
neither is appropriate. For the class used in the initial tests, the integral over
IR2 is not necessarily finite.! While the energy norm over the convex hull of
the data defining the “current” surface is obviously finite,** this choice has two
difficulties:

1. The convex hull would continuously change as new data points were added
to a surface. -

2. The use of a domain which ends near the data points will allow the addition
of new points to lower the surface energy, thus the energy will no longer be
monotonicly increasing, making a region growing method less stable.

3.4 Derivation of Bounds on Energy of Surface

Given the definition of the spline as in equation 4, one can symbolically compute
bounds on the energy. To begin, the exact form of the energy integral is manip-
ulated to explicitly expand the squaring operation and move the differentiation

If one considers the class D2 H?, then the energy norm is, by definition, finite. However,
the energy value may be very large and thus may be numerically unstable.

**Intuitively one can assume a Lebusge integral which may ignore sets of measure zero.
More formally, the definition of the class was in terms of distributions and the energy measure
can be defined in a distributional sense as well.

! Intuitively this anomaly can be understood by noting the following:

(a) Surface energy measures the “bending” of the surface in the domain of integration.

(b) The definition of the class of surfaces insures that the value of “the surface” must go zero
as the point of evaluation approaches infinity, thus outside the convex hull of the data
the surface will approach tero, and this may cause some “ringing” in the surface if the
data densily is “low” near the edge of the region.

{c) By increasing the data density, the value of the surface inside a bounded region can be
forced to approach a planar surface which has zero energy. Thus alter initially building
a surface wing points on some region boundary, adding new data points with in the
region can “push” the high energy portions (i.e. bent areas) outside the convex hull.
This results in & nonmonotonic energy measure.
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While it would be most appropriate to integrate the terms symbolically in
the last of the above equations, the authors (and MACSYMA) have been unable

to obtain a solution. Fortunately, a symbolic solution can be obtained for the
upper bound using the fact that we can compute:

I(B,s,ty= [P [2 (Kie(z,y:8.1)?
+2 . K,y(l,y;-"") (8)
+Kyy(z,y:8,0) dz dy }*

While we will only report on the classes D?HY and D3HY, we have
obtained closed form solutions for I( B, s,t) for various values of m and 1. These
are given in the following table:

D'H>™ 18083(12 + s3) + 12084
D3H~T 25287

% (1190087 + (3570087s* + 71400B7)¢
D3H*} +(35700B%s* + 14280084s? + 666408°)t?

+119008%5% + 7140084s® + 6664058°s2 + 81608%)
DYHY | 17100B%(s* + t*) + 3420083t3s? + 4560084 (s® + t2) + 10640B8°
D‘R 8730082%(s? + t?) + 58200B8*

Table 1: Table of I(B, s,t) for diflerent classes of functions.
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The choice of norm is significant. The second norm gives zero energy to
planar surfaces, but large energy to conic sections. Thus it is appropriate when
the world model is known to be mostly planar. This is exactly the case for
many man-made objects, such as bent sheet metal, desks, and other rectangular
scenes. In contrast, the third norm gives zero energy to conic sections, and thus
it is appropriate when many round objects are in the scene.

Once the norm is selected we set the maximum energy thresholds according
to the precomputed energy for prototype shapes in the scenes. A number of
intermediate thresholds are also used to slowly increase the surface energy. This
prevents the erroneous segmentations that occur if only the final threshold values
occur, since it bends the surface slowly. The algorithm therefore places points
onto the surface where they most easily fit. The next larger threshold is used
when no more points can be placed within the current one.

3.5 Heuristics

Heuristics reduce the cost of the energy-based method by selecting points to be
considered for the various surfaces. Good heuristics should focus the system by
selecting the points that should be added to each surface. The points selected by
a heuristic can then be tested for the minimum energy criteria, and only the low-'
energy points are used. We now discuss several subproblems where heuristics
help, in particular building the initial surfaces, adding points to them, and
merging or eliminating duplicate surfaces.

The system combines two kinds of heuristics. Domain independent heuris-
tics are general enough to provide reasonable results for many scenes, including
scenes with occluding surfaces, low-energy surfaces and high-energy surfaces.
We have developed several such heuristics, and describe them below. Domain
specific heuristics increase efficiency by selecting points according to the ex-
pected scene characteristics, for example if information is available on the cur-
vature of a surface the program can construct an initial solution from the points
that are “likely” to be on the surface. This provides a good basis for adding
more points by the energy-based method. Domain specific information also can
be used to set the thresholds for the surfaces.

