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Energy Based Sensor Network Source Localization via

Projection onto Convex Sets (POCS)
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Abstract— This paper addresses the problem of locating an acoustic

source using a sensor network in a distributed manner, i.e., without
transmitting the full data set to a central point for processing. This
problem has been traditionally addressed through the maximum likeli-
hood framework or nonlinear least squares. These methods, even though

asymptotically optimal under certain conditions, pose a difficult global
optimization problem. It is shown that the associated objective function
may have multiple local optima and saddle points and hence any local
search method might stagnate at a sub-optimal solution. In this paper,

we formulate the problem as a convex feasibility problem and apply a
distributed version of the projection onto convex sets (POCS) method.
We give a closed form expression for the projection phase, which usually
constitutes the heaviest computational aspect of POCS. Conditions are

given under which, when the number of samples increases to infinity or
in the absence of measurement noise, the convex feasibility problem has
a unique solution at the true source location. In general, the method
converges to a limit point or a limit cycle in the neighborhood of the

true location. Simulation results show convergence to the global optimum
with extremely fast convergence rates compared to the previous methods.

I. INTRODUCTION

The problem of locating a source that emits acoustic waves using

a wireless network of acoustic sensors has been addressed by several

authors (see [1] and references therein). This problem has been

traditionally solved though maximum likelihood, which is equivalent

to nonlinear least squares estimation when the observation noise

is modeled as a white Gaussian process. The maximum likelihood

estimator is asymptotically optimal, it can be applied to both the

cases of known and unknown source power, and offers a natural

generalization to the multiple sources case [1]. However, there are two

major drawbacks to the method of [1]: (a) it requires the transmission

of a certain statistic from each node in the network to a central point

for processing, and (b) the solution of a global optimization problem

is required for the derivation of the estimator.

Rabbat and Nowak [2], [3] proposed a distributed implementation

of the incremental gradient algorithm to solve the nonlinear least

squares problem in a distributed manner, i.e., without the need to

transmit the data to a central point for processing. The advantage

of in-network computation relative to the fusion center approach in

terms of communication bandwidth and energy consumption is well

documented in the literature (see e.g. [4] and references therein). As

in [4] our premise is that as the network becomes denser, it is cheaper

to perform several communication cycles across the network than to

transmit the data from each sensor to a central point.

A drawback of the method in [2], [3], or any other local search

method, is that it is sensitive to local optima and saddle points. As

will be shown below, the objective function associated with this

problem is indeed multi-modal and may have a number of local

optima and saddle points. Therefore, while a single communication

cycle requires less energy and bandwidth than transmitting the data

to a central point, solving a global optimization problem may require

The material in this paper will be presented in part at the 2005 IEEE
International Conference on Acoustics, Speech, and Signal Processing.

This research was partially supported by DARPA-MURI grant ARO DAAD
19-02-1-0262.

The authors are with the Department of Electrical Engineering and
Computer Science, University of Michigan, 1301 Beal Avenue, Ann Ar-
bor, MI 48109-2122 USA, Tel: 734-647-2045, Fax: 734-763-8041, (email:
dblatt@umich.edu; hero@umich.edu).

a large number of cycles, rendering the distributed implementation

impractical.

In this paper the problem is formulated as a convex feasibility

problem instead of nonlinear least squares. Necessary and sufficient

conditions are given under which, when the number of samples

increases to infinity or in the absence of measurement noise, the

convex feasibility problem has a unique solution at the true source

location.

To solve the convex feasibility problem, we propose the projection

onto convex sets (POCS) method [5] (see also [6] Ch. 5). It is shown

that this method can be implemented in a distributed manner, i.e.,

each sensor performs the bulk of its computations based on its own

data and it is not required that the full data set be sent to a central

point for processing. As in Nowak’s distributed EM algorithm [7],

a number of communication cycles across the network is sufficient

for the implementation of the estimator. A closed form expression is

given for the usually computationally demanding projection phase of

POCS, which leads to a computationally efficient implementation. For

a finite number of samples, it is shown that convergence to a point

or a limit cycle in the vicinity of the true source position occurs.

Simulation results show global convergence of the proposed method

in contrast to a local search method, with extremely fast convergence

rates.

