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Abstract 
This paper describes a new segmentation technique for very sparse surfaces" 
which is based on minimizing the energy of the surfaces in the scene. While 
it could be used in almost any system as part of surface reconstruction/model 
recovery, the algorithm is designed to be usable when the depth information is 
scattered and very sparse, as is generally the case with depth generated by stereo 
algorithms. We show results from a sequential algorithm that processes laser 
rangefinder data or synthetic data. We then discuss a parallel implementation 
running on the parallel Connection Machine. 

The idea of segmentation by energy minimization is not new. However, 
prior techniques have relied on discrete regularization or ~1arkov random fields 
to model the surfaces to build smooth surfaces and detect depth edges. Both of 
the aforementioned techniques are ineffective at energy minimization for very 
sparse data. In addition, this method does not require edge detection and is 
thus also applicable when edge information is unreliable or unavailable. Our 
model is extremely general; it does not depend on a model of the surface shape 
but only on the energy for bending a surface. Thlls the surfaces can grow in a 
more data-directed manner. 

The technique presented herein models the surfaces with reproducing kernel­
based spline. which can be shown to solve a regularized surface reconstruction 
problem. From the functional form of these splines we derive computable bounds 
on the enerS)' of a surface over a given finite region. The computation of the 
spline, and the corresponding surface representation are quite efficient for very 
spane data. An interesting property of the algorithm is that it makes no at­
tempt to determine sepnentation boundaries; the algorithm can be viewed as 
a claaaiftwion echeme which segmenta the data into collections of pointa which 
are "from" the same surface. Among the significant advantages of the method 



is the capacity to process overlapping transparent surfaces, as well as surfaces 
with large occluded areas. 

1 Segmentation: Introduction and Background 
Segmentation is one of the most pervasive and most difficult problems in com­
puter vision. It rears it ugly head in such subareas as: edge/region detection, 
motion detection, determination of textures, shape-from-X (for almost all X), 
calculation of disparity fields (stereo matching), model recovery, surface recon­
struction and medical imaging. Unfortunately, the segmentation problem in 
each of these areas will not, in general, be solvable by the same techniques. One 
reason for the failure of the methods to extend to different the segmentation 
problems in the various subareas is because the assumptions about the data 
vary dramatically: 

• In edge/region detection, the data is the intensity values of the image ir­
radiance and assumptions used for segmentation must be related to the 
process of image formation. 

• In motion detection, the data can be either spatio-temporal intensity images 
or spatio-temporal surface information, and the segmentation assumptions. 
must be related either to the Aow of in tensities as objects/self undergo 
motion (for spatio-temporal intensities images) or to object models and 
the physics of motion of said objects. 

• In surface reconstruction, the assumptions used for segmentation must be 
related to models of world surfaces. 

• In the recovery of disparity fields, assumptions must be tied to either a 
model of disparity fields, or a combination of models of world surfaces and 
the pair of image formation equations used to obtain the disparity field. 

• etc .... 

Of these, the segmentation tasks in surface reconstruction, disparity field 
recovery and certain classes of motion detection prohlems, have been approached 
using segmentation coupled with recovery using an energy-based smoothness as-
sumption, for example see (Terzopouloe 84], 
[Hoff and Ahuja 85], [Anandan and Weiss 85], [\3Iake and Zisserman 86], 
[Chou Brown 88], [Kanade 88]. In each of these cases, the attempt at seg­
mentation can be roughly described as follows: 

Step 1 Do a initial smoothness-based reconstruction (this is generally a mini­
mal energy surface or configuration). 

Step 2 Mark thOle parla of the reconstruction which are "not locally smooth" 
(sene rally with a sraclient like operator) as discontinuities. 

Step 3 AdjulL the reconstruction me(hani~m to deal with the newly marked 
discontinuitae. and go to Step 1. 

Other sesmentation approaches for surfl\Ce reconstruction have incorpo­
rated smooth measures implied by volumetric models, for example, see [Pentland 86], 
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[Bajcsy and Solina 87]. [Rao, Nevatia and ~fedioni 87], or local smoothness prop­
erties such as planarity or curvature consistency, see [Besel and Jain 86]. 

2 Motivation and a Different Formulation 
This paper proposes a different model of segmentation which has some fund~ 
mental differences in the formulation of the problem. This section discusses this 
model, and also provides some motivation for it. In defining this model, the 
section introduces the energy-based segmentation approach wherein the energy 
of reconstructed surface(s) is directly used to segment the data. 

The traditional view of the surface segmentation problem is one of de­
termining the "discontinuity boundaries" in surface depth. surface orientation 
and/or surface curvature. This approach usually requires some reconstruction 
of the surface, which is related to an a prion chosen measure of surface en­
ergy. Unfortunately. in order to correctly generat.e a surface reconstruction, 
knowledge of data segmentation is generally required. This results in a difficult 
chicken-and-egg problem. Thus, researchers may assume the scene consists of a 
specific class of surfaces (such as planar or convex). To make matters worse, the 
quality of the reconstruction in the neighborhood of an unmarked (i.e. as yet, 
undetected) discontinuity is generally poor. Thus the localization of the discon­
tinuity of iterative reconstruct/segment approaches, see e.g. [Terzopoulos 84] 
or [Hoff and Ahuja 87]. will be questionable. Moreover, data from scenes with 
transparent surfaces cannot easily fit to these models. 

A second shortcoming of the traditional approach is that it will require 
considerable post processing to handle extended multiply connected objects (say 
an object behind a picket fence) and may never be able to handle transparent 
surfaces where locally there are only a few points on anyone surface. 