Construction of the initial “basis® surfaces. Each surface is initially de-
scribed by a small number of points, between 4 and 30. Good starting surfaces
are essential for accurate segmentation, and therefore the program must find
points that all lie on the same actual surface. This is done in two steps. First
a significant single point is found as a “seed” for the basis. Second, a subset of
its neighbors in 3-space are selected. Ideally each “seed” point should be from a
different surface. Since we cannot achieve this without knowing the segmenta-
tion, we instead select the seed according to the following heuristics. A physical
explanation of why it is a good heuristic follows each one:

o Pick the nearest point (physically, this is a point on the closest object).
e Pick the farthest point (physically, a point on the most distant object).

¢ Pick randomly, but not near any seed value that has already been chosen.
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¢ Pick a point near to a specific XY coordinate on a grid (appropriate when
approximate object locations or distributions are known).

o Pick the point that is farthest from one picked previously (span as much of
the scene as possible).

o Use a clustering technique that selects thw the point that has the most
neighbors which are within the average inter-point distance, since these are
significant as the center of an object. Use the method to obtain peripheral
points by picking the point with the fewest number of neighbors.

The lowest energy surface is then built from the seed and a subset of the
neighboring points. This entails a combinatorial search of the M near neighbors
for the lowest energy N element surface. The starting surfaces are identified by
selecting an “interesting” point and its neighbors in 3-space. We then perform
an exhaustive search of the M nearest geighbors to build N-point surfaces. If M
is too small the constructed surface may span several actual surfaces. Likewise,
if N is too small the resulting surface will not be sufficiently descriptive to
permit accurate selection of points.

It is important to restrict the search to the near neighbors because it is oth-
erwise quite easy to build large nearly-planar surfaces that cut through several’
surfaces. Moreover, the points must not be too close to each other because the
resulting reconstruction would be highly distorted by surface noise. Otherwise
the points are not distinguishable in XY coordinates but the resulting surface
can have huge energy due to the variation in Z, which will be quite relative to
the difference in XY values. The Z values could be due to noise or to multiple
surfaces.

The algorithm can recover from incorrect starting surfaces. First, the
smoothness assumption identifies as erroneous any surface that has a large en-
ergy with a small number of points. These surfaces can be pruned and the
points reused on other surfaces.

Point selection: what point to add? Once the initial basis surface has been
constructed, points must be selected and then added to the surface which can
accept them with minimum increase in energy. The exhaustive method requires
N?m update operations (for N points and m surfaces) at a cost of N3 per
update. This N* cost is exorbinate, and therefore we first estimate the energy.
We have been successful with an estimation method that considers only the
points which are near to some point already on the surface (we will describe
this shortly). The nearness criteria also prevents the erroneous addition of a
non-surface point that just “happens” to fit onto a partially developed surface,
for example with occluding transparent surfaces.

A point is near a surface if the distance to some point on the surface is less
than half the diagonal of the box that bounds the points already on the surface.
The point is temporarily ignored if it is too far from the surface, and is considered
at a later iteration after the surface has accepted closer points (and the bounding

box is larger). The near points are then ranked by a weighted distance formula.
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This combines the distance to the nearest point already on the surface, with the
_proximital distance from the point to the partially reconstructed surface. The
points are then added in order of increasing cost subject to a global threshold. -
Culprit identification: when and how to pick points to delete? Misclassifi-
cations of data during the incremental addition of points to surfaces results in
excessively large surface energy. It is then important to delete some pomt(s)
from the surface. In general the point which makes the largest contribution to
the energy does not belong to the surface and is the classification error. Thus
it should be deleted. Th& exhaustive method to find thisspoint (i.e. try each
possible point) is uneconomical. Therefore we need some way to predict which
point is the “culprit” responsible for the excess energy. o
A good indicator of the “culprit” is the the value of a in the linear system
which recovers the spline parameters. Intuitively this is because a large a makes
a large contributionto the enerd#®We have shown expeﬂmentally that an
. incorrect data point is associated with a large alpha value.”We use culprit
deletion by removing the point with largest & after every 10 insertions” If
a point is erroneously removed it can still ba.added back-in a subsequent add
operation. This is because the increasain energy at each step is a good predxctor
of the correct segmentation.

