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Abstract. Wireless sensor networks and Radio Frequency Identifiers
are becoming mainstream applications of ubiquitous computing. They
are slowly being integrated into our infrastructure and therefore must
incorporate a certain level of security. However, both applications are
severely resource constrained. Energy scavenger powered sensor nodes
and current RFID tags provide only 20 µW to 50 µW of power to the
digital component of their circuits. This makes complex cryptography a
luxury. In this paper we present a novel ultra-low power SHA-1 design
and an energy efficient ultra-low power AES design. Both consume less
than 30 µW of power and can therefore be used to provide the basic
security services of encryption and authentication. Furthermore, we an-
alyze their energy consumption based on the TinySec protocol and come
to the somewhat surprising result, that SHA-1 based authentication and
encryption is more energy efficient than using AES for payload sizes of
17 bytes or larger.

1 Motivation

Not long ago, ubiquitous computing was just a buzzword. Technologies like Radio
Frequency Identifiers (RFID) and Wireless Sensor Networks (WSN) are a few
examples showing that embedded and ubiquitous computing has come a long
way from hot idea to mass deployment. Computing devices are now embedded
into clothing and other products in the form of RFID tags. WSN are still mainly
used by researchers but are expected to migrate into mainstream applications
like building, health, and environmental monitoring, military target tracking and
so on in the near future. Embedded and ubiquitous computing will soon form a
crucial part of our infrastructure. Securing this infrastructure is critical.

The most basic security services are privacy, integrity, and authenticity which
can be achieved with classic message authentication codes (MAC) and encryption
functions. However, WSN nodes and RFID tags impose severe power constraints
which make it difficult to realize computationally intensive cryptographic func-
tions. Passive RFID tags are powered by the electro magnetic field from the
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reader and only 20 µW are available to the digital part of the tag1. Wireless
sensor nodes are currently battery powered but battery replacement poses a
major hindrance to scaling wireless sensor networks to thousands of nodes and
to deploying them in inaccessible places. We envision that the next generation
sensor nodes will be powered by scavengers, which collect energy from environ-
mental sources such as light, radiation, vibration, etc. Micro-Electro-Mechanical
Systems (MEMS) based power scavengers can be integrated on chip, which will
decrease cost, and can produce up to 8 µW of power [1]. Future MEMS-based
scavengers are expected to deliver up to 50 µW continously, enough to power an
ultra-low power circuit.

Power consumption in CMOS devices is the sum of leakage power PLeak,
which is caused by the leakage current of each gate, and dynamic power PDyn,
caused by switching activity. PLeak is proportional to the circuit size and PDyn

is proportional to the clock frequency and switching activity. We observed that
at a frequency of 500 kHz, which is used in sensor network implementations [2],
leakage power becomes dominant. In order to conserve leakage power we have
to reduce the circuit size. A common method to save hardware resources and
provide privacy, integrity, and authentication is to use the same cryptographic
algorithm for both functions, MAC computation and encryption. SPINS [3] for
example, uses RC5 for encryption and in CBC-mode to build a secure MAC.
TinySec [4] is cipher independent and was tested with RC5 and Skipjack for
encryption and CBC-MAC. The authors of [4] are also considering the Advanced
Encryption Standard [5].

Many research papers [3,6,7] analyze encryption algorithms for wireless sensor
networks exclusively with reference to speed and code size while only a few [8]
address the energy consumption of software based implementations. However,
the ultra-low power applications we are envisioning, do not provide enough power
for running cryptographic algorithms on general purpose microprocessors.

2 Cryptographic Functions for Ultra-Low Power
Applications

AES was selected by the National Institute of Standards and Technology (NIST)
as Federal Information Processing Standard FIPS-197 [5] in 2001. Since then,
many hardware implementations have been published. Most of them are opti-
mized for speed and only a few are scalable [9,10] from fast to small. The first
ultra-low power implementation was reported in [11] followed by [12] by the same
group. Both papers analyze the power consumption but not the energy consump-
tion of the circuits. AES is a block cipher with a fixed input size of 128 bits and
a key length of either 128 bits, 192 bits, or 256 bits. For our ultra-low power
implementation we chose 128 bits. AES applies the same round function ten
1 A simple, passive RFID tag typically consists of an analog and a digital section.