II. PROBLEM FORMULATION

The energy attenuation model of [1] is adopted. Consider a

sensor network composed of L sensors distributed at known spatial

locations, denoted rl, l = 1, . . . , L, where rl ∈ R
2. Generalization to

R
3 is straightforward but is not explored here. A stationary acoustic

source is located at an unknown location θ∗ ∈ R
2. Each sensor

collects n noisy measurements of the acoustic signal transmitted by

the source. Neglecting the propagation time from the source to the

sensors, the received signal is modeled by

xl(t) =
a(t)

||rl − θ∗|| + wl(t), t = 1, . . . , n, l = 1, . . . , L

where a(t) is the intensity of the source signal measured 1 m from the

source, and wl(t) is a zero-mean white Gaussian noise with known

variance σ2, which is independent of a(t). The estimation of the

source location is based on the source energy estimates at each of

the sensors

zl =
1

n

nX
t=1

x2
l (t) =

A

||rl − θ∗||2 +
2

n

nX
t=1

a(t)wl(t)

||rl − θ∗|| + vl

where

A = 1/n
nX

t=1

a2
l (t) (1)

and vl = 1/n
Pn

t=1 w2
l (t). Neglecting the cross term due to the

independence assumption, invoking the central limit theorem to

model vl, and subtracting the assumed known noise variance σ2, we

arrive at the energy attenuation model of [1], which was validated

through an experiment in [8],

yl =
A

||rl − θ∗||2 + vl, l = 1, . . . , L (2)

where vl is a zero-mean white Gaussian noise with variance 2σ4/n.

We first assume that A is known. This assumption is valid when

an additional sensor is added to an already deployed network and the

new sensor transmits an acoustic signal with known power to enable

the network to estimate its location. The case of unknown source

power is treated in Sec. IV.
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Fig. 1. The negative log of the nonlinear least squares objective function.

The maximum likelihood estimator (MLE) [1] is found by solving

the nonlinear least squares problembθML = arg min
θ∈R2

LX
l=1

�
yl − A

||rl − θ||2
�2

. (3)

The fact that the objective function is a sum of L components

was exploited in the implementation of the distributed incremental

gradient method in [2], [3]. However, since the objective function

has multiple local optima and saddle points, the incremental gradient

method may stagnate at one of these sub-optimal solutions instead

of converging to the optimal one. A realization of the negative log

of the objective function in (3) is presented in Fig. 1. The details of

the simulation that generated this figure are given in Sec. V. It can

be seen that the objective function has many local optima and saddle

points and that the global optimum is peaked.

An alternative formulation of the problem of estimating the

source’s location is the following. Consider the l summands in the

objective function (3). It is easily seen that the function

fl(θ) =

�
yl − A

||rl − θ||2
�2

(4)

obtains its minimum on the circle

Cl =
n

θ ∈ R
2 : ||θ − rl|| =

p
A/yl

o
. (5)

Let Dl be the disk defined by

Dl =
n

θ ∈ R
2 : ||θ − rl|| ≤

p
A/yl

o
. (6)

We propose to solve the source localization problem by letting the

estimator be a point in the intersection of the sets Dl, l = 1, . . . , L,

that is, bθ ∈ D =

L\
l=1

Dl ⊂ R
2. (7)

Note that due to observation noise the intersection D might be empty.

In this case, our estimator is any point that minimizes the sum of

distances to the sets Dl, l = 1, . . . , L, that is,bθ = arg min
θ∈R2

LX
l=1

||θ − PDl
(θ)||2 (8)

where for a set S ⊆ R
2 and a point x ∈ R

2, PS(x) is the orthogonal

projection of x onto S, that is,

PS(x) = arg min
y∈S

||x − y|| (9)

where || · || is the Euclidean norm. Observe that (8) includes (7) as

a special case when a minimum value of zero is attainable, and note

that in general bθ 6= bθML. Since the sets Dl are convex, both the

consistent and inconsistent convex feasibility problems, (7) and (8),

respectively, can be solved via the POCS method to be described

below.

Before describing POCS, we give necessary and sufficient condi-

tions for the consistency of the estimator (8). Denote by H the convex

hull of the sensors’ spatial locations, i.e.,

H =

(
x ∈ R

2 : x =
LX

l=1

αlrl, αl ≥ 0,
LX

l=1

αl = 1

)
.