A final remark about traditional segmentation is related to the definition 
of "boundaries". It is well known that the perceived "boundaries" of surfaces 
in depth share many characteristics with subjective contours, see [Julesz 71], 
[Marr 81]. This suggests that a definition of "boundaries" in depth might be 
accomplished by some secondary processing which is shared with "boundary" 
detection from other visual modalities. Therefore the energy-based method of 
this paper can be combined with a secondary boundary-detection process to 
obtain both the shape and the outline of each surface. 

To accommodate the above mentioned prohlems, this paper proposes that 
segmentation or 3D information should not attempt to determine boundaries. 
Rather, the sepnentation should simply classify points as belonging to the same 
surface. The determination or boundaries will be relegated to some secondary 
proee. which is not discussed here. Of course this view cannot be taken too 
far, II there are limita both to the number of possible "transparent" surfaces 
and the number of times a background object is blocked by foreground object.. 
Payeholosical experimenta have already demonstrated that such limits exist in 
the human visual system. 

A. mentioned above, what is desired is some measure which can be applied 
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to groups of points to determine if they are part of the same physical surface. 
This section presents one such measure, surface bending energy, and discusses 
its appropriateness. The authors acknowledge that other measures might be 
used and the end of this section touches upon some of these alternatives. 

Segmentation has been extensively studied in the context of image segmen­
tation, and one might wonder if the algorithm herein is new / applicable to that 
domain. The crucial part of our algorithm is the use of "surface energy" to 
heuristically (though reliably) determine if two points are part of the same "ex­
tended region". Unfortunately, such measures have proven illusive for intensity 
images. 

In computer vision, as well as other domains, researchers have used minimal 
surface bending-energy as an assumption to aid in surface recovery, for example 
see [Grimson 81], [Franke 82], [Terzopoulos 84], 
[Wahba 84], [Hoff and Ahuja 85], [Choi and Kender 85], [Lee 85], 
[Blake and Zisserman 86], [Boult 86]. Bending energy thus seems a natural 
choice for the "measure" to determine if a group of points belong to the same 
surface. The bending energy of a thin-plate surface / is given by: 

{J OO JOO ((82/)2 . (~)2 (82/)2) }+ 
8 2 + 2 8 8 + 8 2 dx dy 

-00 -00 x x y y 
(1) 

Of course, the use of bending energy can only be a partial basis for a 
practical measure for segmentation. Other issues that must be also be addressed 
include: 

• What is the allowable class of functions for bending energy. 

• How to determine the effect of surface size, or the area over which the 
energy is measured. 

• What is the relationship between the energy and the number of data points 
and surface area. 

• How to set the threshold for separation of a group, or alternatively to define 
the tradeoff between the number of surfaces and sum of the energies of these 
surface. 

• When is the energy of a collection of points "too big" . 

• How does one locate the fewest number of "culprit" point{s) in the group, 
i.e., the credit &8IIignment problem. 

• What is the relationship between "depth" discontinuities and "orientation" 
orientatioM, and how do these characteristics effect the energy measure 
diKontinuitiea. 

3 An Energy-based Segmentation Algorithm 
This eection deKribes one way to realize an energy based segmentation also­
rithm siven that one accepts the &8IIumption of minimizing bending energy. 
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However, the algorithm is easily modified to handle many related measures 
such as those described in [Boult 86] and [Boult 87J. The section describes the 
mathematical background of the algorithm. The discussion of advantages and 
disadvantages of this approach are relegated to a separate section following this 
one. 

The algorithm constructs initial approximations of the surfaces from the 
local data cluster 3-space.· These approximate surfaces are updated by subse­
quent processing. The algorithm then heuristically determines which point to 
add next (more below) and points are added to a surface as long as the addi­
tion does not cause the energy (see below) of said surface to exceed a certain 
threshold. If the surface cannot accept any remaining points, a "new" surface is 
created and the process repeats itself until all data points have been processed. 
A variation of the algorithm develops several surfaces in parallel by placing a 
point on several surfaces that can accept it without exceeding the threshold. 

In its basic form, each pass of the algor.ithm computes the surface and 
corresponding energy that would result if each remaining point were separately 
added to the current surface. The system then adds the point which would cause 
the minimal rise in surface bending energy, assuming it would not exceed the. 
specified threshold. Because of the monotonic and commutative nature of the 
energy measure, this approach will generally find the surface of minimal energy 
given the starting basis and the threshold, though it can be computationally 
expensive. This expense is being addressed in two ways. First, through a 
parallel implementation. Second, we recognize that the true minima is not 
always necessary, and we develop heuristics that develop the segmentation at 
lower cost. 

The discussion of algorithmic details can be divided into seven smaller con­
ceptual components which appear as separate subsections. These components 
are: 

1. Definition of the model of world surfaces. 
2. Definition of the reproducing kernel-based spline which is used to recon­

struct the surfaces. 
3. Definition of the energy measure. 
4. Calculation of bounds on the energy of a reproducing kernel-based spline 

surface. 
S. Heuristics uaed for (4) basis point selection, (6) point selection, and (c) 

culprit point selection, to remove some points and decrease the surface 
energy. 