The analog section is responsible for powering the tag and wirelessly sending and
receiving data. The digital section contains a tiny microcontroller and some memory
to store the unique identifier.
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times to its input, also called State, during encryption. The round function con-
sists of four different transformations: SubBytes, ShiftRows, MixColumns, and
AddRoundKey, each changing the State by applying linear, non linear and key
dependent transformations.

SHA-1 is the most widely used secure hash function and was developed by the
National Security Agency. Its security level2 is considered to be 280. Recent
attacks on SHA-1 [13] indicate that there might be a potential weakness but
no collisions have been found yet. Many implementations of SHA-1 have been
reported, most of them optimized for speed [14]. To our knowledge, this is the
first ultra-low power implementation of SHA-1. SHA-1 computes a 160-bit hash
of messages up to 264 bits in size. Each message needs to be preprocessed by
padding the message, appending the message length and splitting it into blocks
with a length of 512 bits each. Then, the compression function processes each
input block and computes intermediate hash values by iterating over simple
functions 80 times.

2.1 Message Authentication Codes

We use HMAC, which is formally described in [15] as HMACk(x) = SHA-1((k⊕
opad) || SHA-1((k ⊕ ipad) ||x)), to build a message authentication code. It uses
a 160-bit key K which is padded with 0’s resulting in k. The terms k ⊕ opad
and k ⊕ ipad can be precomputed from the 512-bit constants opad and ipad
and k. Due to the concatenation ((k ⊕ ipad) ||x) the intermediate hash value of
(k ⊕ ipad) and (k ⊕ opad) can be precomputed as well. Hence, computation of a
MAC requires �length(x)/512� + 1 operations of SHA-1.

AES can be used in CBC-MAC [16] mode to compute authentication codes.
This mode is similar to the Cipher Block Chaining mode [17,18] in that the result
from the previous encryption is XORed with the next plaintext block and en-
crypted again. The computation of a MAC requires �length(x)/128� operations.
The level of security of AES in this mode is approximately 264, and not 2128 as
one might expect, due to the birthday attack3. CMAC [19] fixes some security
deficiencies of CBC-MAC. It uses two subkeys which can be precomputed. The
main MAC computation is very similar to CBC-MAC, only the last step is dif-
ferent. However, this would not add much to the complexity of our CBC-MAC
implementation.

2.2 Encryption

To some extent, hash functions like SHA-1 can also be used to perform encryp-
tion. The best examples are SHACAL [20] and SHACAL-1 [21]. The security of
SHACAL was analyzed in [22] and more recently in [23]. SHACAL defines how
the compression function of SHA-1 can be used as a 160-bit block cipher with
2 280 operations have to be made on average to find another input such that the

resulting hashes are equal, also called a collision.
3 If a sensor node produces one message authentication code per second, it would

produce only 232 in 100 years.
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a 512-bit secret key. Shorter keys can be used by padding the key with zeroes
but the minimum key size is 128 bits. AES is a block cipher so its usage for
encryption is straight forward.

3 SHA-1 Implementation

We assume that one 512-bit block of preprocessed data is stored in memory and
available to our SHA-1 unit for reading and writing. The operation of our SHA-
1 implementation is broken down into three stages. The initial stage comprises
the first 16 rounds. Here, the message scheduler reads the message block one
Mt per round. The next stage is the computation stage which ends with the
80th round. During both stages, the message scheduler computes Wt, forwards
it to the message digest unit and also stores Wt in the external memory. The
message digest unit performs the message compression function. The final stage
is needed to compute the final hash values from the intermediate hash.

3.1 Message Scheduler

Most implementations in literature use a 16 stage 32-bit wide shift register for
this purpose (512 flip-flops). Our message scheduler is a serial design and needs
only one 32-bit register to store a temporary value during computation of the new
Wt. It scheduler performs the equation Wt = ROTL1 (Wt−3 ⊕ Wt−8 ⊕ Wt−14⊕
Wt−16) where ⊕ denotes bitwise XOR. Four values have to be read from memory
and the result written back to memory in each round. This takes 5 clock cycles,
therefore, each round of SHA-1 takes 5 clock cycles. The necessary address com-
putation is done using dedicated hard wired adders to provide +2, +8 and +13
addition modulo 16 for Wt−14, Wt−8, and Wt−3 respectively.

