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José M. Noc and Géraldine Servant b,c
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Abstract

The study of the hydrodynamics of bubble growth in first-order phase transitions is
very relevant for electroweak baryogenesis, as the baryon asymmetry depends sensi-
tively on the bubble wall velocity, and also for predicting the size of the gravity wave
signal resulting from bubble collisions, which depends on both the bubble wall velocity
and the plasma fluid velocity. We perform such study in different bubble expansion
regimes, namely deflagrations, detonations, hybrids (steady states) and runaway so-
lutions (accelerating wall), without relying on a specific particle physics model. We
compute the efficiency of the transfer of vacuum energy to the bubble wall and the
plasma in all regimes. We clarify the condition determining the runaway regime and
stress that in most models of strong first-order phase transitions this will modify ex-
pectations for the gravity wave signal. Indeed, in this case, most of the kinetic energy
is concentrated in the wall and almost no turbulent fluid motions are expected since
the surrounding fluid is kept mostly at rest.

http://arxiv.org/abs/1004.4187v1
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1 Introduction

A cosmological first-order phase transition could have far-reaching consequences and could
lead to many interesting phenomena, as for example electroweak baryogenesis [1], primordial
magnetic fields [2] or a stochastic background of gravitational waves [3–5]. All of them are
based on the fact that a first-order phase transition proceeds by bubble nucleation and, in the
process, a large portion of the available vacuum energy is stored close to the bubble walls. In
all these phenomena, some essential characteristics of the first-order phase transition enter,
namely the velocity of the expanding bubbles and the efficiency coefficients that keep track
of the energy budget of the transition, that is, how the free energy of the Higgs field φ
initially available is distributed among bulk fluid motion, thermal energy of the plasma and
gradient/kinetic energy of the Higgs field.

Quite generally, treatments of the bubble wall velocity assume that the expansion of the
bubbles is hindered by some form of friction, such that the bubble wall reaches a constant
speed after a rather short time of order ∼ 1/m, where m represents the typical mass scale
associated with the transition (i.e. electroweak mass scale in the case of the electroweak phase
transition). Assuming that the free energy of the Higgs field is released into the plasma, a
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hydrodynamic treatment of the plasma can be used to determine the fluid motion [6, 7].
However, as long as the microscopic mechanism of friction is unknown, this approach leaves
one free parameter, typically the wall velocity. In [7] it was argued that the velocity should
be fixed by the Chapman-Jouguet condition, like in chemical combustion, and this condition
was subsequently used in many studies of gravitational wave production [8]. The Chapman-
Jouguet condition generally leads to supersonic wall velocities with a rarefaction wave behind
the bubble wall. This scenario favors gravitational wave production, since fast moving walls
are essential for the production of gravitational radiation in bubble collisions [4, 5, 9–11],
turbulence [12, 13] or magnetic fields [13].

Nevertheless, while being observed in chemical combustion, the Chapman-Jouguet condi-
tion is unrealistic for cosmological phase transitions [14]. To replace the Chapman-Jouguet
condition, friction has been studied through a phenomenological parametrization in the Higgs
equation of motion [15,16]. Extensive simulations of hydrodynamic equations in conjunction
with an equation for the Higgs field have been used to identify the stable expansion modes
of the bubbles [14, 16–19]. It turns out that many solutions which are viable close to the
phase transition front, where the free energy of the Higgs field is released into the plasma,
are not stable globally.

The friction coefficient appearing in the Higgs equation can be determined by solving
Boltzmann-type equations close to the phase transition front [15, 20]. This approach leads
to subsonic wall velocities in the Standard Model (SM) and its supersymmetric extension
(MSSM) and is widely used in studies of MSSM electroweak baryogenesis [21–25]. Subsonic
wall velocities are crucial in electroweak baryogenesis, since this mechanism is based on
diffusion of particle asymmetries into the plasma in front of the bubble wall and for a too
fast wall, there is no time to build up a baryon asymmetry.

In strong first-order phase transitions, the friction exerted by the plasma on the wall
might not be sufficient to prevent the bubble wall from a runaway behavior in which the
wall keeps accelerating, toward ultra-relativistic velocities, as pointed out recently in [27].
We also study this runaway regime and discuss the energy balance in that case.

Our general goal in this paper is to present a unified picture of all the different regimes.
We go beyond the (unjustified) Chapman-Jouguet assumption and provide general formula
for the wall velocity, the fluid velocity and the efficiency factors accounting for the distribu-
tion of energy among bulk fluid motion, thermal energy of the plasma and gradient/kinetic
energy of the Higgs field. The paper is organized as follows. We review the hydrodynamic
treatment of the plasma in secs. 2 and 3, and subsequently obtain the efficiency coefficients
in sec. 4. In sec. 5 we present a simplified treatment of the Higgs equation (a similar one
has been carried out recently in [26]). We present detailed results both for the wall velocity
and the efficiency coefficients that are required for the determination of gravitational wave
spectra. We discuss the runaway regime in sec. 6 and summarize our results on the energy
budget of first-order phase transitions in sec. 7. We conclude in sec. 8 and provide numerical
fits to the efficiency coefficients in Appendix A.
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2 Hydrodynamic relations

In this section we introduce the basic concepts and set up the notation used for the hydro-
dynamic analysis of the combined “wall-plasma” system [6, 7, 16].

2.1 Basic concepts

The energy-momentum tensor of the Higgs field φ is given by

T φ
µν = ∂µφ∂νφ− gµν

[

1

2
∂ρφ∂

ρφ− V0(φ)

]

, (1)

where V0(φ) is the renormalized vacuum potential. The energy momentum-tensor of the
plasma is given by

T plasma
µν =

∑

i

∫

d3k

(2π)3Ei
kµkνfi(k, x), (2)

where the sum is carried out over the species in the plasma and fi(k, x) is the distribution
function for each species. If the plasma is locally in equilibrium (perfect fluid) this can be
parametrized as

T plasma
µν = w uµuν − gµν p, (3)

where w and p are the plasma enthalpy and pressure, respectively. The quantity uµ is the
four-velocity field of the plasma, related to the three-velocity v by

uµ =
(1,v)√
1− v2

= (γ, γv) . (4)

A constant φ background contributes to the total pressure [see eq. (1)] and from now on we
will use p for this total pressure, including such contribution.

The enthalpy w, the entropy density σ and the energy density e are defined by

w ≡ T
∂p

∂T
, σ ≡ ∂p

∂T
, e ≡ T

∂p

∂T
− p , (5)

where T is the plasma temperature. One then has

w = e+ p . (6)

Conservation of energy-momentum is given by

∂µTµν = ∂µT φ
µν + ∂µT plasma

µν = 0 . (7)

We are primarily interested in a system with a constant wall velocity and, assuming there
is no time-dependence, eq. (7) reads in the wall frame (with the wall and fluid velocities
aligned in the z direction)

∂zT
zz = ∂zT

z0 = 0 . (8)
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Integrating these equations across the phase transition front and denoting the phases in front
and behind the wall by subscripts + (symmetric phase) and − (broken phase) one gets the
matching equations (in the wall frame):

w+v
2
+γ

2
+ + p+ = w−v

2
−
γ2
−
+ p− , w+v+γ

2
+ = w−v−γ

2
−
. (9)

From these equations we can obtain the relations

v+v− =
p+ − p−
e+ − e−

,
v+
v−

=
e− + p+
e+ + p−

. (10)

To proceed further, one needs to assume a specific equation of state (EoS) for the plasma.

2.2 Equation of state

Usually the plasma is well described by a relativistic gas approximation. In the symmetric
phase,

p+ =
1

3
a+T

4
+ − ǫ , e+ = a+T

4
+ + ǫ , (11)

where ǫ denotes the false-vacuum energy resulting from the Higgs potential (defined to be
zero in the broken, T = 0, true-minimum phase). While in the broken phase

p− =
1

3
a−T

4
−
, e− = a−T

4
−
, (12)

with a different number of light degrees of freedom across the wall and therefore different
values a+ and a− (with a+ > a−) and different temperatures on both sides of the wall. These
expressions correspond to the so-called bag equation of state.

In the general case, the free energy (F = −p, also called sometimes effective potential,
including finite temperature corrections) of a plasma of particles with arbitrary masses mi(φ)
is given, in the non-interacting-gas approximation, by

F = V0 +

∫

d3p

(2π)3

∑

i

Ni log
[

1∓ e−Ei/T
]

= V0 +
T 4

2π2

∑

i

Ni Yb/f(mi/T ) , (13)

where V0 is the T = 0 effective potential, E2
i = p2 +m2

i ,

Yb/f(x) =

∫

∞

0

dy y2 log[1∓ exp(−
√

x2 + y2)], (14)

the −/+ signs in the last equation hold for bosons/fermions, the index i denotes the different
species and Ni the internal degrees of freedom (that in this notation is negative for fermions).
Species that are light compared to T behave as a relativistic gas while species much heavier
than T are Boltzmann suppressed in the plasma and can be neglected. As is well known,
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for small mi/T the function Yb/f tends to a constant (−π4/45 for bosons and 7π4/360 for
fermions) so that a± in the bag EoS are explicitly given by

a± =
π2

30

∑

light i

[

N b
i +

7

8
|Nf

i |
]

; (15)

while for large mi/T one has Yb/f (mi/T ) ∼ ± exp (−mi/T ). Hence, only particles that have
masses comparable to T can cause deviations from the bag EoS. In many cases this deviation
is small because the free-energy is dominated by a large number of light degrees of freedom.
For example in the Standard Model, the W± and Z0 bosons contribute to this deviation
from the bag EoS (and to a lesser extent the tops) but altogether the modification in the
energy density is at the percent level and hence small.