It is possible to show geometrically (see Fig. 2) that when the number

of samples n increases to infinity, or in the absence of measurement

noise, the convex feasibility problem (8) has a unique solution at the

true source’s location, denoted by θ∗, if and only if θ∗ lies in H, that

is,

L\
l=1

�
θ ∈ R

2 : ||rl − θ|| ≤ ||rl − θ∗||
	

= {θ∗}

if and only if θ∗ ∈ H
where L ≥ 2. As seen in Fig. 2 (bottom), when the source lies

outside H, even in the asymptotic case there is no unique solution

to (8). Rather, there is a continuous set of points (the shaded area) that

minimize the objective function. In this situation, our formalization

is not appropriate for estimating the source location.

In the general case of finite number of samples and finite signal to

noise ratio, one of two cases can occur: (a) D 6= ∅, and (b) D = ∅.

In the former, the POCS method is guaranteed to converge to a point

in D. In the latter, the POCS method converges to a limit cycle in

the vicinity of the point that minimizes the sum of distances to the

sets Dl (6), or, when a certain sequence of relaxation parameters are

used, the method converges to the optimal solution.

III. DISTRIBUTED IMPLEMENTATION OF POCS

The POCS method [5], [6] is given by the following algorithm.

1) Initialization: θ0 is arbitrary.

2) Iterative step: For all k ≥ 0,

θk+1 = θk + λk
h
PDκ(k)

(θk) − θk
i

(10)

where {λk}k≥1 is a sequence of relaxation parameters sat-

isfying for all k, ǫ1 ≤ λk ≤ 2 − ǫ2 for some ǫ1, ǫ2 > 0,

κ(k) = k mod L, and PS(x) is defined in (9).

Usually the projection operator is the most computationally demand-

ing element of POCS. In our application, however, a closed form

expression is available for (10). Clearly, if ||θ − rl|| ≤
p

A/yl then

θ ∈ Dl and PDl
(θ) = θ, otherwise,

PDl
(θk) = rl + [α cos(φ), α sin(φ)]T (11)

where α =
p

A/yl, and φ = atan(θk(2) − rl(2), θk(1) − rl(1)),

where atan(·, ·) is the four quadrant inverse tangent function, and

for a vector x ∈ R
2, x(1) and x(2) denote its first and second

coordinates, respectively.

When ||θk − rκ(k)|| >
p

A/yκ(k), the vector
h
θk − PDκ(k)

(θk)
i

points in the same direction as ∇fκ(k)(θ
k), the gradient of fκ(k)

at the point θk. Hence, the POCS method is closely related to the
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Fig. 2. Source, denoted by a black dot, is located inside (top) and outside
of (bottom) the convex hull H of the sensors’ locations, denoted by crosses.

incremental gradient method [9, p. 109], which was implemented

in [2] and [3] to solve (3). The incremental gradient method generates

a sequence {θk}k≥0 according to

θk+1 = θk − µk∇fκ(k)(θ
k) (12)

where µk is a positive step size, possibly depending on k. The

difference between the two methods is that when ||θk − rκ(k)|| ≤p
A/yκ(k), the POCS iteration is θk+1 = θk, whereas the incre-

mental gradient iteration is a step in the direction that points from

rκ(k) to θk, i.e., a step towards the circle Cκ(k). Therefore, the incre-

mental gradient method (12) is more closely related to Kaczmarz’s

algorithm [6] (also known as the algebraic reconstruction technique)

than to POCS. In particular, if the step size µk is determined by a line

search in the direction ∇fκ(k)(θ
k), then the iterates are identical to

those obtained when applying Kaczmarz’s algorithm to the problem

for finding the intersection of the circles {Cl}L
l=1. In contrast to

the global convergence property of POCS, Kaczmarz’s algorithm is

known to converge only locally when applied to nonlinear problems

such as finding the intersection of the circles {Cl}L
l=1.

The relaxation parameters λk (10) play an important role in the

convergence of the method. At the first phase of the implementation

of the POCS method, the relaxation parameters are set to 1. As the

method progresses, a convergence criterion is repeatedly checked.

