
Energy-Budget-Compliant Adaptive 3D Texture Streaming
in Mobile Games

Mohammad Hosseini
Simon Fraser University

mohammad hosseini@sfu.ca

Joseph Peters
Simon Fraser University
peters@cs.sfu.ca

Shervin Shirmohammadi
University of Ottawa

shervin@eecs.uottawa.ca

ABSTRACT
Advances in computing hardware and novel multimedia ap-
plications have urged the development of handheld mobile
devices such as smartphones and PDAs. Amongst the most
used applications on handheld devices are mobile 3D graph-
ics such as 3D games and 3D virtual environments. With
this significant increase of mobile applications and games,
one of the challenges is how to efficiently transmit the bulky
3D information to resource-constrained mobile devices. De-
spite the many attractive features, 3D graphics impose sig-
nificant demands on the limited battery capacity of mobile
devices. Thus the development of efficient approaches to de-
crease the amount of streamed data with the aim of increas-
ing the battery lifetime has become a key research topic.

In this paper, we design and implement an adaptive priori-
ty-based context-aware framework for efficiently streaming
3D textures to mobile devices with limited energy budget
over wireless networks. Our results show that using our
proposed adaptations significantly improves the gameplay
quality per unit of energy consumed to download 3D tex-
tures in mobile games.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General - Games ; I.3.7
[Computer Graphics]: Three-dimensional graphics and
realism

General Terms
Design, Algorithms, Experimentation, Measurement

Keywords
Mobile 3D Games, Budget-based Gaming, Context-aware
3D Streaming, Energy-efficient Mobile Gaming, 3D Texture
Streaming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMSys’13- 3D MM, February 26-March 1, 2013, Oslo, Norway.
Copyright 2013 ACM 978-1-4503-1894-5/13/02 ...$15.00.

1. INTRODUCTION
Efficient energy consumption is very important for battery-

operated devices such as smartphones. The increasing power
requirements of new smartphones and tablets are far outpac-
ing improvements in battery technology. Switching over to
superfast 4G networks, as many will in 2013, is only go-
ing to exacerbate the problem because 4G radio chipsets
require a lot more processing power than current chipsets
to decode far greater amounts of data encoded in the LTE
wireless spectrum [2, 4, 20]. A typical modern smartphone
does not last more than about 24 hours without having to
be recharged. At the same time, developers are producing
increasingly more sophisticated and power-hungry applica-
tions. Key hardware components draining energy in smart-
phones are the display, the radio, and audio [8, 14]. While
the contribution of each component varies according to how
they are used by applications, all of those components sig-
nificantly affect the energy budget.

WiFi devices need more power to generate a stronger sig-
nal compared to other radio-based interface cards such as
Bluetooth and 3G [9, 15]. A recent study precisely mea-
sured energy consumption for different parts of a mobile
phone mainly for wireless communication and other services.
The results showed that the WiFi IEEE 802.11 Network In-
terface Card uses as much as 24 times more power while
downloading data compared to the idle mode [16].

Rahmati, et al [19] investigated a simple linear-cost energy
model for wireless data transfers, assuming constant network
conditions throughout a single transfer. They modeled the
energy cost for establishing a connection and transferring n
megabytes of data as

E = Ee+ nEt (1)

where Ee is the energy cost for connection establishment
and Et the energy per MByte of data transfer. Also in [17]
and [6], the authors argue that frame length details for
802.11 protocols can be used to calculate power consump-
tion for specific data lengths. Their results also show that
per-packet energy consumption of network interfaces can
be modeled using equation (1). Figure 1 shows the aver-
age energy consumed for downloading data of different sizes
against varying inter-transfer times in WiFi.

While modern cellular standards highlight low client en-
ergy consumption, existing methods do not explicitly em-
phasize reducing power that is consumed when a client is
actively communicating with the network and receiving large
amounts of data [5]. The high data rates and resulting high
energy demands of modern networked multimedia systems

Figure 1: Average energy consumption for downloading
data of different sizes over varying inter-transfer times for
WiFi [6].

make energy-aware adaptations for these widely used mo-
bile applications an important consideration. 3D mobile ap-
plications such as games and 3D virtual environments are
amongst the most used multimedia applications. It is es-
timated that 78.6 million people in the U.S. alone played
mobile games in 2009, downloads of mobile games increased
tenfold compared to 2003, and mobile games generated more
than $1.5 billion annually in revenue [12]. In addition, due
to progress in the hardware of mobile devices, these devices
can now support 3D graphics; many in fact use hardware
acceleration and provide GPU-based support of popular 3D
formats.

Due to the limitations in network bandwidth, memory
size, battery life and computation resources of mobile de-
vices, a good 3D mobile game must balance view, energy,
and performance. One of the challenges to achieving this
balance is to efficiently transmit and render bulky 3D ob-
ject textures. These textures are highly important as they
are what the players will see. The failure to receive a texture
can have a significant negative impact on the visual quality
of the game and on the user’s experience.

In this paper, we propose an adaptive framework to ef-
ficiently stream bulky 3D textures to mobile devices. Our
goal is to maximize the quality of the 3D textures that are
streamed within an energy budget specified by the user. We
assume that the relationship between energy consumption
and the amount of data downloaded is known as in Figure 1
so that a download budget that achieves the energy budget
can be estimated. Our approach is to selectively reduce the
sizes of the textures so that the total amount of data trans-
mitted to a mobile device satisfies the download budget.