If the deviations from the bag EoS are not so small one can still parametrize the plasma
behavior in terms of quantities that mimic the bag EoS ones. In particular, from the free-
energy (F = −p) we can define

a± ≡
3

4T 3
±

∂p

∂T

∣

∣

∣

∣

±

=
3ω±

4T 4
±

, ǫ± ≡
1

4
(e± − 3p±) . (16)

In the special case of bag EoS, these definitions reproduce the correct a± and give ǫ+ = ǫ
and ǫ− = 0. In terms of these quantities one can write

p± =
1

3
a±T

4
±
− ǫ± , e± = a±T

4
±
+ ǫ± , (17)

but now a± and ǫ± are T -dependent quantities and should be interpreted with some care.
By their definition (16) they satisfy:

∂ǫ±
∂T±

=
T 4
±

3

∂a±
∂T±

. (18)

There is a certain arbitrariness in the definition of a± but ours is especially convenient
because some formulas we discuss in sect. 5 can be easily generalized even if the bag EoS is
not valid.

Using the bag equations of state (11) and (12) in eq. (10) we get

v+v− =
1− (1− 3α+)r

3− 3(1 + α+)r
,

v+
v−

=
3 + (1− 3α+)r

1 + 3(1 + α+)r
, (19)

where we defined

α+ ≡
ǫ

a+T 4
+

, r ≡ a+T
4
+

a−T 4
−

. (20)

The quantity α+ is the ratio of the vacuum energy to the radiation energy density and
typically characterizes the “strength” of the phase transition: the larger α+ the stronger the
phase transition. These two equations can be combined to give

v+ =
1

1 + α+





(

v−
2

+
1

6v−

)

±

√

(

v−
2

+
1

6v−

)2

+ α2
+ +

2

3
α+ −

1

3



 , (21)
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so that there are two branches of solutions, corresponding to the ± signs in eq. (21). In the
general case, with some deviation from the bag EoS, eqs. (19) and (21) still apply, with r
defined as before and α+ ≡ (ǫ+ − ǫ−)/(a+T

4
+).

Figure 1 shows these solutions for several values of α+. The first branch (with positive
sign) gives solutions of detonation type, v+ > v−, corresponding to r < 1

1+3α+
. The function

v+ has a minimum at v− = cs. Notice that the point v+ = v− = 1 is always a solution of
this kind, with r = 1

1+3α+
; besides, in the limit r → 0 one obtains v+ = 1 and v− = 1/3.

The second branch of solutions exists only if α+ < 1/3, and is of deflagration type, v+ < v−
(it ranges over all values of v−). Also for deflagrations, the function v+ has an extremum at
v− = cs; the endpoint, v− = 1, is given by the limit r → ∞ and yields v+ = 1−3α+

3+3α+
. The

limiting case α+ = 0 corresponds to v+v− = 1/3, connects both regions and will be relevant
for the discussion of shock fronts in the next section.

0 0.2 0.4 0.6 0.8 1
v

-

0

0.2

0.4

0.6

0.8

1

v +

 α+ = 1
 α+ = 0.3
 α+ = 0.1
 α+ = 0.01
 α+ = 0

deflagrations

deto
nati

ons

Figure 1: Contours of the fluid velocities v+ and v− in the wall frame for fixed α+. In the shaded
region in the top-left no consistent solutions to hydrodynamic equations exist. Flow profiles in the
shaded region in the bottom-right decay into hybrid solutions, with v− = c−s (see sect. 3.3).

To determine all relevant quantities in terms of the phase transition parameters, one still
has to determine one of the two velocities, or equivalently, relate T+ to T−; this will be the
subject of sec. 5. Before doing so, we want to provide a more detailed description and a
physical understanding of the above solutions as well as of the hybrid regime. Hence, for
now, we treat the wall velocity as a free parameter, without any further assumptions about
the microscopic properties of the plasma. In sections 3 and 4 we present the analysis of
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the different types of solutions for the motion of the plasma fluid. We will be particularly
interested in the efficiency factor κ (that measures how much of the vacuum energy goes into
bulk kinetic energy and is a crucial quantity to determine gravitational wave production) as
a function of the wall velocity. To define κ, we first need the relativistic fluid equations for
the plasma that we derive now.

2.3 Relativistic fluid equations and bulk kinetic energy

The starting point are the continuity equations (7) that, for a general plasma of form (3),
read (see e.g. [6])

∂µT
µν = uν∂µ(u

µw) + uµw∂µu
ν − ∂ν p. (22)

Projecting along the flow then leads, using uµ∂νu
µ = 0, to

∂µ(u
µw)− uµ∂

µ p = 0. (23)

Consider next the projection perpendicular to the flow with some space-like vector ū =
γ(v,v/v) such that ūµu

µ = 0, ū2 = −1. This turns (22) into the relativistic Euler equation

ūνuµw∂µuν − ūν∂ν p = 0. (24)

In the following we assume a spherically symmetric configuration. Additionally, because
there is no characteristic distance scale in the problem, the solution should be a similarity
solution that depends only on the combination ξ = r/t where r is the distance from the
center of the bubble and t is the time since nucleation.1 ξ is thus the velocity of a given
point in the wave profile and the particles at the point described by ξ in the wave profile
move with velocity v(ξ), which is therefore the fluid velocity in the frame of the bubble
center. This turns the different gradients into

uµ∂
µ = −γ

t
(ξ − v)∂ξ, ūµ∂

µ =
γ

t
(1− ξ v)∂ξ. (25)

Finally, this yields for eqs. (23) and (24)

(ξ − v)
∂ξe

w
= 2

v

ξ
+ [1− γ2v(ξ − v)]∂ξv ,

(1− vξ)
∂ξp

w
= γ2(ξ − v)∂ξv. (26)

The derivatives ∂ξe and ∂ξp can be related through the speed of sound in the plasma,
c2s ≡ (dp/dT )/(de/dT ), so as to get the central equation describing the velocity profile:

2
v

ξ
= γ2(1− vξ)

[

µ2

c2s
− 1

]

∂ξv, (27)

with µ the Lorentz-transformed fluid velocity

µ(ξ, v) =
ξ − v

1− ξv
. (28)

1 The matching equations (9) can also be derived using energy-momentum conservation for similarity
solutions in the rest frame.
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In general, c2s depends on the EoS for the plasma, being c2s = 1/3 in the bag case. In the
general case, c2s will be ξ-dependent, although in many cases of interest deviations from 1/3
will be small.

Eq. (27) can then be solved (with the appropriate boundary conditions) to yield the
velocity profile v(ξ) of the plasma. Subsequently, eqs. (26) can be integrated to yield

w(ξ) = w0 exp

[

∫ v(ξ)

v0

(

1 +
1

c2s

)

γ2 µ dv

]

. (29)

In the calculation of the gravitational radiation produced in the phase transition one
needs to compute the kinetic energy in the bulk motion of the plasma. We have now all
ingredients necessary to perform such calculation. The ratio of that bulk kinetic energy over
the vacuum energy gives the efficiency factor κ as

κ =
3

ǫξ3w

∫

w(ξ)v2γ2 ξ2 dξ , (30)

where ξw is the velocity of the bubble wall. Notice that this definition coincides with the
expression used in the gravitational wave literature, that is given by κ = 3

ǫR3
w

∫

w v2γ2R2dR,

but differs from the definition used in ref. [5] by a factor ξ3w.
We also numerically check energy conservation: Integration of T00 over a region larger

than the bubble (including the shock front) is constant in time, giving

∫
[

(γ2 − 1

4
)w − 3

4
wN

]

ξ2dξ =
ǫ

3
ξ3w, (31)

where wN denotes the enthalpy at nucleation temperature far in front of the wall. This
implies that the energy which is not transformed into kinetic bulk motion, but is used
instead to increase the thermal energy, is

1− κ =
3

ǫξ3w

∫

3

4
(w − wN)ξ

2dξ =
3

ǫξ3w

∫

(e− eN)ξ
2dξ. (32)

3 Detonations, deflagrations and hybrids

We can now use the previous fluid equations to describe the different kinds of solutions for
the motion of the plasma disturbed by the moving phase transition wall. In the discussion
below, the sound velocity in the plasma plays a very relevant role. This velocity will in general
depend on ξ and it is convenient to distinguish its asymptotic values in the symmetric and
broken phases. We denote those two velocities by c±s . In many cases, we expect the bag EoS
to hold in the symmetric phase and therefore c+s = 1/

√
3.