If convergence to a single point is detected, e.g., by verifying thatPL

l=1 ||θk−l − θk−l−1|| is smaller than a threshold, it is concluded

that D 6= ∅, and the final estimate bθ is set to the limit point. If

convergence to a limit cycle is detected, i.e., each sensor converges

to a different value, it is concluded that D = ∅ and the method enters

phase two. At phase two the relaxation parameters are decreased at

a rate of 1/k. In [10], it is shown that this relaxation sequence leads

to convergence to the point x that minimizes the sum of squared

distances to the sets Dl, that is, to bθ defined in (8). It should be

noted that if the transition to phase two occurs prematurely, this

convergence result still holds. The effect will be a slowdown of

convergence. A sub-optimal but computationally cheaper alternative

to phase two is to approximate bθ by the arithmetic mean of the points

in the limit cycle. This simple approach was used in the simulation

reported in Sec. V. Due to its global convergence properties, the

estimate resulting from the POCS method could also be used to

trigger a local search for the nonlinear least squares estimator such

as the one in [2]. However, we cannot guarantee that this initial

point falls within the attraction region of the global maximum of the

likelihood function.

Note that all the information required for the computation of

(11) (or (10)) is available at sensor l and hence a distributed

implementation is possible. Following [7], assume without loss of

generality that the indices l = 1, . . . , L correspond to a cycle through

the network. Let sensor 1 be initiated with a pre-specified initial value

θ0. Sensor 1 generates θ1 through (10) and transmits θ1 to sensor 2.

Upon receiving θk from sensor κ(k), sensor κ(k+1) calculates θk+1

and transmits it to sensor κ(k + 2). The information cycle continues

until the detection of convergence to either a limit point or a limit

cycle. The convergence detection criteria can be easily implemented

in a distributed manner as well. Phase two can be implemented in a

similar way.

A. Communication Bandwidth and Energy Consumption

Consider first the centralized approach, in which each sensor

transmits its coordinates rl ∈ R
2 (unless these are known a priori)

and its energy estimate yl (2) to a fusion center. Assume that the

network is distributed over the cube [0, 1]2. For a fixed quantization

level of the spatial coordinates and energy estimates, conveying

the information from the sensors to a fusion center requires the

transmission of O(L) bits over a distance of O(1) per bit [4].

In our decentralized implementation of the POCS method and

in the decentralized implementation of the incremental gradient

method [2], [3], information is conveyed in communication cycles as

described above. In every communication hop, a sensor transmits the

current source location estimate to the next sensor in the cycle. The

spatial coordinates of the sensors do not need to be shared. For a fixed

quantization level of the source location estimate, performing a single

communication cycle across the network requires the transmission of

O(L) bits over a distance of O(
p

log2 L/L) per bit [4]. Finally, the

total number of bits is obtained by multiplying the number of bits

per cycle by the expected number of cycles.

From the above analysis it can be seen that the communication

burden grows linearly with the number of sensors in the centralized

approach and sub-linearly (
√

L log L) in the decentralized approach.

To compare the two approaches for a fixed number of sensors L,

however, one should factor in the number of cycles. As shown in

Sec. V the implementation of the incremental gradient method [2],

[3] may require hundreds of cycles to find the global maximum

of the non-linear objective function (3) and hence has advantages

with respect to the centralized approach only in dense networks. In

contrast, it is shown that for the same scenario the distributed POCS

implementation requires as few as 4 cycles to achieve convergence,

and hence, leads to a reduction in energy and bandwidth requirements

as compared to the centralized approach for sparser networks.
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IV. THE CASE OF UNKNOWN SOURCE POWER

When the source is not collaborating with the network, the signal

power A (1) is unknown. To eliminate the dependency of the

optimization problem on A, an energy ratios based source localization

method was proposed in [8] (see [1] as well). In this section it is

shown that it is also possible to represent the estimation of the source

location based on the energy ratios as a convex feasibility problem

and hence solve it in a distributed manner as described in Sec. III.

Considering the noise free problem, Li and Hu [8] showed that the

ratio between the energy readings at two sensors, yl and yk, defines

a circle or a hyperplane on which the source may lie:

ϕlk =
p

yl/yk =
||θ − rl||
||θ − rk||

. (13)

When ϕlk 6= 1, the resulting circle is given by

{θ : ||θ − clk||2 = ζ2
lk}

where clk = (rl −ϕ2
lkrk)/(1−ϕ2

lk), and ζlk = ϕlk||rl − rk||2/(1−
ϕ2

lk). When ϕlk = 1, (13) defines the hyperplane

{θ : θT vlk = τlk}
where vlk = rl − rk, and τlk = (||rl||2 − ||rk||2)/2. In the presence

of observation noise, given a set of L1 + L2 ratios, the location of

the source is estimated by minimizing the cost function

J(θ) =

L1X
l1=1

(||θ − cl1 || − ζl1)
2 +

L2X
l2=1

(θT vl2 − τl2)
2

(14)

where L1 and L2 are the number of circles and hyperplanes,

respectively. In [1], this estimator is called the energy-ratio nonlinear

least squares.