6. Method to merle similar surfaces into one surface. 
7. A .hort di.scusaion of the ongoing parallel implementation. 

"'I1Ie liM at the duater is u.er" definable rrom -4-30 daurpointa. In lenerai. the number 
DlU8& be ai .... 1 moft than the lise 01 the dimenaion or the null.paat or the eneru meMUN. 
A Gamber 01 beuriaim haft bee! developed to pick the h.ia poinl.a. TlMM pDerally MIeci 
an irUtial point alone with a the aubtet 01 itt neishba-t in 3 apace thai produce the low_ 
eJMrV aunac.. 
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3.1 Definition of the Model of World Surfaces 
The assumed model of world surface is intimately related to techniques for regu­
larized surface reconstruction, see [Boult 86]. An important set of these classes 
can be parameterized formally as those functions with their mIla derivative in 
H", where H" is the Hilbert space of functions such that their tempered distri­
butions v in IR2 have Fourier transform;;' that satisfy 

This class of functions, referred to as D"' H", is equipped with the m'la Sobolev 
semi-norm, 

which, if 1 > " > 1 - m. results in a semi-Hilbert space. Note that if one 
chooses m = 2,,, = O. then using the properties of Fourier transforms,. the' 
above definitions yield exactly the space D2 L2 which was used by Grimson and 
Terzopoul08. 

Let us now give an intuitive definition of these classes of functions. First, 
note that the spaces of "functions" assume the existence of the mla derivative 
of the function, in the di.stributional.!erue. This means, roughly, that the m'la 
derivative of the functions exists except on sets of measure of zero (e.g., at i~ 
lated points or lines). Then the classes un HO. which are also known as Dm L'J, 
simply assume that the power of these functions is bounded. For the classes 
Dm H", " > 0 we have that the square of the spectrum oC the derivatives goes 
to zero (as the frequency goes to (0) Caster than a specified polynomial oC the 
frequency. Thus, these functions have less high frequencies and are "smoother" 
than functions which simply have m derivatives. For the cl8.SSe8 un H" ,11 < 0 
we see that the spectrum of the derivatives is bounded away from zero, and 
that as the frequency goes to 00, the derivatives go to infinity no faster than a 
given polynomial. Thus, these functions have less low frequencies and are less 
"smooth" than moe~ functions with m derivatives. 

In the work reported here. we consider the clasa fP H+ which, intuitively is 
the space of func~iona which are smooth (almost everywhere) up to derivatives 
oC order approximately 1.5. i.e., they are significantly smoother than membrane 
sun.e. but are not u smooth as thin-plate splines. The motivation for this 
choice 01 functiona (i.e., this "intermedi&te" level of smoothing) is supported by 
the NI1IlU of [Boult 87]. 
3.2 De8nitioa 01 Reproducing Kernel-Dued Spline 
An e.ential ingedient of the current algorithm. at least from the point of view 
of efficient aerial implementation. is the use of the reproducing kernel-based 
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spline reconstruction as described in [Boult 86]. This section introduces some 
aspects of that algorithm necessary for later discussions. 

We do not choose to interpolate the data, instead we follow the '"regulariza.­
tion" approach of minimizing a smoothness term (the mlh Sobolev semi-norm) 
a weighted sum of squares of the distance of the surface from the data, i.e. we 
find the surface from our class of surfaces which minimizes: 

A' ~ (U(Xi,y;) - Zi)2 + IluIID", 
~ 6· 
i=1 • 

(3) 

where the data z; at point (Xi, Yi), i = 1, ... , n is assumed to be on one surface. 
The global smoothing parameter, A, should depend on the overalJ error in the 
initial data, and the factors OJ allow for individual points to have greater "noise"; 
the factor A effects the overall tradeoff between surface smoothness (as measured 
by the norm II . IIDl) and the fidelity to the data points Z; while the factor 0; 
effects the contribution of a single data point so as not to penalize the surface 
as much (or to penalize it more. depending on the value of 0;) for not closely 
approximating the data at that point. Techniques for choosing these parameters 
have been discussed by other researchers, see [Bates and Wahba 82]. 

One solution to the above reconstruction problem is a reproducing kernel­
based spline. It can be shown, see [Meinguet 83], that for the above model of 
world surfaces, the appropriate reproducing kernel here is 

K(x, Y; u, v) = ,«x - u)2 + (y _ v)2) t 

for some constant, 
Given the above kernel, the spline (i.e., the reconstruction of the 2iD 

sketch) which approximated the data 

can be developed aa: 

t J 

~6 = L:a;K(x,y;z;,Yi)+ L:.8iP;(X,y) (4) 
;=1 i=' 

where Pl(z.1I) = l,p,(z,y) = z,PJ(z,y) = y. The constanta aj and Pi are the 
solution La the ay.tem of linear equations: 
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Au Au BI.I 61.2 B 1,3 :1 

Au Au B/:,I BI:,2 B/:,3 =/: 

Cl •l Cu V 1.1 V 1.2 V 1,3 0 
Cl •l Cl ./: Vl,t V'!,2 V2,3 0 
C3 •1 C3 ./: V3 •1 VJ.'l VJ •3 0 

where 

Ai,i = 6i / (CkiA8.,.) i = 1., . . ,k: 
Ai.j = CXj(K(Xj,Yj;Xi,Y;). i = l. ... ,k j = 1" .. ,k i::f: j; 

Bi,j = Cj,i = !3jpj(Xi, y;) i = 1" .. , k, j = 1, ... ,3; 
and Vi.j=O i=1, ... ,3j=1, ... ,3; 

(5) 
The important properties of the above solution to the surface reconstruction 

problem are: 

1. The algorithm is efficient for very sparse data (anything more than 3 non­
collinear points will do, and the fewer the number of points, the faster the 
surface can be computed). 

2. The surface is defined by the solution to a linear system which depends only 
on the location of the data. If the solution to this system can be updated 
quickly, the surface can also be updated quickly. 

3. The surface is given in a functional form, thus the evaluation of deriva.­
tives is trivial, and bounds on the energy of the surface can be computed 
analytically. 