Before embarking in the discussion of the different types of velocity profiles, it proves use-
ful to study first in more detail the profile eq. (27) without worrying about physical boundary
conditions. The different curves in Fig. 2 are obtained by solving for ξ as a function of v
[instead of the more physically meaningful v(ξ), the plasma velocity profile] using arbitrary
boundary conditions and setting cs = 1/

√
3. This procedure has the advantage that ξ(v) is
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a single-valued function. The meaning of the different regions will be explained later on. We
see two different fixed points: one for ξ = cs and v = 0 and the other for ξ = v = 1. This
structure of fixed points can be understood analytically in a simple way by introducing an
auxiliary quantity τ to describe parametrically these curves in the plane (ξ, v). Using such
parameter, eq. (27) can be split in the two simpler equations

dv

dτ
= 2vc2s(1− v2)(1− ξv) ,

dξ

dτ
= ξ[(ξ − v)2 − c2s(1− ξv)2] , (33)

which clearly display the mentioned fixed points. The point (cs, 0) is in fact what is techni-
cally called an improper node and all curves approach it tangentially to the v = 0 line. One
also sees that dv/dτ > 0 so that along each curve v grows monotonically with τ . In the more
general case with a ξ-dependent cs deviating somewhat from 1/

√
3 one expects quantitative

changes in these curves but the same qualitative behavior [with the fixed point at (c−s , 0)].

0 0.2 0.4 0.6 0.8 1
ξ

0

0.2

0.4

0.6

0.8

1

v(
ξ)

deflagrations

detonations

Figure 2: General profiles of the fluid velocity v(ξ) in the frame of the bubble center (with c2s =
1/3). Detonation curves start below µ(ξ, v) = cs (dashed-doted curve) and end at (ξ, v) = (cs, 0).
Deflagration curves start below v = ξ and end at µ(ξ, v)ξ = c2s (dashed curve) corresponding to the
shock front, as explained in the text. There are no consistent solutions in the shaded regions.

Physical velocity profiles for expanding bubbles have to go to zero at some distance in
front and behind the bubble wall and, in view of Fig. 2, this clearly requires some discon-
tinuous jump, which usually can take place right at the phase transition front, where many
other quantities also jump. The different types of possible velocity profiles that result are
discussed next.
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3.1 Detonations

A pictorial representation of a typical detonation is depicted in Fig. 3, right plot. The
corresponding velocity profile is as in Fig. 4, lower left plot. More precisely, in detonations
the phase transition wall moves at supersonic speed ξw (ξw > c+s ) hitting fluid that is at rest
in front of the wall. In the wall frame, the symmetric-phase fluid is moving into the wall at
v+ = ξw and entering the broken phase behind the wall where it slows down so that v− < v+.
In the rest frame of the bubble center, the fluid velocity right after the wall passes jumps to
v(ξw) = µ(v+, v−) (the Lorentz transformation (28) from the frame of the wall to the rest
frame of the center of the bubble) and then slows down until it comes to a stop, at some
ξ < ξw, forming a rarefaction wave behind the wall. From the previous discussion we know
that v will go to zero smoothly at ξ = c−s .

deflagration
ξ

w
 < c

s
ξ

w
 > c

s
ξ

w
 > c

s

hybrid detonation

Figure 3: Pictorial representation of expanding bubbles of different types. The black circle is the
phase interface (bubble wall). In green we show the region of non-zero fluid velocity.

In order to obtain a consistent solution in the region c−s < ξ < ξw, one needs 0 < ∂ξv <∞
which, using eq. (27), requires µ(ξ) > µ(ξw) ≥ c−s behind the wall. Consequently, detonation
solutions are confined to the lower right corner of fig. 2, as indicated. Boosting to the wall
frame this implies v− ≥ c−s , since v− = µ(ξw, v(ξw)). Therefore, detonations can be divided
into Jouguet detonations (v− = c−s ) and weak detonations (v− > c−s ); strong detonations
(v− < c−s ) are not consistent solutions of the fluid equations, see fig. 1.2

Fig. 4 shows also the enthalpy profile (bottom right) for a detonation. Concerning this
profile, remember that the matching conditions across the wall give

wN = w+ = w−

(

1− ξ2w
ξw

)(

v−
1− v2−

)

, (34)

where the subscript N denotes the plasma at the temperature of nucleation far in front of

2As c−
s

can be different from 1/
√
3 in the most general case, the forbidden region v

−
< c−

s
, shaded in

Fig. 1, will be shifted in those cases.
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Figure 4: Examples of the fluid velocity (in the plasma rest frame), enthalpy and entropy profiles
for a subsonic deflagration, a deflagration with rarefaction wave (hybrid) and a detonation, for
a−/a+ = 0.85. The bubble of broken phase is in gray. For detonations, the fluid kinetic energy
and thermal energy are concentrated near the wall but behind it i.e. inside the bubble, while they
are located outside (mostly outside) of the bubble for deflagrations (hybrids).

the wall. Then, eq. (29) transforms into

w(ξ) = wN

(

ξw
1− ξ2w

)(

1− v2
−

v−

)

exp

[

−
∫ v(ξw)

v(ξ)

(

1 +
1

c2s

)

γ2 µ dv

]

. (35)
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Similar formulas can be derived for other quantities like the entropy (also shown in fig. 4),
the temperature, etc. It is straightforward to show that

T− > T+ = TN . (36)

by using the detonation condition r < 1/(1 + 3α+).

3.2 Deflagrations

A pictorial representation of a typical deflagration is depicted in Fig. 3, left plot. The
corresponding velocity profile is as in Fig. 4, upper left plot. In contrast with detonations,
in deflagrations the plasma is at rest right behind the wall, so that the wall velocity is now
ξw = v−. These solutions correspond to the lower branches in Fig. 1, with a fluid velocity
that is larger behind the wall than in front, v− > v+. From Fig. 1 we also see that in this
case the hydrodynamic relations across the wall imply v+ < cs. The fluid velocity just in
front of the wall jumps to v(ξw) = µ(v−, v+). As v− > v+, we get v(ξw) < ξw, so that the
profile of deflagration solutions start below the line v = ξ, as indicated in fig. 2.

As one moves out in ξ, v(ξ) decreases and eventually would become double-valued before
reaching zero3. Now we cannot accommodate the required jump to zero velocity using the
phase transition front, which is already fixed at the beginning of the velocity profile. The
way out of this dilemma is that the flow can drop to zero in a shock-front: we can use eq. (19)
where now quantities with subscript ± denote the two sides of the shock-front instead of the
phase transition wall. (Notice also that the shock occurs in the symmetric phase where in
general we can assume the bag EoS holds.) At the shock-front there is no discontinuity in
ǫ, and therefore α+ = 0, yet a discontinuity in velocities is possible. As given by eq. (19)
and shown in Fig. 1, this requires [17] that the inward and outward velocities of the fluid
in the shock-front rest-frame fulfill the relation v+v− = 1/3, which in the plasma rest frame
translates to µ(ξsh, vsh) ξsh = c2s. This condition determines the position of the shock front,
which can be seen to occur before the singular point µ(ξ, v(ξ)) = cs (where dv/dξ → −∞)
is reached, see fig. 2.

Fig. 4 also shows the enthalpy and entropy profiles (top right) for a deflagration. Notice
that the temperature T+ in this case does not coincide with the temperature of the plasma
outside the shock TN , since thermodynamic quantities are changing in front of the wall and
also at the shock front discontinuity. [For the same reason, explicit formulas like (35) would
be now more involved.] As illustrated by the plots in Fig. 4 one always has the inequality
ω+ > ωN , i.e. a+T

4
+ > aNT

4
N . In fact, for deflagrations one always has the inequalities

T+ > Tsh > TN > T− (37)

although the last one depends on the details of the Higgs equation of motion, discussed in
sect. 5. Hence the limit α+ < 1/3, that one found for α+ = ǫ/(a+T

4
+) in deflagrations,

translates into a weaker bound on the ratio αN = ǫ/(aNT
4
N ) as αN > α+.

An upper limit on αN will be important later on to set an upper limit on η. How large
can αN be for a fixed wall velocity? From α+ < 1/3 we get the upper bound αN < ω+/(3ωN)

3In spite of appearances, this happens even for very low values of the starting v(ξ) due to the improper-
node nature of the point (cs, 0) (see discussion above).
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and the ratio ω+/ωN cannot be made arbitrarily large. Inspection of the deflagration profiles
in Fig. 2 shows that ω+/ωN will be maximized by the case with strongest shock-front, which
corresponds to the highest possible v(ξw), that is, v(ξw) = ξw. In the wall frame this gives
v+ = 0 and, using the matching conditions (9), this case also has ω− → 0, i.e. a−T

4
−
→ 0.

Physically this would represent a limiting case for which the transition is such that the broken
phase inside the bubble is empty: the plasma is swept away by the wall (thus leading to the
strongest possible shock-front) and larger values of η cannot be realized microscopically. The
same matching conditions also give us ω+ → 4ǫ, which represents a fixed upper bound for ω+.
Going now to the shock rest frame and matching there one gets ωN = ωshc

2
s(1−ξ2sh)/(ξ2sh−c4s).