The paper is organized as follows: in Section 2, we discuss
relevant background and previous work on textures, texture
compression, and 3D texture streaming along with adaptive
multimedia streaming. Section 3 explains our methodology
for adaptive texture streaming. Section 4 presents our eval-
uation and experimental results, and Section 5 contains our
conclusions and a discussion of future work.

2. BACKGROUND
In this section we present some relevant background and

different categories of state-of-the-art approaches associated

with parts of our proposed framework, and we describe how
our work is related to these approaches.

2.1 Textures
Texturing is a vital part of the visual experience of any

type of 3D graphics. It is applicable to First Person Shooter
(FPS) games as much as it is to Massive Multi-player Online
(MMO) games, Role Playing Games (RPG), and 3D virtual
worlds. A texture is an image that is used to provide surface
covering for a 3D model. 3D textures are a logical extension
of the traditional 2D textures, and have been used in high-
end graphic systems to generate a three-dimensional image
map.

Generally, textures are bitmaps packed into an array or
a matrix parallelepiped, with each dimension constrained
to a power of two (64 × 64, 128 × 128, 256 × 256, etc.),
and each cell representing a texture pixel, called a texel,
which contains a color value. The power-of-2 rule for game
textures is based on memory buffer sizes of the graphics card,
to get the maximum memory efficiency out of the graphics
card. Textures are characterized by two parameters: the
number of texels, and the information content (color depth)
per texel. There are other attributes that are applied to
bitmaps but they are derived from these two fundamental
parameters. Texels in a bitmap are RGB formatted, and
contain certain color information. The information content
is always the same for all of the texels in a particular bitmap.
Textures are loaded into RAM for 3D environments such as
virtual reality applications and 3D games.

2.2 Texture Compression and Resolution
To reduce the amount of texture data that needs to be

transmitted, one can use texture compression, which is a
specialized form of image compression designed for storing
texture maps in 3D rendering systems. It is a method of re-
ducing the size, memory, and memory bandwidth required
for textures with a small reduction in visual quality. In cer-
tain games, where a low-resolution texture is used for a large
surface (like a sky image), significant color banding can be
seen if texture compression is enabled. A combination of en-
abling texture compression and high texture detail results in
a good balance of quality and power saving in many games.

Currently there are a few texture compression techniques
such as S3 Texture Compression (S3TC) [11] and Erics-
son Texture Compression (ETC) [23]. S3TC is a group of
related lossy texture compression algorithms used to com-
press textures in special hardware-accelerated 3D computer
graphics. ETC enables compression and decompression of
textures so that they can be used with ETC-capable hand-
sets, such as Android-based handsets. The first version of
the ETC compression algorithm, ETC1, does not support
transparency. ETC2 is still under development, and is not
available in any tools or hardware as of yet (2012) [24]. It
should be noted that all of these texture compression tech-
niques are hardware-based compressions and not all mobile
devices have the hardware to support them. Another disad-
vantage is that they involve much decompression overhead at
the client side due to the use of heavy and complicated arith-
metics, which makes them unsuitable for battery-operated
devices running applications that use huge numbers of tex-
tures such as 3D games. Furthermore, these texture com-
pression techniques can lead to artifacts in low-resolution
textures which are commonly used in mobile games.

As part of our system, we propose a simple approach for
decreasing the size of textures with negligible overhead. Un-
like the texture compression approaches described above,
our approach does not introduce discoloring artifacts, does
not require the client device to have special hardware, and
involves no decompression overhead at the client side.

Another significant feature of textures is resolution, which
refers to how large the textures are. Using larger textures
not only increases the streaming delay, but also uses more
energy by requiring the network card to be in the active
mode longer, requires the CPU to render more data, and
uses more GPU memory due to the increased memory band-
width needed. In some cases, the result is a choppier perfor-
mance. Although this can be somewhat alleviated by using
texture compression, texture compression itself can exhaust
the hardware, and has the other disadvantages that were
mentioned above.

2.3 Adaptive Streaming
One of the main approaches for energy saving on mobile

devices is adaptive streaming. Adaptive streaming is a pro-
cess whereby the quality of a multimedia stream is altered
in real time while it is being sent from server to client. This
adaptation of quality is controlled by decision modules on
either the client or the server. The adaptation may be the
result of adjusting various network or device metrics. For ex-
ample, with a decrease in network throughput, adaptation
to a lower video bitrate may reduce video packet loss and
improve the user’s experience. Similarly, adaptations that
reduce the amount of data being received over the Wireless
Network Interface Controller (WNIC) can save energy. Ad-
ditionally this allows the WNIC to be put into sleep mode
more frequently, similar to the work in [10].

2.4 Related work
In large virtual environments, users only interact with

a subset of the objects that are visible to them at a spe-
cific given time. Work for 3D streaming that takes ad-
vantage of this fact are classified into two major classes:
region-based and interest-based streaming. Region-based
approaches only stream the geometry information for the
player’s region of activity, while interest-based techniques
use an Area of Interest (AOI) to determine object visibility.