4. The surfaces are independent of the "boundaries" of discontinuities, and 
depend only on the data values. However, the actual surface will change if 
the number/value of data points on the boundary are changed. 

3.2.1 Short di.cusaion of the updatable QR algorithm This section 
briefly discusaes the way the algorithm updates the linear system to allow for 
an efficient update oC the surface for serial implementations. The algorithm 
begins by doing a QR decomposition of the initial linear system. Then, using 
Givens rotationa, the algorithm can allow for the addition or deletion of any 
row/column (in fad, it can handle any rank one modification). The compuL .. 
tion of the initial QR decompoeition for * data points requires time O( !k3)t, 
The addition/deletion then coets O(P), and the recomputation of the solution 
with the new system coeu O(fl). The algorithm is numerically stable which 
ia important lince the condition number for reproducing kernel-baaed spline 
problema can be moderately large. 

IWhile the de lIIFaUUoa could in (ad be computed by addin, eYety row one at a time, 
lhia doubl. lhe c:ae& ollhe decompoeilion. and may ali,hlly effect lhe qualHy of lhe lOlulioll. 
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A secondary advantage of using the QR decomposition is that changing 
the values of the data (while leaving the position unchanged) requires only 
O(P) to recompute the solution. While the algorithm is not new, the authors 
hope that this brief disclosure will alert the vision community to its potential 
uses. The algorithm is precisely defined in [Daniel et al. 761 and widely available 
implementations can be found in various mathematical libraries, e.g. IMSL. 

3.3 Definition of the Energy Measure 
The basic form of the energy measure is given by equation 2 except that the 
region of integration may be different than that expressed therein. 

The energy of the surface will depend on the size of the region in IR2 over 
which the energy norm is computed. The two most natural choices are IR2 itself, 
and the convex hull of the data defining the "current" surface. Unfortunately, 
neither is appropriate. For the class used in the initial tests, the integral over 
IR2 is not necessarily finite. I While the energy norm over the convex hull of 
the data defining the "current" surface is obviously finite,.· this choice has two 
difficulties: 

1. The convex hull would continuously change as new data points were added 
to a surface. • 

2. The use of a domain which ends near the data points will allow the addition 
of new points to lower the surface energy. thus the energy will no longer be 
monotonicly increasing, making a region growing method less stable. tt 

3.4 Derivation of Bounds on Energy of Surface 
Given the definition orthe spline as in equation 4, one can symbolically compute 
bounds on the energy. To begin. the exact form of the energy integral is manip­
ulated to explicitly expand the squaring operation and move the differentiation 

I If one conaiden the clau D lIfO, Lhen Lhe enerc nonn ii, by definiLion, finiLe. However. 
Lhe energy value l'I\&y be very Iv,e and thUi may be nwnerically unltable. 

"InLuiLivdy one c&Il auume a LebUile inLeval which may iplore aeta of meuure uro. 
More formally. Lbe definiLion 01 the c1au wu in terms of disLribuLion. and the energy rneuure 
c&Il be defined in a w.tributional aenae .. weD. 

"Intuitivdy LhiI anomaly c&Il be unde'rKood by notin, the followins: 
(a) Swface meru mea.1J'S the wbendinl'" or the .urf'ace in the domain 01 inLqration. 
(b) The definition of the cIa. of Iurf'acea in.Wft that the value of Wthe .urf'aoe" mUit 10 sera 

.. Lbe poin& oC nalua&ion approachea infinity. thUi outaide th. convex hull of the dat.a 
the .urf'aoe will appl"OACh &e!'O. and Lhi. may C&UIe lOme "rinainc" in the .unaoe if the 
data deraity it "low" neal' the edit! 01 the rqion. 

(c) By ma-inc &he dat.a denaity, the value 01 the aunaoe illiide a bounded rq;on c&Il be 
fOl"Ced 10 ~ a plan&r .urf'ace which hal zero enf!l'lY. Thul aner initially buildinl 
a -'ace uainl pain" on acme ~n boundary, &drun, new dua pointa with in the 
,..... e&Il '"push" the tulh mero portion. (Le. bent areM) outside the convex hull. 
1'biI rwWLI in a DOIUIIOn0(4rUc enel'l)' meaaln!. 
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and integration inside the sum, to wit: 

(6) 

dod. r 
By letting the integration be over the square [-B, Bl2 we have can obtain 

{r:7=1 r:J=l 0i . err 
U_88f!8 (JC:r(Z,Y;Zi,Yi)·I<rr(Z,Y;Zj,Yj) (7) 

+2· I<rll(z,Y;Zi,Y;)' Kr,,(z,Y;Zj,Yj) 
+K,,(Z,Y;Zi,Yi)' K,,(z,Y;Zj,Yj)) dz dy };) 

While it would be most appropriate to integrate the terms symbolically in 
the last of the above equations, the authors (and MACSYMA) have been unable 
to obtain a solution. Fortunately, a symbolic solution can be obtained for the 
upper bound using the fact that we can compute: 

I(B,6,t) = f!8f!8 {Krr (Z,Y;8,t)l 
+2·Krl1 (z,Y;6,t) (8) 

+I<,,(Z,Y;6,t)' dzdy}; 

While we will only report on the classes D' H=f and [)3 H=.J., we have 
obtained clOlled form solutions for I( B, 6, t) for various values of m and '1. These 
are given in the following table: 

D'HT 
[)3H¥ 

IJ2H+ 

[)IHT 
[)4HT 

180B'(t' + 8') + 12084 
252B' 

t . (11900B l t6 + (35700B:l 6:1 + 7l400B~)t" 
+(357008'64 + 142800B-46' + 66640B8)t' 

+11900B'68 + 71400B-465 + 66640B86' + 8160BS) 
1710082(,-4 + t4 ) + 342008't'6' + 45600B4(,' + t') + 10640B8 

87300B'(,' + t') + 58200B-4 

Table 1: Table of I(B, 6, t) ror different cluaes offunctions. 
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The choice of norm is significant. The second norm gives zero energy to 
planar surfaces, but large energy to conic sections. Thus it is appropriate when 
the world model is known to be mostly planar. This is exactly the case for 
many man-made objects, such as bent sheet metal, desks, and other rectangular 
scenes. In contrast, the third norm gives zero energy to conic sections, and thus 
it is appropriate when many round objects are in the scene. 