The quantities ωsh and ξsh can be obtained once the boundary condition v(ξw) = ξw is fixed
and lead to the minimal value of ωN . The resulting upper bound on αN can be fitted
numerically as a function of the wall velocity, and one gets

αmax
N |

defla.
≃ 1

3

1

(1− ξw)−13/10
, (38)

as derived in Appendix A.
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Figure 5: Fluid velocity profiles (in the plasma rest frame) for deflagrations, hybrids and detona-
tions, for different wall velocities and αN = 0.3.

3.3 Hybrids

From the previous discussion of velocity jumps it is clear that it should be possible to com-
bine detonation and deflagration solutions into a new velocity profile that is a superposition
of both types (thus the name hybrid), provided the wall is supersonic. In fact, it is known
from hydrodynamics simulations [19] that supersonic deflagrations are not stable but develop
a rarefaction wave, identical to the detonation profile discussed earlier. A pictorial repre-
sentation of a typical hybrid bubble is depicted in Fig. 3, central plot. The corresponding
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velocity profile is shown in Fig. 4, middle left plot. Applying the hydrodynamic constrains
for deflagration and detonation solutions we have (see fig. 1) µ (ξw, v(ξ

−

w )) = v− ≥ c−s and
µ (ξw, v(ξ

+
w )) = v+ ≤ c+s . On the other hand, entropy considerations enforce v− ≤ c−s , so

that the rarefaction wave has to be of Jouguet type, with v− = c−s .
Therefore in these hybrid solutions the wall velocity ξw is not identified with either v+

or v−, and the phase transition front is followed by a rarefaction wave of Jouguet type
(ξw > v− = c−s > v+) and is preceded by a shock front. Typical enthalpy and entropy
profiles are shown in the middle right plot of Fig. 4. As the wall velocity increases, the
deflagration part of the solution becomes thinner, and eventually disappears, as shown in
Fig. 5.

0.4 0.6 0.8 1
ξ

w

0

0.2

0.4

0.6

0.8

1

v
+

v
-

ξ
sh

α+/αN

deflagration hybrid detonation

αΝ = 0.1

Figure 6: The flow velocities in the wall frame, v+ and v−, the velocity of the shock front ξsh and
the ratio α+/αN as a function of the wall velocity (for αN = 0.1).

In summary, one obtains the following picture. For subsonic wall velocities, the bubble
expansion proceeds in general by deflagrations. If for constant αN the wall velocity is in-
creased beyond the velocity of sound, the flow profile develops a rarefaction wave. If the wall
velocity is further increased, the shock becomes thinner until it completely vanishes and the
bubble expansion proceeds by a Jouguet detonation. When the shock front vanishes, some
of the quantities right in front of the wall experience a jump, namely the temperature T+,
the flow velocity v+ and also α+ as illustrated in Fig. 6. Beyond this point the solutions are
given by weak detonations (v− > c−s ). The hybrid solutions then fill the gap of wall velocities
between Jouguet deflagrations and Jouguet detonations [19], as seen in Fig. 7 which gives
the maximal flow velocity in the plasma rest frame as a function of the wall velocity ξw for
fixed values of αN . For deflagrations and hybrids the maximal flow is in front of the wall
while for detonations it is behind it. Notice that, in the transition from hybrids to detona-
tions, the maximal flow velocity jumps without a gap in ξw. The whole flow profile can be
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Figure 7: The maximal flow velocity in the plasma rest frame as a function of the wall velocity
and several values of αN , as indicated by the labels of each curve.

reconstructed using Fig. 2.

4 Efficiency coefficients

In the following we present the analysis of the efficiency coefficient κ (the ratio of bulk kinetic
energy to vacuum energy) following ref. [6, 17, 5]. Steinhardt argued in his seminal work [7]
that the relative plasma velocity behind the wall should just be given by the speed of sound,
v− = c−s . Using this piece of information in eq. (19) gives immediately

ξw = ξJ ≡
√

α+(2 + 3α+) + 1√
3(1 + α+)

(Jouguet detonations), (39)

and

κ ≃
√
αN

0.135 +
√
0.98 + αN

(Jouguet detonations). (40)

Notice that this differs from the result in ref. [5] due to our different definition of the efficiency
factor κ [see discussion after eq. (30)].

As already mentioned, the Jouguet condition turns out to be unrealistic in cosmological
phase transitions [19], and therefore one needs to rederive a formula for κ that supersedes
eq. (40). In the next section we will discuss how to relate the two velocities in the plasma
v+ and v− (which is equivalent to the determination of the bubble wall). Knowing the wall
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Figure 8: The efficiency coefficient κ as a function of the wall velocity ξw for fixed αN . The
dashed and dashed-dotted lines mark the transitions from deflagrations to hybrids and further to
detonations. The dashed-dotted line corresponds to Jouguet detonations (the only case used in
the literature, although with a missing 1/ξ3w factor). Analytical fits for κ(αN , ξw) are provided in
Appendix A.

velocity ξw and the parameter α+ (or αN) the velocity profile is determined and κ can be
calculated using eq. (30) independently from further assumptions on friction and microscopic
physics in the plasma close to the wall (which are relevant to fix ξw).

The results are shown in Fig. 8 which gives κ as a function of the wall velocity for
several values of the vacuum energy αN . Note also that for large values of αN , small wall
velocities are impossible, see Fig. 7 and the discussion about deflagrations in Sec. 3. The
efficiency increases with αN and is maximal for the hybrid solutions. Nevertheless, according
to numerical simulations, the detonation solutions are the only supersonic modes that are
globally stable for small values of αN and realistically the maximal efficiency corresponds
to the Jouguet case in this regime. The gravity wave literature focused on the Jouguet
detonations (dashed-dotted line) and hence overestimated the efficiency κ. However, we
stress that this effect is mostly compensated by the missing factor ξ3w in the formula of κ(α)
we mentioned before. In appendix A, we give fits to the efficiency κ shown in Fig. 8 as a
function of the parameters αN and ξw.

Finally, it is interesting to estimate the thickness of the plasma shell near the bubble
wall where the kinetic energy in the plasma is concentrated (as this is relevant for GW
production). In Fig. 9 we give the thickness ∆ξ of a shell around the transition wall such
that it contains a given fraction of the kinetic energy, ∆κ/κ, as indicated. For each type
of bubble we choose the shell so as to maximize that fraction. That is, for detonations the
shell is (ξw, ξw − ∆ξw); for deflagrations (ξw − ∆ξw, ξw) and in-between for hybrids. The
dots in each line mark the boundaries between different regimes (deflagrations, hybrids and
detonations, in order of increasing wall velocity). We see that, especially for hybrid solutions,
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Figure 9: Curves with a fixed fraction of kinetic energy ∆κ/κ in a shell of thickness ∆ξ for
αN = 0.1 and αN = 1 as a function of the wall velocity ξw. The lower black (upper brown) lines
denote ∆κ/κ = 0.5 (∆κ/κ = 0.9). The dots in each line mark the boundaries between different
regimes (deflagrations, hybrids and detonations, in order of increasing wall velocity).

the kinetic energy is localized in the shock, which can be rather thin in this case. For weaker
deflagrations, the shock is thicker. For detonations, part of the kinetic energy is always in
the tail of the rarefaction wave.

In the limit of ultra-relativistic wall velocities (ξw → 1) the velocities v± approach 1 with
a relative slope v+/v− that depends on α+ (see Fig. 1). Generically, the fluid velocity will
not be ultra-relativistic in the plasma frame and the bubbles will expand as detonations (see
Fig. 2). Expanding (21) in powers of 1/γ± one gets

γ2
+

γ2
−

= 1 + 3αN , v(ξw) = µ(v+, v−) =
3αN

2 + 3αN

, (41)

where we have used α+ = αN as we are in the regime of detonations. This relativistic case
requires r = 1/(1 + 3α+), which translates into p+ − p− = 2ǫ. Numerically, the resulting
efficiency in this limit is given by

κ ≃ αN

0.73 + 0.083
√
αN + αN

(relativistic ξw). (42)

This result is relevant for the analysis of the case of runaway walls in section 6.

5 Bubble wall velocity for steady state walls

When a bubble of the broken phase is nucleated, and is large enough to start growing, it
will expand in an accelerated way, with the difference in free-energy across its wall acting as
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driving force. There is however a resistance to this expansion from the surrounding plasma,
which exerts a friction force that grows with the velocity of the moving wall. Eventually, an
equilibrium between these two forces is reached after a short time of expansion and, since
then on, the bubble wall keeps expanding in a steady state at a constant terminal velocity.
As explained in the last sections, hydrodynamics alone cannot be used to determine this
terminal wall velocity and one has to analyze the mechanism of entropy production and
friction in the wall.