As the main flaw, these approaches however do not pro-
vide any mechanism to control the visual quality. They may
reduce the amount of game content for downloading, but the
download time might still be too long since in recent high-
quality games, there might be huge numbers of objects and
textures inside the AOI.

Another shortcoming of the existing approaches is that
they do not prioritize the objects according to whether the
objects are important for a player, and whether a player is
actually interested to receive them. Additionally, existing
approaches do not consider the receiver’s resource restric-
tions and hence are less suitable for mobile devices.

Finally, although it is not done for 3D games, Kennedy
et al [13] proposed and developed an interesting approach
for adaptive video streaming which analyses the remaining
stream-duration and the remaining battery-life in order to
decide whether or not to send an adaptation order to the
dynamic streaming server. When the remaining stream du-
ration exceeds the remaining battery life, the video quality
is adapted. However, unlike video streaming, game stream-

ing is not deterministic since the actions being taken by
the users are not pre-defined. Also, purely from a gaming
perspective, context-aware approaches are needed since dif-
ferent objects/textures need to have different priority levels.
This is very much an open problem and still needs consid-
erable research work.

In fact, there is currently no work that takes into account
adaptive streaming of 3D graphics for battery-operated de-
vices based on an available energy budget. To the best of
our knowledge, the only research that has used game context
as a parameter for object selection and prioritization in 3D
streaming is [18] in which Rahimi et al presented an activity-
centric context-aware object streaming approach for mobile
games as a solution to maximizing the player’s experience
in the face of a mandatory reduction of the amount of data
streamed to the mobile device due to download/network lim-
itations. They introduced the idea of prioritized activity-
centric streaming for mobile gaming. In their approach,
they considered the activity of the player to decide which
objects are more important for the accomplishment of that
activity. In order to achieve this goal, the importance of
each object for each specific activity in the game is deter-
mined a priori by the game designers. A list of different
objects and activities for the current game scene would be
provided prior to running the game and less relevant objects
will not be streamed, freeing resources for objects that are
more relevant. While interesting, this work does not distin-
guish between objects and textures. The main bottleneck
for 3D game streaming is the bulky textures, not the wire-
frames of the objects. In our work, we specifically address
textures.

In our previous work [12], we studied how to efficiently
transmit bulky 3D information to bandwidth- and computat-
ionally-limited mobile devices, by proposing two methods for
improving the transmission delay of 3D content over unre-
liable and congested networks. We introduced Object Mesh
Similarity as a server-side approach which replaces an orig-
inal object by a similar alternative object with less com-
plexity which is then transmitted to the client side, as well
as Texture Stretching as a client-side approach, that leads to
the efficient receipt of textures. However, the goal in [12] was
to improve the response time. In this paper, we build on con-
cepts from [18] and [12] to implement an adaptive priority-
based context-aware framework for efficiently streaming 3D
textures to mobile devices with a limited energy budget over
wireless networks.

3. PROPOSED FRAMEWORK
In this section, we explain our methodology regarding the

implementation of different parts of the adaptive texture
streaming system. Our design allows for efficient streaming
of 3D textures to mobile devices while satisfying a download
budget which is estimated based on an energy budget as
explained in Section 1, with the aim of decreasing power
consumption.

Figure 2 shows a detailed overview of different processes
in our framework. As can be seen in the figure, the system
consists of two parts: client-side and server-side. Prior to the
gameplay, the client device sends the current available bud-
get to the server, which the server uses to optimize the tex-
tures that will be streamed based on how important they are
in a given scene of the virtual environment. To achieve this,
the system uses a classification list to prioritize the currently

Figure 2: Outline of the proposed framework

required textures acquired from a texture database. Then,
based on the budget constraint received from the user and
the prioritized list, the textures are selectively compressed,
serialized and streamed to the target mobile device. Pro-
gressive streaming is used as a complementary technique to
send the 3D textures and the corresponding objects over
the network. Finally, the client receives the textures and in
parallel, as a part of the client-side 3D streaming, the 3D
renderer adds the newly received textures and objects to the
graphics-layer and continues to render the game.

Receiving an optimum and efficient size of textures during
a gameplay experience reduces the network bandwidth and
thus the energy consumption of the handheld device that
receives the data as well as other limited resources (such as
memory) for less-important parts of the 3D world, while the
streamed textures still fulfill their role in the game.

3.1 Problem Definition
For texture selection and streaming, the most significant

factor in both battery and bandwidth usage is the amount
of data downloaded by the mobile device. As discussed in
Section 1, we suppose that a user specifies an energy budget,
and a download budget that achieves the energy budget is
estimated. If the total size of the 3D objects and textures
to be streamed does not exceed the download budget, then
all of them can be streamed. If the download budget is
insufficient to stream all of the objects and textures, then
the total size must be reduced. In this case, we stream all of
the objects leaving a download budget W for the textures.
Every 3D texture has a specific size, and we must decide
how to stream them within the budget W.