Once the norm is selected we set the maximum energy thresholds according 
to the precomputed energy for prototype shapes in the scenes. A number of 
intermediate thresholds are also used to slowly increase the surface energy. This 
prevents the erroneous segmentations that occur if only the final threshold values 
occur, since it bends the surface slowly. The algorithm therefore places points 
onto the surface where they most easily fit. The next larger threshold is used 
when no more points can be placed within the current one. 

3.5 Heuristics 
Heuristics reduce the cost of the energy-based inethod by selecting points to be 
considered for the various surfaces. Good heuristics should focus the system by 
selecting the points that should be added to each surface. The points selected by 
a heuristic can then be tested for the minimum energy criteria, and only the low-' 
energy points are used. We now discuss several subproblems where heuristics 
help, in particular building the initial surfaces, adding points to them, and 
merging or eliminating duplicate surfaces. 

The system combines two kinds of heuristics. Domain independent heuris­
tics are general enough to provide reasonable results for many scenes, including 
scenes with occluding surfaces, low-energy surfaces and high-energy surfaces. 
We have developed several such heuristics, and describe them below. Domain 
specific heuristics increase efficiency by selecting points according to the ex­
pected scene characteristics, for example if information is available on the cur­
vature of a surface the program can construct an initial solution from the points 
that are "likely" to be on the surface. This provides a good basis for adding 
more points by the energy-based method. Dom"in specific information also can 
be used to set the thresholds for the surfaces. 

Con,"ruction 0/ the initial "6asu' sur/aces. Each surface is initially de­
scribed by a small number of points, between 4 and 30. Good starting surfaces 
are essential for accurate segmentation, and therefore the program must find 
pointa that all lie on the same actual surface. This is done in two steps. First 
a significant sin&le point is found as a "seed" for the basis. Second, a subset of 
ita neighbors in 3-sp&Ce are selected. Ideally each "seed" point should be from a 
different surface. Since we cannot achieve this without knowing the segment~ 
tioa, we inatead .elect the eeed according to the following heuristics. A physical 
exp1aDa&ion of why it i. a pd heuristic follow8 each one: 

• Pick the ne&I'eG point (physically, this is a point on the cloeest. object). 

• Pick the farthest. point. (physically, a point on the moet distant. object). 

• Pick randomly, but not near any seed value that has already been chosen. 
11 



• Pick a point near to a specific XY coordinate on a grid (appropriate when 
approximate object locations or distributions are known). 

• Pick the point that is farthest from one picked previously (span as much of 
the scene as possible). 

• Use a clustering technique that selects t~ the point that has the most 
neighbors which are within the average inter-point distance. since these are 
significant as the center of an object. Use the method to obtain peripheral 
points by picking the point with the fewest number of neighbors. 

The lowest energy surface is then built from the seed and a subset of the 
neighboring points. This entails a combinatorial search of the M near neighbors 
for the lowest energy N element surface. The starting surfaces are identified by 
selecting an "interesting" point arid its neighbors in 3-space. We then perform 
an exhaustive search of the M nearesL ~bors to bWld-N~t surfaces. If M 
is too small the constructed surface may span several actual s~rfaces. Likewise, 
if N is too small the resulting surface will not be sufficien£ly descriptive to 
permit accurate selection of points. . 

It is important to restrict the search to the near neighbors becatse it is oth­
erwise quite easy to build large nearly.planar surfft.ces that cut through several' 
surfaces. Moreover. the points must not be too close to each other because the 
resulting reconstruction would be highly distorted by surface noise. Otherwise 
the points are not distinguishable in XY coordinates but the resulting surface 
can have huge energy due to the variation in Z. which will be quite relative to 
the difference in XY values. The Z values could be due to noise or to multiple 
surfaces. 

The algorithm can recover from incorrect starting surfaces. First, the 
smoothness assumption identifies as erroneous any surface that has a large en­
ergy with a small number of points. These surfaces can be pruned and the 
points reused on other surfaces. 

Point !eiection: what pomt to add'! Once the initial basis surface has been 
constructed. points must be selected and then added to the surface which can 
accept them with minimum increase in energy. The exhaustive method requires 
N'J m update operations (for N points and m surfaces) at a cost of f{2 per 
update. This N4 cost is exorbinate, and therefore we first e!timate the energy. 
We have been successful with an estimation method that considers only the 
points which are near to some point already on the surface (we will describe 
this shortly). The nearness criteria also prevents the erroneous addition of a 
non-surface point that just '"happens" to fit onto a partially developed surface, 
for example with occluding transparent surfaces. 

A point is near a surface if the distance to some point on the surface is leu 
than hall the diagonal of the box that bounds the points already on the surface. 
The point is temporarily iptored if it is too far from the surface, and is considered 
at a later iteration after the surface haa accepted closer points (and the bounding 
box i.a larger). The near points are then ranked by a weighted distance formula. 