3.2 Message Digest Unit

SHA-1 requires five 32-bit working variables (a, b, c, d, e) to which new values
are assigned in each round. It can easily be seen from [24] that four out of the
five words are shifted in each round (a → b, · · · , d → e) and only determining
the new value for a requires computation. Therefore, we view the registers for
the working variables as a 5 stage 32-bit wide shift register.

Round Function. The round function computes a new value for a and shifts
all working variables once per round. The computation for a is a five operand
addition modulo 232 where the operands depend on all input words, the round-
dependent constant Kt, and the current message word Wt. In order to conserve
area and therefore limit the leakage power, we use a single 32-bit adder to per-
form the four additions and use register e as temporary register. This requires 4
clock cycles per round which is below the need of the message scheduler with 5
clock cycles. Figure 1 shows the block diagram of our implementation of the mes-
sage digest unit including the round function and the intermediate hash value
computation.
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Fig. 1. Proposed Hardware Architecture of the Message Digest Unit

Intermediate Hash Value Computation. During the final stage, the values of the
working variables have to be added to the digest of the previous message blocks,
or specific initial values for the first message block. This can be done very effi-
ciently without additional multiplexers or adders by arranging all intermediate
hash value registers H0, H1, H2, H3, and H4 in a 5 stage 32-bit wide shift register,
similar to our design for the working variables. Computing the final hash value
for one input block takes five clock cycles. This leads to a total of 405 clock
cycles for the message digest computation of one block.

4 AES Implementation

For our AES implementation we assume that a message block and the private
key are stored in memory. The result of the AES computation is written back
to memory. Our 8-bit implementation is inspired by the one reported in [11],
however, we restructured the datapath so that the registers are better utilized
and the AES computation consumes less clock cycles. In CBC-mode the hash of
the previous message block is XORed with the current message block. Therefore,
we can not use the external memory to store the intermediate state as we could
for our SHA-1 implementation. The same applies to storing the round keys.

4.1 Datapath

Each AES transformation and the key expansion load their operands in a specific
order from the state memory or key memory respectively, and write them back.
Some transformations require the storage of temporary results. We streamlined
this process by grouping the AES transformations into four stages:

1. Initial AddRoundKey–SubBytes–ShiftRows
2. MixColumns
3. AddRoundKey–SubBytes–ShiftRows
4. FinalAddRoundKey

This grouping enables us to re-use registers and minimize the number of inter-
nal memory accesses. It allows us to use a pipelined architecture for stage 1
and 3 which reduces he number of clock cycles by 40 percent. This improvement
comes at the cost of only one additional 8-bit register over the minimum possible
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number or 8-bit registers. Furthermore, the memory addressing scheme is sim-
plified. This is a tradeoff between low area and energy consumption.

The datapath of our implementation is shown in Fig. 2. It is characterized by
the pipelined architecture for stage 1 and 3 as well as the register requirements
for stage 2. We used five 8-bit registers, R0, R1, R2, R3, and R4. The boxes
labeled Keys and Data are the register files for the 128-bit Round Keys and the
128-bit State Memory respectively. This memory is register based and makes
extensive use of clock gating to conserve power.

R1

R2

R3

Enc/H

R4

Key Expansion

R0

SBox

Keys

Mix Column

Data

Rcon

da
ta

bu
s

Fig. 2. Block Diagram of our Implementation of the AES Datapath

4.2 Message Schedule

Initial AddRoundKey–SubBytes–ShiftRows. During this first stage, the 128-bit
message block and the secret key are read from main memory. If used in CBC-
mode, the message is XORed with the previous result. Then the the first Ad-
dRoundKey, SubBytes and ShiftRows operations are applied.