One approach to reducing the total size of the textures
that are streamed is to transmit a subset of them. Let T =
{T1, T2, T3, ...} be the set of textures. Each texture T i has
a size wi and a value vi which is based on the importance
of the corresponding object. The goal is to stream a subset
of textures T ′ ⊆ T that maximizes the total value of the
streamed textures without exceeding the download budget
W . In other words

Maximize {T ′⊆T}
∑

Ti∈T ′

vi subject to
∑

Ti∈T ′

wi ≤W. (2)

This selection scheme is the well-known 0-1 Knapsack
optimization problem. The 0-1 Knapsack problem is NP-
hard but there are good, efficient, approximation algorithms
(fully polynomial approximation schemes), so this approach
is computationally feasible. However, by using this method,
only a subset of the textures would be selected and streamed
to the client, and the visual impact could result in an unsat-
isfactory gaming experience. For example, compare Figure
15 (I) and Figure 15 (II).

To overcome the shortcomings of the 0-1 Knapsack ap-
proach, we propose a heuristic algorithm that sends all tex-
tures, but with different qualities according to their priori-
ties. The general idea is to apply textural compression using
a sub-sampling approach (described in detail in subsection
3.3) to reduce the resolutions, and hence the sizes, of some
of the textures so that a texture for every object can be
streamed within the download budget. Our heuristic algo-
rithm to choose which textures to compress, and by how
much, is described in subsection 3.2.

Figure 3 shows the visual impact of reducing the resolu-
tion of a texture which is applied to a 3D column object.
The texture resolutions in Figures 3 (I) through (IV) are
512 × 512, 256 × 256, 128 × 128, and 64 × 64, respectively
(all with 8-bit color depth). Figure 3 (V) shows the object
with no texture applied. The reduction in quality in Fig-
ures 3 (I) through (IV) is noticeable, but the impact of even
the greatest reduction (Figure 3 (IV)) is much less than the
impact of not applying a texture. So sending a low quality
texture (around only 4KB for the 64× 64 case) is far more
acceptable than sending nothing.

3.2 Adaptive Texture Streaming
The size of textures plays an important role in resource

usage on mobile devices. If textures are large, but account
for less important objects (such as sky background during
a fight with the enemy) or is they are always rendered at a
small size in the scene (such as a house in the far distance),
then the mobile device is wasting a lot of resources not only
to receive them via WNIC, but also to render them using
valuable CPU/GPU resources. Thus, we must take into con-
sideration how important textures will be when displayed in
the scene.

Streaming data to mobile players in real time is expen-
sive both in terms of bandwidth and computation. Besides
streaming the bulky textures and objects, it requires passing
data related to dynamism regarding the inter-relationship of
3D objects, view change detection, frustum culling, motion
interpolation and extrapolation, and so on. Therefore as a
key part of streaming for netwroked games, especially for
MMOGs, due to the high number of textures in a 3D scene,
the required set of textures is streamed in advance to be
stored locally [21].

In gameplay, some textures are more important than oth-
ers purely from the gaming context. As an example, the
walls, floor, and some environmental textures in a typical
game are not as important as the players’ avatars, the en-
emies, and the goal objects. Therefore the first step in our
method is to establish the importance of each texture within
a scene of gameplay. We do this by allowing a designer to tag

(I) (II) (III)

(IV) (V)

Figure 3: Visual view of applying a texture with different
resolutions to a 3D column object. (I to IV): the texture
resolutions are 512× 512, 256× 256, 128× 128 and 64× 64
with the same depth color. (V): no texture.

textures into two different classes: Important (C1) and Less-
important (C2). Currently, some 3D game engines (such as
Unity3D) [3] support multiple levels of tagging (e.g. Player
or Enemy tags) to identify the gaming objects for scripting
purposes. Thus, adding a feature of two-level priority tag-
ging for textures is not a considerable overhead for game
design. In future work, we plan to use multiple priorities for
textures. We have only used two levels in this initial study
for simplicity.

First, a list is created containing all textures classified by
their importance. Each T ij in the list represents a single
texture where i signifies the priority class, and j is the index
of the texture within that specific class, as shown in Figure
4.

Figure 5 is a hierarchical pyramid that shows the possible
texture resolutions used in this paper. As can be seen in
Figure 5, the size of a 128×128 texture compared to a 256×
256 is 1 to 4, if both have the same color depth. Thus for
every index i and j, the following equation can be written:

Size(Li) = 4(j−i) × Size(Lj) j ≥ i > 0 (3)

In this initial study, we have used a simple pyramid down-
sampling approach to compressing the textures. More so-
phisticated compression methods are available and the com-
pression can be done in advance. Our approach can be used
in these more general settings with only minor adjustments
as long as the relationships among the compression levels
are known.

Figure 4: An overview of the texture list, showing two differ-
ent priority classes, C1 and C2, along with the corresponding
textures. The red sign represents a hypothetical available
budget, shown as a cutoff.

Figure 5: Different texture resolutions represented as various
levels, along with a hierarchical view.

Now we describe how our heuristic algorithm works.
Our problem is to stream textures to a mobile device in

a way that maximizes the total quality of the streamed tex-
tures within an energy budget that is specified by the user of
the mobile device. We cannot know the energy consumption
associated with textures in advance, but as argued in Section
1, it is closely related to the sizes of the textures needed to
be streamed to the client. So we estimate a download limit
W based on the energy budget.

The size of a texture can be reduced by reducing its res-
olution, but this also reduces the quality. To take this into
account, we set a user-defined maximum reduction of reso-
lution. Let R max be the maximum reduction in resolution
that is acceptable to the mobile user. In this paper, we
assume that R max = 4i for some i ≥ 0.