12 

--~ 

~: 
~. 

::J~ 



This combines the distance to the nearest point already on the surface, with tbe 
, proximital distance from the point to the partially reconstructed surface. The 
points are then added in order of increasing cost sub1ect to a global threshold. 

Culprit identification: when and how to pick point.! to delete'? Misclassifi­
cations of data during the incremental addition of points to surfaces results in 
excessively large surface energy. It is then important to delete some point(s) 
from the surface. In general the point which mak!18 the largest contribution to "­
the energy does not belong to the surface and is the classification error. Thus 
it should be deleted. Ttii exhaustive method to find t~-point (i.e. try each 
possible point) is uneconomical. Therefore we need some way to predict which -
point is the "culprit" responsible for the excess energy. ,"3':::--

A good indicator of the "culprit" is the the vahle of Q 1n the linear system 
which recovers the sp~ine parameters:.1ntuitively this is because a large Q makes 
a large contribution ~to the ener.-.we have showri'expiPhnentallj "that an 
incorrect data "point is associated with a large alpha value. ~~We use cwprit 
deletion by removing the point" with largest Qafter every 10 insertion&.:'" If 
a point is erroneously removed it can still be. added back -in a 8UbseqU~nt add . 
operation. This is because the increase in energy at each step ~a g009 predictor, ' :. 
of.e correct segmentation. - -" ~ ,~: 

Segmentatioa: when to create allew nrface? We h&ve investiaated two .~, 
methods: first or completely building one surface at a -time, andaecond.:.of ,~ 
building all lurf-. simultaneously by Jradually increasing, the. globa! enefB..; ,";-. 
thntahold. The second method ~ves significantl>: beLter result.a thaa the first,,' ~ 
since it completes all low-energy rAuaificaU-.a before ~ incf-eaaes t.heeneq,;y."_ 
The first method 'can misclassify -~hen a point can be on- either SI with large -.­
energy or on S1 with lower energy. The approach of building all surfaces may 
also improve performance of the parallel implementation. However, the simul­
taneous building of multiple surfaces will construct redundant surfaces, and also 
place co-surface points onto different reconstructions. This problem is solved by 
merging similar solutions as described below. 

Merging: when and how to combine nrface$ into one9 Physically close 
surfaces should be merged. For example, two surfaces are "close" if both in­
terpolate to the same Z values at all XY values. The reason we construct 
redundant copies is because we begin with many initial surfaces, and several 
of these initial surfaces may be from the same actual surface. They should be 
merged because the points are actually from the same surface and should be 
clasaified &I such. 

We efficiently tea~ if two surfaces should be merged by interpolating the 
surfacet SI and S, on a sparse and fixed X - Y grid, and then constructing & 

new Imace from these samples. We use precomputation to efficiently compute 
the enersr oC such & system, which reduces the computational expense to simple 
data interpolation (at the grid values) and back-substitution. This is much 
cheaper than building & new surface by adding each point to it. 

A surface is considered for merging only if it has at least the median number 
13 



of data values on iL,The merge cost of all such pairs is computed, and the merges 
are performed in or~ of increasing energy. Each point of the less-dense surface 
is ~onsidered for the denser surface, and is added if the point dOes not exceed 
Ie times the median energy of the less-dense surface. In this manner erroneous 
points will not be merged, but instead are returned to the pool of unprocessed 
dli!a and will be placed onto a surface in a subsequent iteration. 

Pruning: when .,hould a surface be eliminated? Sometimes a surface is 
incorrectly started from the data on several different scene sutfaces. The energy 
of such surfaces is generally high; and thus the surface does not accept many 

'<f 
additional data points. These sparse surfaces are discarded and the points are 
reused on some other surface. The program thereby recovers from false starts 
by resegmenting data that does not produ~ a surface., 

3.6 Parallel Implementation ',,' ','_ '_, . 
An prototype o~&mentation is operation~' th'; 'in~li p;;alJel~[nec- -¥' 
tion Machine. The CM-2 has 65.536 processors with 512 megabytes of ~emory, 
and a 300 gigabyte/sec memory<'i>andwidth. This gives 9K bytes RAM pePli 
processor. Although the processors are SI!Iall I-bit PEs,the typical aggregate ...... 
operation speed is 2500mfiops for double preeision.on a 4Kx4K matrix mlJlti-' , 
plication, and 5000 mftops for a dot. product. For a 'complete technical summary -
see [Thinking Machines]. • . . - ": 

We have implewtPnted for iJlCM-2 the updatable QRalgoritbm (or solvins " 
."" linear systems, cOMtrw:tion of the linear system (equaUQp' 5), evaluation of 
'"!" surface energy in par. ud adding points to a surface~ This 80Ctware baa .:iI 

processed data from & number of IY,nthetic surf'&ces indudintspherea a,Il,d,plapM. " 
The software is written in the "Lisp langua~; ''W:: .• ..... .- ~ 

A major ~leneck is,the combinatoriatsearch'for'the inhi&J basis sur- ,~ 
faces. Since th~ amount of sensor data exceeds the PE capacity, the algorithm~ 
distributes a different subset of the dat.a to each prOCe5Sor. In one;tiata-parallel';:, 
subroutine each proeeaing element simult&neously construct.a the minimum en­
ergy surface that fly ita sublet. The lowest eqergy solutions are retained .tbe_ 
starting-baaea that accept additional data points;, . ~- -' ~ _ 

We need the para1le1iJ!1ple~ntatio~:,t:.o PfOeeU d~ much fu&er than wi;~ 
can do with a- uniploceleor implementuiOn. This should' allow tis to Pro<:ell.:.' 