5.1 EoM for the Higgs field and the friction parameter η

We take into account entropy production and friction through the equation of motion of the
Higgs field

�φ+
∂V0

∂φ
+
∑

i

dm2
i

dφ

∫

d3p

(2π)32Ei

fi(p) = 0 . (43)

By decomposing
fi(p) = f eq

i (p) + δfi(p) , (44)

where f eq
i = 1/[exp (Ei/T ) ∓ 1] is the equilibrium distribution function of particle species

i with E2
i = p2 + m2

i , eq. (43) takes the simple form (see also ref. [16] and more recently
ref. [26])

�φ+
∂F
∂φ
−K(φ) = 0 , (45)

where the second term gives the force driving the wall and K(φ) stands for the friction term

K(φ) = −
∑

i

dm2
i

dφ

∫

d3p

(2π)32Ei
δfi(p) . (46)

Friction is therefore due to deviations of particle distributions from equilibrium. In prin-
ciple, calculation of K(φ) requires solving a coupled system involving Boltzmann equations
for particle species with a large coupling to the Higgs field. This intricate calculation has
been performed in the Standard Model [15] and in the MSSM [20] and under the assumption
that the deviation from thermal equilibrium is small, i.e. δfi(p)≪ fi(p), which is only true
for weakly first-order phase transitions.

In this paper, we want to follow a more phenomenological and model-independent ap-
proach. In refs. [16, 26] a particularly simple choice for K(φ) was used:

K(φ) = TN η̃ uµ∂µφ , (47)

(where TN is inserted just to make η̃ dimensionless). This Lorentz invariant choice is mo-
tivated by similar approaches in the inflationary context but, as we will see in the next
section, it does not lead to the correct behavior for highly relativistic bubble wall velocities:
this friction force could increase without bounds, due to the γ factor appearing through
uµ∂µφ, but we know from ref. [27] that at large wall velocities the friction term approaches
a constant (see next section).

Friction comes from out-of-equilibrium effects and the assumption that it depends lo-
cally only on the plasma four-vector uµ and a Lorentz scalar η is too simplistic. In our
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phenomenological approach we ensure that the friction force grows with v and not γv. Such
behavior could arise from a friction term in the Higgs equation of motion of the form

K(φ) = TN η̃
uµ∂µφ

√

1 + (λµuµ)2
, (48)

where the Higgs background is parametrized by a four-vector λµ [such that φ(λµxµ) and λµ

is (0, 0, 0, 1) in the wall frame]. One can show that the entropy production from such a term
is always positive, as it should be.

Assuming then that in the steady state the bubble is large enough so that we can use
the planar limit, using (48) in eq. (45) we get, in the wall frame,

∂2
zφ−

∂F
∂φ

= −TN η̃v∂zφ , (49)

where z is the direction of the wall velocity. Note that the right-hand side would be multiplied
by γ if we use (47) instead of (48). If we multiply this differential equation by ∂zφ on both
sides and integrate across the wall, we get

∫

dz ∂zφ
∂F
∂φ

= TN η̃

∫

dz v (∂zφ)
2 . (50)

The integration of the force term could be simply performed if the free energy F did not have
an implicit dependence on z via the change in the temperature, T (z), with T (±∞) = T±.
Using dF/dz = (∂F/∂φ)∂zφ+(∂F/∂T )∂zT , one can rewrite the driving force of the bubble
expansion as:

Fdr ≡
∫

dz ∂zφ
∂F
∂φ

= F|+
−
−
∫

dz ∂zT
∂F
∂T

, (51)

and, using ǫ± and a(z) as defined in eqs. (16) and (17), one gets, without making assumptions
on the plasma equation of state:

Fdr = ǫ+ − ǫ− −
1

3

∫

da T 4 . (52)

By making further use of the definition of a(z) and assuming that the distribution functions
for particle species are the equilibrium ones one can rewrite eq. (52) as

Fdr = ∆V0 +
∑

i

|Ni|
∫

dz
dm2

i

dz

∫

d3p

(2π)3
f eq
i

2Ei
, (53)

where ∆V0 is the T = 0 part of ǫ+ − ǫ−, that is, the difference in (T = 0) potential energy
between the symmetric and broken minima (ǫ, for the bag equation of state). This expression
for the driving force will be useful in sect. 6.

Notice that this force does not coincide with the latent heat Λ, given by

Λ ≡ e+ − e− =
(

ǫ+ a T 4
)
∣

∣

+

−
. (54)

nor with the free energy (pressure) difference

∆F ≡ p− − p+ =
(

ǫ− a

3
T 4

)
∣

∣

∣

+

−

. (55)
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Using the fact that the number of effective degrees of freedom decreases continuously in the
wall, the last integral in (52) is bounded as

1

3
(a+ − a−)T

4
min ≤

1

3

∫

da T 4 ≤ 1

3
(a+ − a−)T

4
max , (56)

where Tmin = Min{T−, T+} and Tmax = Max{T−, T+}. For weak phase transitions one
typically has T+ ≈ T− and the concrete choice of the profiles in the wall are not important.
For very strong phase transitions, the free energy is dominated by the vacuum contribution
and the plasma contribution is rather small altogether:

Fdr ≈ ∆F ≈ ǫ+ − ǫ− − (a+ − a−)
T 4

3
(for weak phase transitions) (57)

Fdr ≈ ∆F ≈ Λ ≈ ǫ+ − ǫ− (for strong phase transitions) (58)

For simplicity, let us approximate the integral in eq. (56) by the expression involving T+.
For other approximations the results would not change qualitatively. In this case, the Higgs
equation of motion gives

α+ −
1

3

(

1− a−
a+

)

=
η̃TN

a+T 4
+

∫

dz v (∂zφ)
2 . (59)

In the SM, the second term in (59) is roughly (1− a−/a+)/3 = 0.05. For small values of α+

the left hand side of (59) is negative and no bubbles can nucleate (for nucleation one can
consider T+ = T−, in which case Fdr = F+ − F−, so that the wrong sign of the free-energy
difference is the reason that prevents the phase transition). For larger values of α+, the
left-hand side of the equation is positive and has to be balanced by the friction force so as
to obtain a constant wall velocity, as already explained. We will rewrite the right hand side
of (59) as

η̃TN

a+T
4
+

∫

dz v (∂zφ)
2 ≡ η

α+

αN

〈v〉 , (60)

which serves as the definition of η. Here 〈v〉 denotes the fluid velocity average across the
wall (in the wall frame), that we approximate as

〈v〉 ≡
∫

dz v (∂zφ)
2

∫

dz (∂zφ)2
≃ 1

2
(v+ + v−) . (61)

In this way, (59) is simply written as4

α+ −
1

3

(

1− a−
a+

)

= η
α+

αN
〈v〉 . (62)

Eq. (62) reproduces the correct behavior for small and very large wall velocities, even
though the parameter η will not be the same in these two limits. This simple phenomenolog-
ical approach already reproduces almost all qualitative features found in the hydrodynamic

4Compared to ref. [26], our velocity average does not include a γ factor and we use a different expression
for the driving force.
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simulations performed in ref. [16]. Notice that the right hand side of (59) is an increasing
function of the wall velocity (since v+ and v− are, see also Fig. 6). On the other hand, the
left hand side of the equation is decreasing for small velocities and jumps when the flow
solutions change from deflagrations to detonations (also the velocity v+ jumps but this is
less essential). Hence, for a certain range of values of the friction coefficient η, eq. (59) has
two solutions while in ref. [16] three solutions were found. The discrepancy is due to the
fact that we neglect the thickness of the wall compared to the shock and this would smooth
out the jumps in v+ and α+/αN , thus producing a third solution. The three solutions would
in the present model then be a deflagration (or a hybrid solution), a weak detonation and a
configuration close to a Jouguet detonation, in agreement with the results found in ref. [16].

Finally, at the critical temperature at which the two phases have degenerate free energy,
one expects that the gravitational wave signal vanishes. However, an analysis using the
Jouguet condition still implies supersonic bubble expansion. This led to the fact that the
difference in free energy is often confused with the vacuum energy ǫ in the literature on
gravitational wave production that is based on the Jouguet condition. Replacing the Jouguet
condition by the equation of motion (EoM) of the Higgs field solves this problem consistently,
since at the critical temperature one obtains αN = (1−a−/a+)/3 and, according to equation
(62), the bubble cannot expand.

5.2 Wall velocity in the (η, αN) plane

A fully numerical calculation of 〈v〉 in a given model would require the following proce-
dure. The starting point is the computation of the free-energy (in some approximation) as
a function of the Higgs field and the temperature, F(φ, T ) = −p. First, the nucleation tem-
perature TN of the phase transition should be determined (this is standard). To obtain the
steady-state profiles across the phase-transition wall in the planar limit of quantities like the
velocity, temperature and Higgs field, one should integrate the following system of coupled
differential equations:

∂2
zφ−

∂F
∂φ

+ TN η̃v∂zφ = 0 ,

∂z [ωγ
2v] = 0 ,

∂z

[

1

2
(∂zφ)

2 + ωγ2v2 + p

]

= 0 . (63)

In addition to the first Higgs equation which we already discussed, the two extra equations
correspond to the differential (and static) form of energy-momentum conservation. Their
integration across the wall gives immediately the Steinhardt’s matching conditions (9).