As an example, if the original size of a texture is W and
R max = 4i with i = 2, then the size of the smallest accept-
able compressed texture will be W/R max = W/16.

The textures are classified into two categories, important
(C1) and less-important (C2), and each category has an as-
sociated relative value (V1 and V2). The assignments to
categories and the associated values are decided by the game
designer. We normalize the values by setting V 2 = 1. Let
S1 be the total size of textures in C1 before resizing, S2 the
total size of textures in C2 before resizing, and S = S1+S2.

We assume that the quality of a streamed texture is a
function of its size (with maximum quality corresponding to
minimum resizing) and its value. Our approach is general
and, with minor adjustments, will work with any function
that can be effectively computed. In this initial study, we
use the simplest of these functions - the product of size and
value. For example, a texture of original size W with resiz-
ing factor R and value V has quality W×V

R
. Our goal is to

compress textures in a way that maximizes the total quality
subject to the constraints of the download budget W and

maximum resolution R max.

Algorithm
Calculate S1 (Total size of all textures in C1), S2 (Total size
of all textures in C2), S (S1+S2), W (Available budget).

• If S ≤W , then no resizing is needed.

• If S
R max

> W then the problem cannot be solved

within the constraints W and R max.

• Otherwise, we solve one of the following subproblems.

Subproblem 1:

If S1 + S2
R max

≤ W then all textures in C1 can be sent

uncompressed and the problem is to compress the textures
in C2 in a way that maximizes the value of the compressed
textures in C2 within the download budget W2 = W − S1.

Subproblem 2:

If S1 + S2
R max

> W then we compress all textures in C2

by R max and the problem is to compress the textures in
C1 in a way that maximizes the value of the compressed tex-
tures in C1 within the download budget W1 = W − S2

R max
.

Algorithm for subproblem 1:

Calculate i1 such that:

S2

4i1
≤W2 <

S2

4(i1−1)
. (4)

In other words, find the minimum i1 such that all textures
in S2 can be streamed within the budget W2 when they are
resized by the factor 4i1.

Our goal is to maximize the total size of the textures sent
within the budget W2. To achieve this, we compress the
first texture in C2 by 4i1. Suppose that after resizing, it has
size X. This leaves a budget of W2 −X for the remaining
textures. We then calculate a new i2 for the remaining tex-
tures using budget W2−X and compress the second texture
in C2 by 4i2. This is repeated until all textures have been
processed.

Algorithm for subproblem 2:

The algorithm is the same as for subproblem 1, except that
we are processing textures in C1 with an available budget
W1 = W − S2

R max
.

3.3 Texture Compression
To make the size of less-important textures smaller us-

ing the concept of down-sampling, we designed a fast and
efficient Texture Compression Module (TCM), which given
a resizing ratio, β, makes the texture smaller by modifying
the corresponding texture matrix. To achieve this, we sim-
ply choose a representative texel within each [β × β] block
in the original texture. This representative texel could be
any of the texels in the window block, or a mathematical
mixture of them. In our experiments, we chose this repre-
sentative texel to be the most top-left texel of each block.

Figure 6: A 128 × 128 stone wall texture produced by
TCM (left) compared with the bicubic resampling algorithm
(right).

Figure 7: A comparison of relative execution time needed
for running bicubic, bilinear and our proposed algorithm to
resize a 512× 512 texture by a ratio of 2.

Choosing the representative texels is a one-time operation,
and our framework caches the produced textures for future
uses.

It should be noted that currently there are several image
resizing algorithms, such as Lanczos, bilinear, trilinear, and
bicubic algorithm [7]. The resizing method that we use in
this paper imposes very little demand on the CPU, but could
result in lower quality than other methods depending on
how quality is measured. Figure 7 shows a comparison of
relative execution times for different resizing methods, and
Figure 6 compares an output texture produced by TCM with
a complex bicubic resizing algorithm. However, our general
approach is independent of the resizing method. Even if the
resizing algorithms have much overhead, it is not a big issue
since the resizing is done on the server, not on the mobile
client. The resized textures can also be precomputed and
stored for future uses. We can use the concept of mipmaps to
store textures in multiple resolutions. This is an interesting
trade-off that merits further study.

3.4 Communication Channel
HTTP-based progressive streaming has become a de facto

standard for web-based data delivery. Streaming over HTTP
also allows multiple clients/devices to receive many possi-
ble streams simultaneously. In addition, HTTP does not
cause any NAT/firewall issues as is the case with other me-
dia transport protocols like RTP/RTSP [1]. Therefore, to
take advantage of the above gains, we used HTTP 1.1 as the
protocol for the communication channel.

The concept being used in our framework is similar to

Dynamic Adaptive Streaming over HTTP (DASH), which
is an adaptive bitrate streaming technology developed un-
der MPEG, where a multimedia file is partitioned into one
or more pieces and delivered to a client using HTTP. One or
more representations (i.e., versions at different resolutions
or bit rates) of multimedia data are typically available, and
selection can be made based on network conditions, device
capabilities and user preferences, which enable adaptive bi-
trate streaming [22]. In our work we used a DASH-style
approach for adaptive and progressive streaming of textures
over HTTP. To the best of our knowledge, no previous work
has used the idea of DASH for streaming of 3D graphics to
mobile devices.