!~~;::~T~ =t =u~t:ft=:==i~S~~~i~r.~~~~~, 
properties of aUpGin"c:&n be ""lored,simul~aneoual1.: -~ : ',' -':;'.' 

.,... -'-,. -~ 

4 The plu_ Uid minuses ,- ~ ~ ~ .:~ '.='-' 
Tbia IKtion critie.lly ~views the algorithm described in thfa paper pointing out 
some of the major advantages +, major problema -, and some aspects which 
can be viewed as either a pro or a con ±. 
+ The segmentation proceal is based on surfaces having low bending energy, 

a heuristic which can be directly related to the physical procesa of surface 
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formation. Since this heuristic is often used in surface reconstruction, it is 
a natural for segmentation as well. Because we do not attempt to detect 
discolltinuities, the algorithm is well b:haved. for very sparse dat~. and;\~ 
handles transparent and occluded objects with few problems._ - . .c_ 

+ The functional form of the reproducing kernel-based spline allows for analytic 
computation of bounds on the surfa.ce energy, thus making the segmentation 
process reasonably computationally efficient. The functional form of the 
energy bounds are quite simple. 

+ While not presented here, the algorithm can easily be extended_ to handle 
the. case of derivative information (e.g. surface orientation ef curvat.ure) in 
addition to depth data. The extension is accomplished by allowing"i more 
complex surface reconstruction scll,eme, see [Kender Lee Boult 85]. 

__ ± T~e comple~ty o~ ~he a!gorithm, w~h th~ selection ~e~rist.!co~~ 
~ Imal energraddlt.lon, IS 0(n4) for n pomts, and- wltKthe'othe~ics 

it is 0(03). For very sparse data, this is a signiflcan~savinlover discrete 
regularization costs, but as the data densities grow, the algorithm becomes 
too costly. :-%... -~~: 

± The algorithm does not recover "boundaries" for.leJfIWlted diiia.Thia~_ 
advantag~ because it allows for transparent. a.nd/or occludtng surfaces, :':! 
and because data is generally sparse (and ~t\en noisier) near th~ boundary 
resulting in a poor boundary definition. This is.~ diadvaft&agibeeau.ae it --,.e: 
requires a secondary processes (pOllllibly using ideas borroweclCrom work .­
on subjective contour perception or Gestalt psy~l.} . .&o- determine t.he- .:--.1& 
actual-houndary. = ~ ~. .,,'-. - • ... .. 

- -.- ; ~.' - --'" - . :~~ 
± The algorithm can easily be· adapted ~ dift'erent ~asu~of s~r:~_ s_moo~~' _~ 

ness. This is advantageous because It allows for greater flexlblhty, but diS­
advantageous because determination of the most appropriate measure is 
difficult. The measure used in the experiments presented herein has proved 
to be a reasonable one. 

± The algorithm is based on reproducing kernel-based splines which are es­
sentially a global surface reconstruction algorithm and provide for efficient 
serial implementation for sparse data (say < 500 points per surface on a 
512by512 grid). If there are more points, the algorithm can be extended to 
use local reproducing kernel-based splines (loosely bued on [Franke 82]), 
at the coet of making the surface definition localized to patches. 

± The reprodueinl kernel-baaed spline with updates to the QR factorization 
provide an efficient serial implementation. However, they do not suggest 
an efficient parallel implementation other than the trivial extension of doing 
the matrix computations in parallel. Future work may explore the poai­
bility of uainl parallel multi-grid techniques to solve a diseretized version 
of tbe surface reconstruction problem which can then be used in the- sel­
ment.ation allorithm. Unfortunately how one evaluates energy in this CMe 

is still unclear. 
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± The order of processing of points currently effects the resultant segmentation 
in all but the exhaustive heuristic. This is especially true when two surfaces 
come into direct contact and join in a rather smooth fashion (e.g. a wedge) 
This may actually be used to help in the segmentation prOCe8lr by processing 
the data-tn multiple orders and using any difference in "ata labeling to 
suggest a refined segmentation. 

The algorithm cunently uses a threshold on the energy bounds for surfaces 
in the scene. A schedule of surface thresholds is currently manually set, 
and future work (in progress) attempts to-redress this issue. Luckily, this 
threshold for energy-based ~entation does not seem too sensitive as say 
thresholds for segmentation of an image based on i~tensity, e.g. (varia-tions 
of 10% of the threshold are generally indistinguishable; -

The algorithm assumes one is interested in smooth suuaces and willDlO.t 
likely fail when this assumption is not sa.tisfied. UnfoJ¥nately, the-~ 
rithm cannot even determine if the assumptions are aatisft'id (For example, 
consider a rough surface similar to a p~ covered with a luge number 
of small densely packed cones. If the data supplied to the algorithm are 
points on the background &nd the peak values·of the cones, the algoriUun­
is hopeleuly doomed to predict two planarsurfa.ces.) 

The algorithm is surface baled, an~ e&nnot deal wyb data from multiple 
views of &- volumetric object. Additionally, it will olen fail if nowe is such, 
that a single Z,1I loealion is uaiped multiple data values (of .the same 
type). . ; 

:> Experime~t.tion-
This section describes someorthe initiaiexperimentation withC"Yhe~meiitation: 
algorithm. The reader should remember that the exPe~imentation involves some 
human interaction (to determine thresholds) and most of the examples highlight 
the systems best behavior. The experiments we run on a Sun Spard workstation 
configured with 12M of memory. 