One wants to solve the system (63) for the primary quantities φ(z), T (z) and v(z). The
boundary conditions for φ(z) are

φ(−∞) = φ0(T−) and φ(∞) = 0, (64)

where φ0(T−) is the Higgs vacuum expectation value in the broken phase at some temperature
T− to be determined. The z = ±∞ boundaries correspond to the assumption that the width
of the phase transition front is much smaller than the width of the shell with non-zero
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Figure 10: Contour plots of κ and ξw as functions of η and αN (for a−/a+ = 0.85). The blue lines
mark the transition to regions without solutions. The green lines mark the boundaries between
stationary and runaway solutions. The red lines mark the transition from subsonic to supersonic
deflagrations (hybrids). We superimposed the detonation region in the lower plots as a gray band.

plasma velocity, which in general is a very good approximation. For η̃ fixed, the boundary
conditions (say at z = −∞) for T (z) and v(z) cannot be chosen freely: e.g. if one fixes
T (+∞) = T+ (in general different from TN) only one particular v(+∞) = v+ is selected
and then all profiles φ(z), T (z), v(z) can be determined. Detonation solutions will have
v(+∞) = v+ = ξw > v(−∞) = v− and one should choose T (+∞) = TN . Deflagrations
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will have instead v+ < v− = ξw and T (+∞) = T+ has to be set consistently with such wall
velocity (and corresponding deflagration hydrodynamic profile). Finally, hybrid solutions
have v+ < v− = c−s . Their wall velocity, ξw > c−s is not fixed unequivocally by v± but
should match the choice of T+. Our analytical formula (62) is expected to give a reasonable
approximation to the more complicated numerical approach just described. Such simple
formula is very useful to investigate in a model-independent way the parametric dependences
of the wall velocity (and derived quantities) in different regimes of bubble expansion, which
we do next.

Armed with eq. (62) we can calculate the wall velocity for given values of αN (that
measures the strength of the transition) and η (that measures the friction of the plasma).
The results are shown in Fig. 10, which plots contour lines of the wall velocity ξw and the
efficiency coefficient κ in the plane (η, αN), for the particular case of a−/a+ = 0.85 (as in
the SM). Let us first explain the different boundaries of the parameter space available in
the plane (η, αN). For the bubbles to be able to grow, the left hand side of (62) should
be positive. This requires α+ > (1 − a−/a+)/3 which, in this particular example, gives
αN ≥ α+ > 0.05. Both the low horizontal boundary (αN > 0.05) and the boundary at larger
αN and small η come from this requirement. That bubbles might not be able to grow even
if the transition is in principle quite strong (large αN) is due to the fact that one can have
α+ ≪ αN for hybrid solutions (see figs. 6 and 14). The boundary at αN > 1/3 and large
η corresponds to the extreme case with v+ → 0 and T− → 0 and determines the maximal
possible value of the friction coefficient for a given αN . We have plotted separately the cases
of detonations and deflagrations. Runaway solutions are realized for strong transitions and
small friction as one would expect. We see that for weak phase transitions and small friction,
deflagrations compete with detonations (superimposed in the lower plots as a gray band).
In the overlapping region, the wall velocity for the deflagration solution is always smaller
than for the detonation solution, which could have indicated that the deflagration solution
is reached first and is therefore realized. However, hydrodynamic simulations indicate that
these solutions turn out to be unstable globally and in this regime the phase transition
proceeds by detonation bubbles [19] (or eventually by runaway behavior if the upper bound
on friction would be incorporated in the model). Henceforth, the only way of realizing
supersonic deflagrations is in a regime where hybrids but no detonations are possible [19].

5.3 Microscopic determination of η

In the following we provide the connection of our results to the work [15, 20] in which the
friction in the wall was explicitly calculated in the SM and MSSM5. The friction force in
ref. [20] is of the form

Ffr = η̂ 〈v〉 TN

∫

dz φ2 (∂zφ)
2, (65)

where η̂ is a constant that depends mostly on the particle content of the model and its
couplings to the Higgs. φ(z) = 1

2
φN [1 + tanh(z/lw)] where lw is the wall thickness and φN

is the Higgs vev at nucleation temperature. Comparison with our friction force shows that

5We consider those results more reliable than the ones of refs. [28,26] which deduce particle distribution
functions δf without taking interactions into account.
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our parameter η can be written as

η ∼ η̂

10 a+

1

TN lw

(

φN

TN

)4

(66)

The coefficient η̂ was determined in the SM [15] (η̂ ≈ 3) and in the MSSM [20] (η̂ . 100 with
a sizable dependence on tanβ). A particularly interesting case is given by the parameter
region of the MSSM that allows for viable electroweak baryogenesis. The bound on sphaleron
wash-out implies φN/TN & 1 and using TN lw ≈ 10, η̂ ≈ 100 one finds η ≈ 1/30. Due to a
small difference in free energies, this leads to subsonic wall velocities 〈v〉 = 0.05 ÷ 0.1 [20]
as required for the diffusion of CP-violating particle densities into the symmetric phase in
front of the wall. This corresponds to a very weak phase transition with a value of αN just
slightly above its lower bound (that depends on a−/a+). Note that for models with a similar
particle content the friction η is not expected to change much, while the strength of the
phase transition can increase significantly. This is for example the case in singlet extensions
of the SM and MSSM which can easily lead to detonations or runaway solutions.

In this section we have assumed that the bubble wall reaches at some (not too late) stage
of the expansion a constant velocity. In this case the fraction of energy transformed into
kinetic energy of the Higgs field becomes negligible, since it only scales with the surface of
the bubble, while the similarity solutions of bulk motion scale with the volume. This can
change in cases in which the wall keeps accelerating without reaching a terminal velocity, as
discussed in the next section.

6 Runaway walls

It was recently argued [27] that the friction exerted on the Higgs wall by the plasma might
be too small and the wall might continuously accelerate. In this case a constant fraction of
the free vacuum energy is transformed into kinetic and gradient energies of the wall. In this
section we analyze the energy balance and the efficiency coefficient in this situation.

Let us first quickly present the main result of [27] that is based on the analysis of refs. [29–
31]. The passing phase-transition wall disturbs the distribution functions of particles in the
plasma. As discussed in the previous section, if we knew such non-equilibrium distributions,
fi(p, z), for each particle species, we could write, for the total force acting on the wall per
unit area and including friction:

Ftot = Fdr − Ffr = ∆V0 +
∑

i

|Ni|
∫

dz
dm2

i

dz

∫

d3p

(2π)3
fi
2Ei

. (67)

This has the same form as eq. (53) for the driving force Fdr but with the replacement f eq
i → fi.

Now, the ultra-relativistic case is particularly simple: to leading order in 1/γw, the wall
induces a sudden change in particle masses, m2

i,+ → m2
i,−, but leaves particle distribution

functions as they were in the symmetric phase fi = f eq
i,+ (which are not the equilibrium ones

in the broken phase). This allows the z-integral in (67) to be performed and one obtains

Ftot = ∆V0 −
∑

i

|Ni|∆m2
i

∫

d3p

(2π)3
f eq
i,+

2Ei,+

, (68)
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where ∆m2
i = m2

i |
−

+ and Ei,+ in the momentum integral is also the one corresponding to the
symmetric phase, as indicated.

If Ftot remains positive even for v → 1, the system will enter the runaway regime. Besides
the explicit form (68), this condition can be rephrased in terms of the free energies in the
mean field approximation [27]. Notice that the mean field approximation implies

〈VT (φ)〉MF = VT (0) +
∑

i

[m2
i (φ)−m2

i (0)]
dVT

dm2
i

∣

∣

∣

∣

0

, (69)

such that
〈

V −

T

〉

MF
=

〈

V +
T

〉

MF
+
∑

i

∆m2
i

dVT

dm2
i

∣

∣

∣

∣

+

, (70)

and the criterion for runaway behaviour reads

0 < Ftot =
〈

F+ − F−
〉

MF
. (71)

The results we just summarized can be interpreted as saying that the friction Ffr (which
we expect to increase monotonically with v) saturates at a finite value6 for v → 1. A sketch
for this behavior is given in Fig. 11. Noting that the driving force is given by

Fdr = F− −F+, (72)

then the maximal value for the friction force reads (〈F+〉MF = F+)

Fmax
fr =

〈

F−
〉

MF
−F− =

〈

V −

T

〉

MF
− V −

T (73)

Using the convexity properties of the different contributions to VT one can show that Fmax
fr

is necessarily positive.
If 〈F+ − F−〉MF > 0, then Fdr < Fmax

fr , and the wall velocity will grow till the friction
force equilibrates Fdr and a steady state with some terminal velocity is reached. In the
opposite case with 〈F+ − F−〉MF < 0, one has Fdr > Fmax

fr and the wall will keep accelerating
without reaching a steady state, i.e. it will “run-away”. The crucial assumptions here are
that there are no hydrodynamic obstacles that prohibit the wall velocities to become highly
relativistic in the first place, and that the mean free-path of the particles is larger than the
wall thickness.