4. EVALUATION
We used the Android port of the free jPCT 3D engine

to evaluate our work. We prepared a benchmark for our
experiments, called Ninja Camp, and ran it as a self-runner
demo so that the tests were deterministic and not dependent
on different gameplays.

Ninja Camp is a third person streaming-based client/server
3D demo with high polygon and object count enabled with
skeletal animation, consisting of 97 different textures. Based
on the gaming context, the important and less-important
textures account for 37.2% and 62.8% of total texture size,
respectively.

To make the progressive streaming work, we used a multi-
threaded implementation, so in parallel with streaming the
objects/textures from the server, the previously streamed
objects are built, rendered and added to the 3D world. We
used HTTP as a communication protocol for progressive
streaming of 3D textures and objects. 3D objects are not
loss-tolerant and can therefore benefit from the reliable ser-
vice of HTTP.

Our method uses a prioritization scheme based on the rel-
ative importance of objects in the context of the current
game scene. As an example, in our demo, the enemy or
a health kit have a higher priority than the trees and sur-
rounding plants, so they should be shown with higher quality
in terms of texture resolution, and they should be streamed
before lower priority objects. This is different than distance-
based approaches that render with higher quality whatever
is closer to the player regardless of their semantic relevance
in the current game context. Figures 8 (I) to (III) show
screenshots of different stages in the streaming of a partic-
ular scene based on the prioritization streaming approach.
Figure 8 (III) shows the scene after all of the objects and
textures currently in that scene have been streamed.

In our experiments to evaluate our proposed energy-efficient
texture adaptation algorithm, the streaming server was an
Intel 3GHz dual core machine running Java 1.7.0 standard
edition. The server was an on-demand HTTP media server
responding to HTTP requests from mobile access. During
our experiments, the distance of the client device with the
802.11g WiFi router was 5 meters, receiving a signal strength
of -60 dBmW. Our client device was an HTC 3D EVO smart-
phone which has a Snapdragon S3 chipset with a dual core
1.2 GHz processor. To calculate the amount of consumed
energy, we used PowerTutor [25], a profiler which measures
the power consumption of various hardware components us-
ing a device’s built-in battery voltage sensors.

To evaluate our proposed texture adaptation algorithm,
we ran our ninja benchmark with W set to be different per-

(I)

(II)

(III)

Figure 8: (I) to (III): Different stages using prioritized pro-
gressive game streaming in the initial demo benchmark.
Based on the gaming context, the player’s avatar, the en-
emies and goal targets are more important as opposed to
trees or grasses, so they are streamed in earlier stages.

centages of S (total size of all textures). In particular, we set
W to 0.1S, 0.2S, 0.3S, ..., 1.0S corresponding to 10%, 20%,
30%, ..., 100% of the total size of textures. We chose two
different values for R max (i.e. the maximum acceptable
compression scaling) that resulted in some textures in C1
being compressed for most values of W . In practice, a user
will choose R max based on the perceived quality of the tex-
tures in the gaming environment. We also repeated all the
experiments with the textures in each priority class sorted
by decreasing size. Each trial of our experiment was run
until all objects and textures were fully streamed, and we
repeated each test several times to ensure that the standard
deviation of the measurements was within acceptable lim-
its. Using PowerTutor measurements, Figure 9 shows the
average energy consumption of the WiFi 802.11 WNIC in
Joules with a precision of 0.1J, and showed how it changes
as we apply our texture adaptation approach for ten differ-
ent values of W (as a percentage of S). We measured the

Figure 9: Total energy consumption for WiFi 802.11g Net-
work Interface Controller.

total energy for both sorted and unsorted texture lists, and
for R max = 16 and R max = 64. As can be seen, the
increase in total energy consumption grows roughly linearly
with the amount of data being received at the client side
in agreement with Equation (1) and Figure 1. The dashed
line shows the linear trend-line for the energy consumption
of the sorted texture list with R max set to 16 (red bar).

Figure 10 show the results for the average compression in
terms of average scaling ratio, measured for all textures in
C1 and C2, for both sorted and unsorted texture lists. In
Figure 10 (top) R max = 16, while in Figure 10 (bottom),
R max = 64. In both graphs it can be seen that sorting
improves the average quality by providing a lower average
scaling ratio. Also, the larger value of R max results in more
scaling, and thus quality sacrifices, for textures in C2 (i.e.
textures tagged as less important), while preserving more of
the original textures in C1 (i.e. important-tagged textures).
Also it should be noted that the larger value of R max works
better for lower values of the available budget.

As discussed in Subsection 3.2, we assume that the quality
of a streamed object is a function of its size and a relative
value assigned by the game designer to its class. If S1′ and
S2′ are the total sizes of the streamed textures in classes C1
and C2, respectively, that are received by the client, and V1
and V2 are the associated relative values, then we define the
value factor for a scene to be

Value Factor =
V 1.S1′ + V 2.S2′

S
(5)

where S is the total size of the uncompressed textures. We
normalized the relative values by setting V2=1.

The value factor is a measure of the effectiveness of an
approach to maximizing the total amount of data based on
prioritizations, with larger values being more effective.