- -

=

Segmentation: when o creale a new urfa:c" We have mvan‘ated two - e
methods: first. of completely building one surface at a ‘time, and second:of f

building all surfaces simulta.neously by gradually increasing the global energy,

threshold. The second method gives mgmﬂcantly better renulu than the ﬁrst. z

since it completes all low-energy d catigns before it increases the energy. -
The first method can misclassify when a point can be on either S; with large
energy or on S; with lower energy. The approach of building all surfaces may
also improve performance of the parallel implementation. However, the simul-
taneous building of multiple surfaces will construct redundant surfaces, and also
place co-surface points onto different reconstructions. This problem is solved by
merging similar solutions as described below.

Merging: when and how to combine surfaces into onef Physically close
surfaces should be merged. For example, two surfaces are “close” if both in-
terpolate to the same Z values at all XY values. The reason we construct
redundant copies is because we begin with many initial surfaces, and several
of these initial surfaces may be from the same actual surface. They should be
merged because the points are actually from the same surface and should be
classified as such.

We efficiently test if two surfaces should be merged by interpolating the
surfaces S; and S3 on a sparse and fixed X — Y grid, and then constructing a
new surface from these samples. We use precomputation to efficiently compute
the energy of such a system, which reduces the computational expense to simple
data interpolation (at the grid values) and back-substitution. This is much
cheaper than building a new surface by adding each point to it.

A surface is considered for merging only if it has at least the median number
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of data values on it. The merge cost of all such pairs is computed, and the merges
are performed in ordér of increasing energy. Each point of the less-dense surface
is considered for the denser surface, and is added if the point does not exceed -
k times the median energy of the less-dense surface. In this manner erroneous
points will not be merged, but instead are returned to the pool of unprocessed
data and will be placed onto a surface in a subsequent iteration.

Pruning: when should a surface be eliminated? Sometimes a surface is
incorrectly started from the data on several different scene su¥faces. The energy
of such surfaces is generally high; and thus the surface does not accept many
additional data points. These sparse surfaces are discarded and the points are
reused on some other surface. Thé program thereby recovers from false starts
by resegmenting data that does not produge a surface,_ -

3.6 Parallel Implementation

" An prototype of segmentation is operulon;Ebn the mﬁely parallelﬁconnec- ¥

.;{'

tion Machine. The CM-2 has 65,538 processors with 512 megabytes of memory -
and a 300 gigabyte/sec memory*bandwidth. This gives 9K bytes RAM pe'ri
processor. Although the processors are small 1-bit PEs, the typical aggregate ™ .
operation speed is 2500 mflops for double precision. on a 4Kx4K matrix mylti-+ -
plication, and 5000 mflops for a dot product. For a comnplete technical summary -
see [Thinking Machines]. =

We have lmpletnted for t‘ CM-2 the updatable QR algorithm for solving
linear systems, construction of the linear system (equatign- 5), evaluation of
surface energy in pata.l‘, and adding:-points to a surface.. This software has #
processed data from a number of synthetic surfaces mcludmgspheres and. pla.nu
The software is written in the *Lisp language: R

A major bottleneck is'the combinatorial search for the initial basis sur- f—
faces. Since the amount of sensor data exceeds the PE capacity, the algorithm -,
distributes a different subset of the data to each processor. In onedat.a-parallel
subroutine each processing element simultaneously constructs the minimum en-
ergy surface that fits its subset. The lowest energy solutions are retuned &tha
starting-bases that accept additional data points. -

We need the parallel implementation to process data much fum than we -
can do with a.uniprocessor nmplementum This should allow us ta process:-

%‘}

thousands of points, as occurs in"non-sperss data,; also to pt manyw
surfaces. The hmﬂa can also be processed in p Zﬁ!’pﬁt:c he local’ :
propertxeu of all’ pomt.l can be dplored nmuluneomly fgE i :
4 The plum and minuses = T ¥ = - B

This section cnudy revxm the algonthm described in this paper pointing out
some of the major advantages +, major problems —, and some aspects which
can be viewed as either a pro or a con .

+ The segmentation process is based on surfaces having low bending energy,
a heuristic which can be directly related to the physical process of surface
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formation. Since this heuristic is often used in surface reconstruction, it is
a natural for segmentation as well. Because we do not attempt to detect
discontinuities, the algorithm is well behaved for very sparse data, and Lve
handles transparent and occluded objects with few problems. .

+ The functional form of the reproducing kernel-based spline allows for analytic
computation of bounds on the surface energy, thus making the segmentation
process reasonably computationally efficient. The functional form of the
energy bounds are quite simple.

+ While not presented here, the algorithm can easily be ‘extended_ to handle
the case of derivative information (e.g. surface orientation of curvature) in
addition to depth data. The extension is accomplished by alldwmg; more-.
complex surface reconstruction scheme, see [Kender Lee Boult 85].