It is instructive to rederive the results of ref. [27] we have just presented in the language
of Kadanoff-Baym equations (see refs. [32] for an introduction to Kadanoff-Baym equations
in Wigner space). In this formalism, the Wightman function G<

i (for particle species i) is the
relevant Green function that encodes the distribution function of the particles in the plasma.
Under the assumption that the mean free-path of the particles that obtain a mass by the
Higgs vacuum expectation value is much larger than the thickness of the bubble wall, one
can neglect collisions in the wall. In this case the Kadanoff-Baym equation for the Wightman
function G<

i reads
(p2 −m2

i ) e
i⋄/2G< = 0, (74)

6Up to a possible logarithmic increase with log γw (we thank Guy Moore for clarifications on this point).
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Figure 11: A sketch of the friction force as a function of the wall velocity showing the saturation
at 〈v〉 → 1. The behavior for intermediate velocities is largely unknown. The arrows indicate two
possible values for the driving force that would lead to steady or runaway bubble expansion, as
indicated.

where the diamond operator is defined as

⋄ =←−∂ x

−→
∂ p −

←−
∂ p

−→
∂ x. (75)

In the semi-classical limit, the operator ei⋄/2 can be expanded in gradients and the real/imaginary
parts of the equations become, at first order,

(p2 −m2
i )G

<
i = 0, (76)

(p2 −m2
i ) ⋄G<

i = 0. (77)

The gradient expansion is justified in the present case because in the wall frame the particles
have momenta of order γT , which is large compared to the inverse wall thickness. Using the
ansatz

G<
i = 4π δ(p2 −m2

i )fi(x
µ, pµ) , (78)

this yields for the particle distribution function the equation
[

p · ∂x +
1

2
(∂ζm

2
i )λ · ∂p

]

fi(x
µ, pµ) = 0. (79)

We introduced again a four-vector λµ to parametrize the motion of the wall [that is, λµ =
(0, 0, 0, 1) in the frame moving with the wall] and ζ ≡ λ ·x. Notice that the first term in (79)
is the flow term of a Boltzmann equation while the second term represents the force from
the wall acting on the plasma. In front of the wall the distribution function is given by the
equilibrium one. E.g., for a bosonic degree of freedom

f eq
i,+ =

θ(p0)

exp[β(u · p)]− 1
, (80)
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where uµ is the plasma velocity four-vector. Solving eq. (79) the distribution function behind
the wall reads (with ∆m2

i as before)

fi =
θ(p0)

exp β Ωi − 1
, (81)

with

Ωi = u · p+ u · λ
[

λ · p− sign(λ · p)
√

(λ · p)2 +∆m2
i

]

. (82)

In the wall frame this yields

Ωi = γp0 − γv
√

p2z +∆m2
i . (83)

This is in accord with the results of [27] and our previous discussion: in the wall frame the
particles just cross the wall and change their momentum according to

p2z → p2z −∆m2
i . (84)

The contribution of particle species i to the pressure behind the wall is (in the wall frame
and per degree of freedom) given by

δiT
plasma
zz =

∫

d4p

(2π)4
p2z G

<
i

= 2

∫

d4p

(2π)3
δ(p2 −m2

i,−) p
2
z fi

≈ 2

∫

d4p

(2π)3
δ(p2 −m2

i,+) pz

√

p2z −∆m2
i sign (pz) θ(p

2
z −∆m2

i ) f
eq
i,+, (85)

where the last line is obtained by shifting the integration variable as in (84) and noting
that the measure dpz pz does not change. Hence, for the pressure difference produced by the
plasma this gives

δi∆Tzz ≈ ∆m2
i

∫

d4p

(2π)3
δ(p2 −m2

i,+)f
eq
i,+

= ∆m2
i

∫

d3p

(2π)3 2E
f eq
i,+, (86)

which agrees with the formula obtained in ref. [27]. In terms of ∆Tzz, the criterion for
runaway solutions is very transparent and is simply

ǫ > ∆Tzz =
∑

i

δi∆Tzz. (87)

In this case, only a part of the available vacuum energy is released into the plasma and the
remaining energy is used to further accelerate the wall.

This criterion for runaway behavior can be reformulated in terms of parameters of the
phase transition in case it is rather strong. For particles that are light in both phases, the
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contribution to the pressure is similar in both phases. Particles that are heavy in both
phases do not contribute much to either pressure difference or free energy. Hence, mostly
the particles that become heavy during the phase transition produce a pressure difference
along the wall. Using this, one obtains for an accelerated wall the criterion

∆Tzz =
T 2
N

24

∑

light→heavy

ci |Ni|m2
i =

T 2
N

24
〈φ〉2

∑

light→heavy

ci |Ni| y2i < ǫ , (88)

with ci = 1 (1/2) for bosons (fermions), |Ni| are the corresponding numbers of degrees
of freedom, yi are the coupling strengths to the Higgs boson and 〈φ〉 the Higgs vacuum
expectation value in the broken phase. Using the relation ǫ = αN(aNT

4
N) we get that a

runaway wall is in principle possible for

αN > α∞ ≡
30

π2

(〈φ〉
TN

)2
∑

light→heavy ci |Ni| y2i
∑

light c
′

i |Ni|
, (89)

with c′i = 1 (7/8) for bosons (fermions). This equation serves as the definition of α∞. In
extensions of the SM, eventually more particles contribute to the pressure difference, but
typically not many new light particles are in thermal equilibrium. One hence can deduce
that for

αN > 1.5× 10−2

(〈φ〉
TN

)2

, (90)

runaway walls are possible depending on the details of the model. It is interesting to note
that models which lead to sizable gravitational wave production typically satisfy the runaway
condition and this should be taken into account when calculating the GW signal.

Next, we make contact with the case of a constant wall velocity, discussed in the last
section.

7 Energy budget of first-order phase transitions

The analysis in the last section assumed that the system was time-independent in the wall
frame, which leads to the fact that the Higgs field only contributes a pressure component
from the vacuum energy to the energy momentum tensor

T φ
zz |+− = −ǫ , T φ

0z |+− = 0 . (91)

In a static system these contributions have to be compensated by the plasma and this requires

T plasma
zz |+

−
= ǫ , T plasma

0z |+
−
= 0 . (92)

Such relations lead to the matching conditions (9) used as boundary conditions in the hydro-
dynamic analysis of the plasma. In the case of a highly relativistic plasma, these boundary
conditions can be derived explicitly from the particle distribution functions. Following the
same calculation as in the previous section, for T plasma

0z one finds

T plasma
zz |+

−
= ∆Tzz, T plasma

0z |+
−
= 0, (93)
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Figure 12: The energy budget for η = 0.2 and η = 1.0. The different contributions (from top
to bottom) are thermal energy, bulk fluid motion and energy in the Higgs field. The last two
components can potentially produce anisotropic stress in the plasma and subsequently gravity
waves.

Hence, in the runaway case, with αN > α∞ the solutions for the fluid motion are identical
to the ones with αN = α∞, according to the distribution functions determined close to the
wall. At the same time the Higgs field cannot be time-independent anymore and energy
momentum conservation implies that the remaining energy is used to accelerate the wall.

We observed in section 4 that, in the limit of large wall velocities, the efficiency factor
does not depend on the wall velocity but is given by (42). This means that, in the runaway
case,

κ∞ ≃
α∞

0.73 + 0.083
√
α∞ + α∞

(runaway). (94)

In summary, in the runaway regime and for given αN , a portion α∞ of the initial αN produces
bulk motion with efficiency κ∞, as given by eq. (94), while the remaining portion, αN −α∞,
is transformed directly into kinetic/gradient energy of the Higgs field with efficiency κ =
1. These two components can potentially produce anisotropic stress in the plasma and
subsequently gravity waves while the thermal energy in the plasma can not. Figure 12
shows the energy budget of the phase transition for two choices of the friction coefficient η
as a function of αN in different regimes of bubble expansion.

8 Summary

The bubble wall velocity ξw in first-order phase transitions is a key quantity entering the
calculation of the baryon asymmetry in electroweak baryogenesis and its derivation has been
discussed extensively in the literature. However, it has been treated in detail only in specific
models (corresponding to weak first-order phase transitions) and a general account of the
problem was lacking. In this work, we attempted to gather all the important information
in a self-consistent manner and in a model-independent approach. We presented a unified
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description of all the different regimes characterizing bubble growth and stressed how they
are connected.

In the last few years, there has been a significant effort towards working out the relic
gravity wave background generated by bubble collisions. Production of gravity waves during
a first-order phase transition is due to bulk motions in the plasma and magnetic fields
generated by these fluid motions. The resulting gravity wave spectrum scales as a large
power of the typical fluid velocity, roughly as v4. The fluid velocity profile in the vicinity
of the bubble wall is relevant and it is therefore important to estimate the fraction κ of
the vacuum energy density ǫ liberated during the phase transition which goes into the fluid
motions.