To formulate the problem of estimating the source location from

the energy ratios (13) as a convex feasibility problem, assume without

loss of generality that ϕlk ≤ 1 (otherwise replace it with ϕkl). Define

the discs eDl1 = {θ : ||θ − cl1 ||2 ≤ ζ2
l1
}

and the hyperplanes ehl2 = {θ : θT vl2 = τl2}.
Hence, the POCS method can be implemented in a distributed manner

to estimate the source location by finding a point in the intersection

of the convex sets 0� L1\
l1=1

eDl1

1A\0� L2\
l2=1

ehl2

1A .

Note that the projection onto a hyperplane has a closed form

expression as well. To optimize the energy consumption, the energy

ratios should be selected based on geographical vicinity.

Li and Hu also proposed to replace every two circles in (14) with

a single hyperplane and then solve the resulting linear least squares

problem. This approach can also be converted to a convex feasibility

problem.

V. SIMULATION RESULTS

This section presents a simulation of a sensor network of L = 5000
nodes, distributed randomly in a 100m×100m field. At each sensor a

measurement of the acoustic source energy was generated according

to (2). The source is located at θ∗ = [50, 50]T and emits a signal with

A (1) set to 100. The energy measurement noise variance is 2σ4/n =
1. Following [11], [3], not all sensors participate in the estimation

task. At an acquisition phase, each sensor decides whether or not a

source is present using a simple threshold test. Only those sensors

whose energy estimates yl (2) are above 5 participate. The threshold

5 corresponds to an average SNR greater than 7dB at the active

sensors and it was chosen to balance the number of active sensors

and their associated SNR levels. The performance of the algorithm

was insensitive to small changes in the threshold. When this threshold

is used the average number of active sensors is 32 with standard

deviation of 5. In the realization presented here, L = 31 sensors

detected the source and entered the estimation phase.

A realization of the objective function associated with the MLE (3)

is shown in Fig. 1. To optimize the viewing angle of this figure,

the negative log of the objective function is presented. Hence, the

optimum point is the global maximum rather than the minimum,

which appears close to the true location of the source. The objective

function has multiple local optima and saddle points, which impose

difficulties on any local search method. In Fig. 3, the paths taken

by the steepest descent (SD) method initiated from multiple points

on a grid are presented on top of the contour plot of the nonlinear

objective function (3). The SD method could also be implemented in

a distributed manner, e.g., distributed Fisher scoring [12]. The initial

points are depicted by crosses, followed by a line which follows

the path taken by the algorithm, and ends at the convergence points

depicted by circles. It is seen that only when the method is initiated

close to the global optimum at the center of the plot, does convergence

to the global optimum occur. The method mostly stagnates at local

optima or saddle points.

The paths taken by the incremental gradient method of [2], [3]

are presented in Fig. 4. Since the gradient ∇fl(θ) diverges at the

sensor location rl, a small step size µ (12) is required to achieve

convergence, e.g., in the implementation presented in Fig. 4 µ =
10−4. As in Fig. 3, the initial points are depicted by crosses, followed

by a line which follows the path taken by the algorithm, and ends at

the convergence points depicted by circles. The crosses that are not

followed by a line correspond to initial points that lead to divergence.

Each path corresponds to hundreds of communication cycles and it

is seen that only two of the initial points result in convergence to the

global optimum at the center of the figure.

To combat the high variability of the gradient ∇fl(θ) over the

optimization domain, Rabbat and Nowak suggested to normalize the

descent direction in (12) [13]. The modified algorithm is given by

θk+1 = θk − µ
∇fκ(k)(θ

k)

||∇fκ(k)(θk)|| (15)

where µ is a constant step size. In Fig. 5 the paths taken by this

algorithm for µ = 0.1 are given. It is seen that this variation of

the incremental gradient method is not sensitive to local maxima.