+ The complexity of the algorithm, with the selection heuristic ofm'\n—
ics

3% imal energy addition, is O(n*) for n points, and with the othe

oy

it is O(n3). For very sparse data, this is a significant saving qver discrete
regularization costs, but as the data densities grow, the a.lgonthm becomea,
too costly.

% The algorithm does not recover “boundaries” forjjjje segmcnted dat&. Thu is*
advantageows because it allows for transparent and/or occluding surfaces,
and because data is generally sparse (and often noisier) near the boundary

resulting in a poor boundary definition. This is & disadvantage because it -

requires a secondary processés (possibly using ideas borrowed from work

on subjective contour percept.lon or Gestalt payeholoy)to detcrmme t.he~ S

actuat-boundary.

4 The algorithm can easily be-adapted to different measures of surface smooth-
ness. This is advantageous because it allows for greater flexibility, but dis-
advantageous because determination of the most appropriate measure is
difficult. The measure used in the experiments presented herein has proved
to be a reasonable one.

+ The algorithm is based on reproducing kernel-based splines which are es-
sentially a global surface reconstruction algorithm and provide for efficient
serial implementation for sparse data (say < 500 points per surface on a
512by512 grid). If there are more points, the algorithm can be extended to
use local reproducing kernel-based splines (loosely based on [Franke 82]),
at the cost of making the surface definition localized to patches.

+ The reproducing kernel-based spline with updates to the QR factorization
provide an efficient serial implementation. However, they do not suggest
an efficient parallel implementation other than the trivial extension of doing
the matrix computations in parallel. Future work may explore the possi-
bility of using parallel multi-grid techniques to solve a discretized version
of the surface reconstruction problem which can then be used in the seg-
mentation algorithm. Unfortunately how one evaluates energy in this case
is still unclear.
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+ The order of processing of points currently effects the resultant segmentation
in all but the exhaustive heuristic. This is especially true when two surfaces
come into direct contact and join in a rather smooth fashion (e.g. a wedge)
This may actually be used to help in the segmentation process by processing
the data-in multiple orders and using any difference in-data labeling to
suggest a refined segmentation. ]

— The algorithm currently uses a threshold on the energy bounds for surfaces
in the scene. A schedule of surface thresholds is currently manually set,
and future work (in progress) attempts to redress this issue. Luckily, this
threshold for energy-based segmentation does not seem too sensitive as say
thresholds for segmentation of an image based on mt.ensxty, e.g. (variations
of 10% of the threshold are generally indistinguishable. ~

— The algorithm assumes one is interested in.smooth sutfaces. and will most
likely fail when this assumption is not satisfied. Unfor@'ﬁnately, the algo-
rithm cannot even determine if the assumptions are satisfféd (For example,
consider a rough surface similar to a plane covered with a large number
of small densely packed cones. If the data supplied to the algorithm are
points on the background and the peak values.of the cones, the algorithm:
is hopelessly doomed to predict two planar surfaces.)

— The algorithm is surface based, and cannot deal with data from multlple

views of a volumetric object. Addmonally, it will often fail if noise is such: .

that a single z,y location is a.mgned multiple data valuu (of the same
type). 4 ,

5 Experimentation

This section describés some of the initial experimntalj{m withtfhé’;egmeitation :

algorithm. The reader should remember that the expérimentation involves some
human interaction (to determine thresholds) and most of the examples highlight
the systems best behavior. The experiments we run on a Sun Sparcl workstation
configured with 12M of memory.

We processed three sets of data. First is scene of synthetic data for three
superquadric surfaces which are both overlapping and with very similar shapes.
The results show excellent differentiation between the surfaces. However, this
is sensitive to the heuristics which pick the initial basis surfaces. It is otherwise
possible to hypothesize an initial surface which spans several actual surfaces.
Such surfaces will eventually have excessive energy and be pruned, but there is
a cost in loat processing time in this event. Second, several sets of laser range
finder data have been processed from; laser data from the Purdue Vision Lab is
due to Avi Kak, and also laser data {rom the University of Utah.