So, ξw and κ are the two salient quantities that one would like to predict for any given
particle physics model leading to a first-order phase transition. The most straightforward
quantity to compute in a given model is αN , the ratio of the vacuum energy density ǫ to the
radiation energy density at the nucleation temperature. One would be interested in knowing
in which regime (detonation, deflagration, hybrids, runaway) the given model is expected to
fall in, without having to deal with the intricate Boltzmann equations. There is a relation
which has been used extensively in the literature for ξw as a function of αN . Such relation is
valid for supersonic walls and is based on the assumption of Jouguet detonations. Assuming
Jouguet detonations amounts to setting the value of the fluid velocity at the inner boundary
of the velocity profile in the wall frame to the speed of sound. There is no justification for
this choice although it has been used in the literature for simplicity. Setting arbitrarily some
boundary condition for the velocity leads to inconsistencies and corresponds to ignoring the
constraints from the equation of motion of the Higgs field. By dealing explicitly with that
Higgs equation, our study goes beyond this assumption.

The difficulty is that the problem under consideration is not fully determined by αN . As
we elucidated, for a given αN , there are many possible wall velocities and a large range of κ
values7, as seen in Fig. 8. To fix the solution, one needs to compute the friction term that
restrains the bubble expansion. There are two approaches to this problem. The rigorous
(but tedious) treatment requires solving coupled Boltzmann equations. A simpler approach
is to take the friction as a parameter independent from the bubble wall velocity and solve
the equation of motion for the Higgs field by using some phenomenological description for
the friction. This is the approach that we took in this paper. It has been adopted in some
numerical studies [14, 16–19], although the modeling of the friction was not appropriate in
the limit of large velocities. We now use a more realistic modeling which allows us to describe
the runaway regime in addition to the steady state regime, eq. (49).

One of our final results has been to present, in Fig. 10, model-independent contours for
ξw and κ in the η − αN plane, where η and αN are the two crucial physical (dimensionless)
parameters respectively characterizing the strength of the phase transition and the amount
of friction. In concrete models, αN and η are not independent parameters. However, we
believe that the information contained in these plots is useful as it enables to investigate the
parametric dependence of the wall velocity and the κ factor in different regimes and gather
all the important physics in a single comprehensive figure. The contour plots are not fully
model-independent as we have fixed the relative change in the number of relativistic degrees

7We have also corrected a missing factor 1/ξ3
w
in the definition of κ which is found in the literature.
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of freedom between the two phases but they serve the purpose of describing the qualitative
behavior of ξw and κ. From our analysis, we obtain that only a small band in the (η, αN)
plane leads to pure detonations. We also find that in a large region of this plane, hybrids
coexist with runaway solutions, meaning that our time-independent analysis is not sufficient
to fix the solution. According to numerical studies, hybrids are mostly unstable [19]. We
would therefore conclude that the most likely solutions are either deflagrations or runaway
solutions. We have clarified the condition determining the runaway regime, see eq. (89),
and found that for values αN ∼ O(1) common in the literature, a runaway regime is quite
likely. Note however than numerical studies have not been carried out in the ultra relativistic
regime.

For deflagrations and hybrids, a significant fraction of the available energy goes into bulk
fluid motions. On the other hand, for a non-steady state solution, a large fraction of the
energy goes into accelerating the wall and little goes into bulk fluid motions, as seen in
Fig. 12. Therefore, and perhaps counterintuitively, we find that, in a very strong first order
phase transition, the contribution to the gravity wave spectrum from turbulent fluid flows
is probably subdominant. While the overall size of the gravity wave signal is essentially
controlled by the amount of vacuum energy released, i.e. by αN , its detailed spectrum
will depend on how the energy is distributed among the different components (wall versus
plasma). We have therefore provided the relation between the fluid velocity and the bubble
wall velocity in Fig. 7. In addition, we estimated the thickness of the plasma shell near
the bubble wall where the kinetic energy in the plasma is concentrated. In all numerical
calculations of the GW background [4,5,10], it has been assumed for simplicity that all the
energy was concentrated on the bubble surface and finite thickness effects were ignored (they
were instead considered in the analytical approach of [9]). This is a reasonable approximation
for detonations, although we show that even for supersonic wall velocities, the thickness of
the plasma shell can reach ∼ 20% of the bubble size, see Fig. 9.

Finally, the nature of the electroweak phase transition is unknown and it will take some
time before we can determine whether electroweak symmetry breaking is purely Standard
Model-like or there are large deviations in the Higgs sector which could have led to a first-
order phase transition. Although our analysis was implicitly motivated by the electroweak
phase transition, it could be applicable to other first-order phase transitions in the early
universe.
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A Numerical fits to the efficiency coefficients

In this section we provide fits to the numerical results of section 4. These fits facilitate the
functions κ(ξw, αN) and α+(ξw, αN) without solving the flow equations and with a precision
better that 15% in the region 10−3 < αN < 10.

In order to fit the function κ(ξw, αN), we split the parameter space into three regions
and provide approximations for the four boundary cases and three families of functions that
interpolate in-between: For small wall velocities one obtains (ξw ≪ cs)

κA ≃ ξ6/5w

6.9αN

1.36− 0.037
√
αN + αN

. (95)

For the transition from subsonic to supersonic deflagrations (ξw = cs)

κB ≃
α
2/5
N

0.017 + (0.997 + αN)2/5
. (96)

For Jouguet detonations (ξw = ξJ), as stated in eq. (40)

κC ≃
√
αN

0.135 +
√
0.98 + αN

and ξJ =

√

2
3
αN + α2

N +
√

1/3

1 + αN
. (97)

And finally for very large wall velocity, (ξw → 1) as stated in eq. (42)

κD ≃
αN

0.73 + 0.083
√
αN + αN

. (98)

For subsonic deflagrations a good fit to the numerical results is provided by

κ(ξw . cs) ≃
c
11/5
s κAκB

(c
11/5
s − ξ

11/5
w )κB + ξwc

6/5
s κA

, (99)

and for detonations by

κ(ξw & ξJ) ≃
(ξJ − 1)3ξ

5/2
J ξ

−5/2
w κCκD

[(ξJ − 1)3 − (ξw − 1)3]ξ
5/2
J κC + (ξw − 1)3κD

. (100)

The numerical result for the hybrid (supersonic deflagration) region is well described by a
cubic polynomial. As boundary conditions, one best uses the two values of κ and the first
derivative of κ at ξw = cs. Notice that the derivative of κ in ξw is not continuous at the
point ξJ . The derivative at ξw = cs is approximately given by

δκ ≃ −0.9 log
√
αN

1 +
√
αN

. (101)

This differs from the derivative one would obtain from the fit in the region ξw < cs, but
mostly for values α & 1, where no solutions exist for ξw < cs. The expression for supersonic
deflagrations then reads

κ(cs < ξw < ξJ) ≃ κB + (ξw − cs)δκ+
(ξw − cs)

3

(ξJ − cs)3
[κC − κB − (ξJ − cs)δκ] . (102)
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Figure 13: The efficiency coefficient κ as a function of the wall velocity ξw for fixed αN and the
fit (dashed lines) described in the text.

The fits of κ compared to the numerical results are given in Fig. 13. The relative errors
never exceed 15%.

Another useful function is the maximal αN that can be realized for fixed ξw. This function
is approximately given by

αmax
N ≃ 1

3
(1− ξw)

−13/10 . (103)

Finally, the connection between αN and α+ might be needed in phenomenological studies.
Like in the case for κ, we provide approximations or analytic expressions in limiting cases
and interpolate in between. For velocities larger than the Jouguet velocity ξJ , α+ and αN

coincide. For αN < 1/3 all velocities can be realized and in this case the limit vw → 0 also
yields α+ → αN . Otherwise there is a minimal ξw which is, according to eq. (103), given by

α+ = 1/3 for ξw = 1− (3αN)
−10/13 if αN >

1

3
. (104)

For relatively small αN a wall velocity of the speed of sound can be realized leading to a fit

α+(cs) ≃ αN(0.329− 0.0793 logαN + 0.0116 log2 αN + 0.00159 log3 αN)

if αN <
1

3
(1− cs)

−13/10 ≃ 1.02. (105)

Finally, the transition from supersonic deflagrations to detonations can be determined ana-
lytically leading to

α+(ξJ) = αN
3− 3ξ2J
9ξ2J − 1

for all αN . (106)

For αN > 1/3, the function α+(αN , ξw) is well approximated by a polynomial in ξw that
contains the two/three data points just given for the case αN ≷ 1.02. For αN < 1/3, the
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function α+(αN , ξw) is approximately linear in the region ξw ∈ [cs, ξJ ] and goes slowly to αN

for ξw → 0. For velocities below cs, a reasonable approximation is of the form

α+ =
αN + c1 ξ

2
w

1 + c2 ξ2w
, (107)

and matching of this function and its derivative to the linear regime yields

α+ =
(c2s − ξ2w)[α+(ξJ)− α+(cs)]αN − 2ξ2w(1− ξJ/cs)[α+(cs)− αN ]α+(cs)

(c2s − ξ2w)[α+(ξJ)− α+(cs)]− 2ξ2w(1− ξJ/cs)[α+(cs)− αN ]
. (108)

The comparison between fit and numerical results is given in Fig. 14. The relative error
never exceeds 5% and is worst for αN ∼ 0.3.
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Figure 14: The ratio α+/αN as a function of the wall velocity ξw for fixed αN and the fit (dashed
lines) described in the text.
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