Figure 11 shows our experimental results for value factor
per available budget for sorted and unsorted texture lists and
two different values of R max (16 and 64). We used three
different pairs (V1,V2=1) of relative values, (1,1), (2,1) and
(3,1), to differentiate the priorities of textures in C1 and C2.
As can be seen in all four graphs, the value factor increases
as the ratio V 1

V 2
increases, confirming that our proposed ap-

proach noticeably distinguishes the important textures from
the less important ones. Interestingly, the maximum gap for

Figure 10: Average compression in terms of average scales,
accounted for C1 (i.e. Important textures) and C2 (i.e. Less-
Important textures), both for sorted and unsorted texture
lists. (Top): R max set as 16 (Bottom): R max set as 64.

the growth of the value factor is in the range of 30% to 50%
of the available budget in all four graphs.

Figure 12 shows our results for value per unit of energy for
the same experiments as in Figure 11. As can be seen, in all
four graphs, larger V 1

V 2
ratios result in more value per unit

of energy consumption. In all of the graphs, the maximum
gain in value is in the range of 30% to 40% of the available
budget suggesting that this the range where our approach is
most effective.

Figure 13 shows a visual comparison of a scene with no
adaptation and the same scene using our approach. In both
scenarios the available budget of the client device is 50% of
the total size of all textures before resizing. In Figure 13
(I), due to the budget limit, some textures have not been
transferred, while in Figure 13 (II), our proposed texture
adaptation streams all of the textures, but reduces the res-
olution of less-important textures (i.e. plane, columns, well,
dragon monster, etc.). As can be seen in the screenshots,
Figure 13 (I) does not provide a pleasing or acceptable game
experience. Compared with the original demo in Figure 8
(III) in which the download budget is unlimited, our method
does produce noticeable differences in quality. However, con-
sidering the power savings achieved using our method, it is
reasonable to believe that many players would make this
sacrifice in quality in exchange for respecting their available
download and/or energy budgets.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

% Available Budget

Value Factor -Unsorted (R_Max=16)

Value factor (1,1) Value factor (2,1) Value factor (3,1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

% Available Budget

Value Factor -Sorted (R_Max=16)

Value factor (1,1) Value factor (2,1) Value factor (3,1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

% Available Budget

Value Factor -Unsorted (R_Max=64)

Value factor (1,1) Value factor (2,1) Value factor (3,1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

% Available Budget

Value Factor -Sorted (R_Max=64)

Value factor (1,1) Value factor (2,1) Value factor (3,1)

Figure 11: Comparison of the value factor measured for four situations and three relative value pairs (V1,V2=1). (Top-Left)
Unsorted texture list, R max = 16. (Top-Right) Sorted texture list, R max = 16. (Bottom-Left) Unsorted texture list,
R max = 64. (Bottom-Right) Sorted texture list, R max = 64.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

10 20 30 40 50 60 70 80 90 100

% Available Budget

Value Per Unit of Energy -Unsorted (R_Max=16)

value/energy (1x1) value/energy (2x1) value/energy (3x1)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

10 20 30 40 50 60 70 80 90 100

% Available Budget

Value Per Unit of Energy -Sorted (R_Max=16)

value/energy (1x1) value/energy (2x1) value/energy (3x1)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

10 20 30 40 50 60 70 80 90 100

% Available Budget

Value Per Unit of Energy -Unsorted (R_Max=64)

value/energy (1x1) value/energy (2x1) value/energy (3x1)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

10 20 30 40 50 60 70 80 90 100

% Available Budget

Value Per Unit of Energy -Sorted (R_Max=64)

value/energy (1x1) value/energy (2x1) value/energy (3x1)

Figure 12: Value of data per unit of energy for four situations and three relative value pairs (V1,V2=1). (Top-Left) Unsorted
texture list, R max = 16. (Top-Right) Sorted texture list, R max = 16. (Bottom-Left) Unsorted texture list, R max = 64.
(Bottom-Right) Sorted texture list, R max = 64.

(I)

(II)

Figure 13: Visual comparison of a gaming scene with a 50%
download budget with (I) No adaptation and (II) after ap-
plying our proposed adaptation method. R max was set to
16 and the textures list was sorted.

5. CONCLUSIONS
In this paper we introduced an adaptive context-aware

priority-based framework to manage progressive streaming
of bulky 3D textures to mobile devices based on an avail-
able energy budget. Our approach is to selectively reduce
the sizes of the textures so that the overall amount of data
transferred to a mobile device does not exceed a download
budget, with the aim of decreasing the amount of energy
needed to download the 3D textures. The evaluation re-
sults show that our game-context-based texture adaptation
method improves the quality of textures in a gaming expe-
rience by making best use of the limited resources of mobile
devices.

In future work, we plan to use multiple priorities for tex-
tures and extend our approach to dynamic scenes that change
over time. We also plan to more precisely estimate a down-
load limit W based on the energy budget.

6. REFERENCES
[1] Hypertext transfer protocol- HTTP/1.1, RFC 2616.

http://www.ietf.org.

[2] LTE: 4G long term evolution.
http://www.3gpp.org/LTE.

[3] Unity 3D game engine. http://www.unity3d.com.

[4] LTE advanced: The global 4G solution.
http://www.qualcomm.com, Qualcomm, 2012.

[5] S. Andreev, Y. Koucheryavy, N. Himayat,
P. Gonchukov, and A. Turlikov. Active-mode power
optimization in OFDMA-based wireless networks. In
GLOBECOM Workshops (GC Wkshps), 2010 IEEE,
pages 799 –803, dec. 2010.