For the synthetic data we show a needle plot of the initial data, a needle
plot of the segmented data, the reconstructed surfaces, and statistics on the
number of wrong segmentations. For the laser data we show the same plots but
give statistics based on hand-segmentation of the data.
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Figure 1:

The data shows.needle plots of the segmentation of actual laser rangefinder
data. Data is from the Utah range database[ﬂ%ﬁh -85. The upperrighf¥hows
the unsegmented data consisting of a cube, a cylinder, and a sphere on a table.
The lower right s the top of the sphere, th#&lower left is the top of the cube
(with a piece of the table), and thei’upp'e'i left is the rim of the cylinder. Not
shown here are other pieces of the segmentation, such as the side of the-cylinder.
Note the algorithm makes no assumption about the surface shape or curvature,
and does not recover planar patches!

The discussion of each example appears as the caption to the figures show-
ing the initial data and the reconstructed surfaces. The initial data is presented
as perspective views of the depth points represented as needles in space.

8 Conclusions and future work

This paper has presented a new algorithm for segmentation of depth data. The
algorithn is based on adding points to a surface only when doing so does not
increase the surface bending energy above a user determined threshold. The
algorithm has been experimentally tested and in most cases correctly labels all
data points. The algorithm does not determine boundaries between segmented
surfaces which allows it to handle extended objects occluded by other objects
and transparent objects.
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Figure 2: This shows a needle plot of three overlapping 's'phereg.,_ The data was
generated with radius and center as {ollows. The upper right shows the unseg-
mented data. The recovered segments are listed to the left. The parameters
of the spheres are: Top surface: r = 0.8, ¢ = (0.0,0.0,1.0). Middle surface:
r=0.25, ¢ = (0,0,0). Bottom surface: r = 0.25, ¢ = (-0.5,-0.5, -0.5). Each
surface is sampled at /50 points on a spherical coordinate system and randomly
shifted from the grid. Uniform random noise in the range [—0.05,0.05] was
added to the z values of the data.

“Segment 0” is the smallest sphere, with one erroneous point. “Segment 1" is
the second sphere, with 5 erroneous points. “Segment 3" is the outer sphere.
Note that segments 5 and 6 are clearly errors and can be partitioned into groups
of nearly uniform length.

a-—
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Figure 3:

This shows all the recovered surfaces from the above example. The upper image
shows the reconstructions of segments 0, 1 and 3. The lower image shows all
the images. The five leftmost surfaces correspond to correct segmentation. The
sixth surface started with the erroneous zero-energy basis surface of a horizontal
plane. Points from the other surfaces then deformed it at the lower edges. The
peaks are due to extrapolation error in the graphic rendering. This corresponds
to “segment 5” in the needle plot in the previous figure; note the needles can
be partitioned into two groups of nearly-equal height.

19




Figure 4: This shows laser range finder data for three round surfaces (Purdue
Vision Lab data). The unsegmented data isin the upper right, and the segments
are to the left.
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Figure 5: This shows the reconstruction and segmentation of the laser data
for three round surfaces without culprit elimination. The first, second, third,
and last are the top sphere. The fifth, sixth and ninth correspond to a middle
cylinder shape. The seventh and eighth are a planar section in the initial data.
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Figure 6: This shows several planar and slanted surfaces. Note there is a circular
cutout in the slanted surface. The original data is in the upper right, and the
segmentations to the left. (Purdue Vision Lab data)
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Figure 7: This shows reconstruction of the planar and slanted surfaces.

23



A problem with the current algorithm is that the energy of a surface may
become large not because of the last point added, but because of some point
previously considered. Future work will investigate additional ways of identify-
ing the “culprit” data (probably using a local energy measure) and removing
that point rather than the most recently added point. This will also help allevi-
ate problems caused when the “initial basis” for the surface contains data from
different surfaces.

One of the most obvious failings of the approach is the current dependence
on a global thresholding technique to realize the segmentation. Such a process
is doomed to be troublesome unless a systematic determination of the threshold
is possible. Future work will address this issue and will also investigate the use
of adaptive thresholding (depending on the actual data) and the use of other
properties, say rate of change of energy, as the means of realizing segmentation.

The algorithm as presented has little theoretical basis for the use of energy
as an indicator for segmentation. Of course, in a worst case setting, segmen-
tation is an unsolvable problem. However, on the average there is still hope of
determining a theoretical basis for segmentation. Future work will explore this
idea, and attempt to show that surface energy can be related to the probability
of all data-points being on the same surface. This will likely borrow from the’
work of [Kimeldorf and Wahba 70}, where a fundamental relationship is shown
between reproducing kernel-based splines and optimal Bayesian estimators.

While the method, as presented, is limited to depth data, future work will
also address the implementation issues which remain before derivative informa-
tion can also be incorporated. (The related theoretical issues are already being
resolved).
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