We processed three sets of data. First is scene of synthetic data for three 
superquadrie surfaces which are both overlapping and with very similar shapes. 
The resulta show excellent differentiation between the surfaces. However, this 
is sensitive to the heuristics which pick the initial basis surfaces. It is otherwise 
possible to hypothesile an initial surface which spans several actual surfaces. 
Such surfaces will eventually have excessive energy and be pruned, but there is 
a co.t in 10lt. procaaing time in this event. Second, several seta of laser range 
finder data have been processed from; laser data from the Purdue Vision Lab is 
due to Avi Kak, and alto laser data from the University of Utah. 

For t.he Iynt.hetic data we show a needle plot of the initial data, a needle 
plo& of the aepnent.ed dat&, the reconstructed surfaces, &nd statistics on the 
number of wrone eesmentations. For the laser data we show the same plata but. 
give atatist.iea bued on hand-segment.ation of the data. 
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Figure 1: 
The data shoWlt;oneedle plata of the segmentation of act.ual laser ranM:Jindet-· 
data. Data is from thtt Utah range database[_:.85f. The upper-righe-lhows 
the unsegmented data consisting of a cube, a~cylinder, and a sphere.on a table. 
The lower righf'is the-top of the sphere, thi:20weT left is the'-top or the cube 
(with a piece of tbe table), and thyp~ left is the rim of the cylinder. Not 
shown here are other p~es of the segmentation, such as the SIde of the-cylinder. 
Note the algorithm makes no assumption about the surface shape or curvature, 
and does not recover planar patches! 

The discussion of each example appears as the caption to the figures show­
ing the initial data and the reconstructed surfaces. The initial data is presented 
as perspective views of the depth points represented as needles in space. 

6 Conclusions and future work 
This paper has presented a new algorithm for segmentation of depth data. The 
algorithm is based on adding points to a surface only when doing so does not 
incrf'a5e the surface bending energy above a user determined threshold. The 
algorithm has been experimentally tested and in most cases correctly labels all 
data points. The algorithm does not determine boundaries between segmented 
surfaces which allows it to handle extended objects occluded by other objects 
and transparent objects. 
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Figure 2: This shows a needle plot of three overlapping spheres. The data was 
generated with radius and center as follows. The upper right .howl the unseg­
mented data. The recovered segments are listed to the left. The parameters 
of the spheres are: Top surface: r = 0.8, C = (0.0,0.0,1.0). Middle surface: 
r = 0.25, C = (0,0,0). Bottom surface: r = 0.25, C = (-0.5, -0.5, -0.5). Each 
surface is sampled at 150 points on a spherical coordinate system and randomly 
shifted from the grid. Uniform random noise in the range [-0.05,0.05] was 
added to the z values of the data. 
"Segment 0" is the smallest sphere. with one erroneous point. "Segment 1" is 
the second sphere, with 5 erroneous points. "Segment 3" is the outer sphere. 
Note that segments 5 and 6 are clearly errors and can be partitioned into groups 
of nearly uniform length. 
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Figure 3: 
This shows all the recovered surfaces from the above example. The upper image 
shows the reconstructions of segments 0, 1 and 3. The lower image shows all 
the images. The five leftmost surfaces correspond to correct segmentation. The 
sixth surface started with the erroneous zero-energy basis surface of a horizontal 
plane. Points from the other surfaces then deformed it at the lower edges. The 
peaks are due to extrapolation error in the graphic rendering. This corresponds 
to "segment 5" in the needle plot in the previous figure; note the needles can 
be partitioned into two groups of nearly-equal height. 
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Figure 4: This shows laser range finder data for three round surfaces (Purdue 
Vision Lab data). The unsegmented data is in the upper right, and the segments 
are to the left. 

20 



Figure 5: This shows the reconstruction and segmentation of the laser data 
for three round surfaces without culprit elimination. The first, second, third, 
and last are the top sphere. The fifth, sixth and ninth correspond to a middle 
cylinder shape. The seventh and eighth are a planar section in the initial data. 
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Figure 6: This shows several planar and slanted surfaces. Note there is a circular 
cutout in the slanted surface. The original data is in the upper right, and the 
segmentations to the left. (Purdue Vision Lab data) 
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Figure 7: This shows reconstruction of the planar and slanted surfaces. 
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A problem with the current algorithm is that the energy of a surface may 
become large not because of the last point added, but because of some point 
previously considered. Future work will investigate additional ways of identify­
ing the "culprit" data (probably using a local energy measure) and removing 
that point rather than the most recently added point. This will also help allevi­
ate problems caused when the "initial basis" for the surface contains data from 
different surfaces. 

One of the most obvious failings of the approach is the current dependence 
on a global thresholding technique to realize the segmentation. Such a process 
is doomed to be troublesome unless a systematic determination of the threshold 
is possible. Future work will address this issue and will also investigate the use 
of adaptive thresholding (depending on the actual data) and the use of other 
properties, say rate of change of energy, as the means of realizing segmentation. 

The algorithm as presented has little theoretical basis for the use of energy 
as an indicator for segmentation. Of course, !It a worst case setting, segmen­
tation is an unsolvable problem. However, on the average there is still hope of 
determining a theoretical basis for segmentation. Future work will explore this 
idea, and attempt to show that surface energy can be related to the probability 
of all data-points being on the same surface. This wi11likely borrow from the' 
work of [Kimeldorf and Wahba 70J, where a fundamental relationship is shown 
between reproducing kernel-based splines and optimal Bayesian estimators. 

While the method, as presented, is limited to depth data, future work will 
also address the implementation issues which remain before derivative inform&­
tion can also be incorporated. (The related theoretical issues are already being 
resolved). 
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