[6] N. Balasubramanian, A. Balasubramanian, and
A. Venkataramani. Energy consumption in mobile
phones: a measurement study and implications for
network applications. In Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement
conference, IMC ’09, pages 280–293, New York, NY,
USA, 2009. ACM.

[7] W. Burger and M. J. Burge. Principles of Digital
Image Processing: Core Algorithms. Springer.
ISBN-10: 1848001940, 1st edition, March 2009.

[8] A. Carroll and G. Heiser. An analysis of power
consumption in a smartphone. In Proceedings of the
2010 USENIX conference on USENIX annual
technical conference, USENIXATC’10, pages 21–21,
Berkeley, CA, USA, 2010. USENIX Association.

[9] D. Halperin, B. Greenstein, A. Sheth, and
D. Wetherall. Demystifying 802.11n power
consumption. In Proceedings of the 2010 international
conference on Power aware computing and systems,
HotPower’10, pages 1–, Berkeley, CA, USA, 2010.
USENIX Association.

[10] R. C. Harvey, A. Hamza, C. Ly, and M. Hefeeda.
Energy-efficient gaming on mobile devices using dead
reckoning-based power management. In Proceedings of
the 9th Annual Workshop on Network and Systems
Support for Games, NetGames ’10, pages 4:1–4:6,
Piscataway, NJ, USA, 2010. IEEE Press.

[11] I. K. I. Hong, Zhou and K. S. Nayak. System and
method for fixed-rate block-based image compression
with inferred pixel values. (US Patent no 6775417),
August 2004.

[12] M. Hosseini, D. T. Ahmed, and S. Shirmohammadi.
Adaptive 3D texture streaming in M3G-based mobile
games. In Proceedings of the 3rd Multimedia Systems
Conference, MMSys ’12, New York, NY, USA, 2012.
ACM.

[13] M. Kennedy, H. Venkataraman, and G.-M. Muntean.
Battery and stream-aware adaptive multimedia
delivery for wireless devices. In Proceedings of the
2010 IEEE 35th Conference on Local Computer
Networks, LCN ’10, pages 843–846, Washington, DC,
USA, 2010. IEEE Computer Society.

[14] J. Kim and M. Lee. Green IT: Technologies and
Applications. Springer. ISBN-10: 3642221785, 1st
edition, Jul 2011.

[15] K.-H. Kim, A. W. Min, D. Gupta, P. Mohapatra, and
J. P. Singh. Improving energy efficiency of wi-fi
sensing on smartphones. In IEEE International
Conference on Computer Communications
(INFOCOM), pages 2930–2938. IEEE, July 2011.

[16] G. Perrucci, F. Fitzek, and J. Widmer. Survey on
energy consumption entities on the smartphone
platform. In Vehicular Technology Conference (VTC
Spring), 2011 IEEE 73rd, pages 1 –6, may 2011.

[17] H. Petander. Energy-aware network selection using
traffic estimation. In Proceedings of the 1st ACM
workshop on Mobile internet through cellular networks,
MICNET ’09, pages 55–60, New York, NY, USA,
2009. ACM.

[18] H. Rahimi, A. Nazari Shirehjini, and
S. Shirmohammadi. Activity-centric streaming of
virtual environments and games to mobile devices. In

Proc. IEEE Symposium on Haptic Audio Visual
Environments and Games, pages 45 –50,
Qinhuangdao, Hebei, China, Oct. 2011.

[19] A. Rahmati and L. Zhong. Context-for-wireless:
context-sensitive energy-efficient wireless data transfer.
In Proceedings of the 5th international conference on
Mobile systems, applications and services, MobiSys
’07, pages 165–178, New York, NY, USA, 2007. ACM.

[20] J. Sanchez, D. Morales-Jimenez, G. Gomez, and
J. Enbrambasaguas. Physical layer performance of
long term evolution cellular technology. In Mobile and
Wireless Communications Summit, 2007. 16th IST,
pages 1 –5, july 2007.

[21] A. Steed and M. F. Oliveira. Networked Graphics:
Building Networked Games and Virtual Environments.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2009.

[22] T. Stockhammer. Dynamic adaptive streaming over
HTTP: standards and design principles. In
Proceedings of the second annual ACM conference on
Multimedia systems, MMSys ’11, pages 133–144, New
York, NY, USA, 2011. ACM.

[23] J. Ström and T. Akenine-Möller. PACKMAN: texture
compression for mobile phones. In ACM SIGGRAPH
2004 Sketches, SIGGRAPH ’04, pages 66–, New York,
NY, USA, 2004. ACM.

[24] J. Ström and M. Pettersson. ETC2: texture
compression using invalid combinations. In
Proceedings of the 22nd ACM SIGGRAPH symposium
on Graphics hardware, GH ’07, pages 49–54,
Aire-la-Ville, Switzerland, Switzerland, 2007.
Eurographics Association.

[25] L. Zhang, B. Tiwana, R. Dick, Z. Qian, Z. Mao,
Z. Wang, and L. Yang. Accurate online power
estimation and automatic battery behavior based
power model generation for smartphones. In
Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2010 IEEE/ACM/IFIP
International Conference on, pages 105 –114, oct.
2010.