However, even in the absence of noise, a convergence proof is

not available for this variation. In the simulation, convergence to

a single point or a limit cycle was not detected after the first

200 communication cycles. An example in which the method (15)

does not converge to the global maximum is given in Fig. 6. In

this simulation there are four sensors operating in a noise free

environment and a source is located at [50, 50]. The paths initiated

from the top four crosses do not converge to the global optimum at

[50, 50].
In contrast to the shortcoming of the local search methods, the

proposed POCS method converges to the vicinity of the global

optimum regardless of the initial point. In Fig. 7 the paths taken

by the POCS method are presented. The order of the sensors in

the information cycle described in Sec. III was selected randomly.

Convergence to a limit or a limit cycle is declared if at sensor 1

||θkL+1 − θ(k−1)L+1|| < 10−3. (16)

Once convergence is detected, the final estimate is the average of
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Fig. 3. Paths taken by the steepest descent method.
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Fig. 4. Paths taken by the IG method.

the sensors’ estimates 1/L
PL

l=1 θ(k−1)L+l, which can be easily

computed in a distributed manner [2] through a single communication

cycle. A better illustration of the method is presented in Fig. 8,

in which four representative paths are superimposed on top of the

convex sets (discs) (6). At each iteration the sequence generated by

the algorithm is projected onto a different disc, unless it is already

inside it. It is seen that the convergence is extremely fast; after as

few as three sub-iterations (10), the sequence reaches the vicinity

of the global optimum. In part of the sub-iterations (10), little or

no progress is made if the previous iterate is close to or inside

the corresponding disc, respectively, but three communication cycles

were sufficient to satisfy the convergence criterion (16) regardless of

the initial point. Adding the communication cycle required for the

computing the average we conclude that it requires 4 communication

cycle to implement the distributed POCS method in this scenario; a

significant reduction in energy and bandwidth requirements compared

to the incremental gradient method implementation [2], [3] or its

modification (15).

The performance of POCS in terms of estimation errors was

also evaluated. As a benchmark, the performance of POCS was
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Fig. 5. Paths taken by the normalized IG method.
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Fig. 6. The normalized IG method does not always converge globally.

compared to the performance of the MLE [1]. The MLE was found by

performing a grid search over the field area followed by a local search

initiated at the highest maximum. Note that due to the peakedness

of the global maximum (see Fig. 1), a fine grid search is required.

Therefore, a grid search based optimization is operational only in

the centralized approach when all sensor readings are available at a

central location. In our implementation the grid search resolution was

set to 0.1m×0.1m. Also presented is the performance of an estimator

which is obtained by performing a local search on the ML objective

function (3) initiated at the POCS estimator. The performance of the

three estimators was evaluated through 20000 Monte Carlo iterations,

whereby the number of sensors in the field was increased from 100
to 2100 in 200 increments. In Fig. 9 the square root of the mean

squared error and the median squared error of the three methods are

presented with ±σ confidence interval as a function of the average

number of sensors that entered the estimation phase. The standard

deviations of the mean and median estimators were estimated from

1000 bootstrap data samples.

As shown in Fig. 9, the POCS method is more sensitive to changes

in the number of active sensors then the MLE in terms of estimation
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Fig. 8. Paths taken by the POCS method superimposed on the convex sets.

errors. We have observed the same kind of behavior when the number

of sensors was fixed and the SNR was varied. This equivalence is

expected since the number of active sensors is linked to the SNR

level through the detection threshold. In contrast to the sensitivity of

POCS to the number of active sensors or to the SNR level, when the

intersection of the disks is in the vicinity of the source location, we

always observed extremely fast convergence rates of POCS similar

to those shown in Fig. 7.

VI. CONCLUSIONS

The problem of distributed acoustic source localization using a

wireless sensor network was formulated as a convex feasibility

problem and solved via the POCS method. The solution has global

convergence properties with fast convergence rates. Finally we note

that this concept can be applied to other problems in which the

objective function depends on the parameters through terms of the

form ||θ − cl||, where cl, l = 1, . . . , L are data dependent terms.

In particular, this concept can be easily generalized to the three

dimensional case. The effect of quantization and channel noise are

worthy of additional study.
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Fig. 9. Local performance: POCS vs. MLE, mean (left) and median (right).
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