AddRoundKey–SubBytes–ShiftRows. This stage is run nine times for AES. The
round keys for the AddRoundKey operation are computed on the fly. In order
not to overwrite an element before its being read, we have to store four elements.
leading to our pipeline depth of four: R1, R2, R3, and R4.

Mix Columns. Feldhofer et. al. [11] described a very efficient way for performing
the MixColumns operation in an 8-bit architecture. It uses the minimum amount
of registers needed for this operation. We used the same method, however we use
an additional 8-bit register and are now able to reschedule the order of opera-
tions. The additional register (R4) is available from the merging of AddRoundKey
and ShiftRows operation.

Final AddRoundKey. In this stage we perform the final round key computation
and AddRoundKey operation. Then the result is written back to memory.

5 Analysis and Comparison

All our designs were described in VHDL and verified by simulation with Mod-
elSim and test vectors from the respective standards [5,24]. Our target library
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is a 0.13µm, VDD = 1.2 V ASIC library from TSMC, which is characterized for
power. The final results for power, area, and delay were reported by Synopsys
power compiler at the gate level. We would like to emphasize that our contri-
bution is on the algorithmic and architectural level. Implementing our designs
using an ultra-low power ASIC library or a full custom chip design will enable
higher energy and power savings. Our results are shown in Table 1. Both designs
consume a similar amount of area and power. The critical path delay in SHA-1 is
more than twice as long as for AES, however, we assume an operating frequency
of 500 kHz which is far below their maximum frequency. The total power con-
sumption at 500 kHz of SHA-1 is about 10 % higher than that of AES. Within
534 clock cycles AES can encrypt 128 bits of plaintext. SHA-1 needs 405 clock
cycles to compute the hash of 512 bits of data.

Table 1. Results for SHA-1 and AES

SHA-1 AES

Critical Path Delay 5.72 ns 2.19 ns
Clock cycles for one operation 405 534

Area (NAND equiv.) 4276 4070
Static Power 23.00 µW 20.23 µW

Dynamic Power (at 500 kHz) 3.74 µW 3.60 µW

Total Power (at 500 kHz) 26.73 µW 23.83 µW

Feldhofer et.al. presented two related AES designs in [11] and [12] consuming
26.9 µW and 4.5 µW respectively with a 100kHz clock. These numbers are diffi-
cult to compare with our design as the results for power consumption are highly
technology dependent. The encryption only design in [11] consumes an area of
3595 NAND equiv. and needs 1016 clock cycles. The design in [12] needs 3400
NAND equiv. and 1032 clock cycles. Both designs do not support CBC mode
which requires extra hardware. It can easily be seen that our implementation
uses 20% more hardware resources than their smallest design while using 48%
less clock cycles, i.e. it is almost twice as fast. The slight increase in hardware
resources leads to a large decrease in computation time which reduces the energy
consumption while still being an ultra-low power circuit. For a fair comparison of
AES and SHA-1, we used the same implementation and optimization techniques
with the same ASIC library.

In order to explore the energy consumption of our AES and SHA-1 implemen-
tations we focus on the TinySec [4] protocol. Table 2 shows the results assuming
the TinySec packet format and a payload of 29 bytes.

Message Authentication Codes. TinySec defines a packet format for authenti-
cated messages that can carry up to 29 Bytes of payload. The MAC is computed
over the payload and the packet header which is four bytes long. Table 2 shows
that using AES to compute the MAC over 29+4 bytes consumes 76.42 nJ and
SHA-1 consumes 43.32 nJ. Even though SHA-1 consumes 10% more power than
AES, the running time of AES is larger by a factor of two, leading to the higher
energy consumption. Fig. 3 shows the energy consumption for MAC computation
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Table 2. Energy Results for SHA-1 and AES (29 bytes/packet, 500 kHz)

MAC Encryption Encryption & MAC
AES SHA-1 AES SHA-1 AES SHA-1

Energy (nJ) 76.42 43.32 50.95 43.32 127.36 86.64
Power (µW) 23.85 26.74 23.85 26.74 23.85 26.74
Time (ms) 3.20 1.62 2.14 1.62 5.34 3.24
Energy/bit (nJ) 0.33 0.19 0.22 0.19 0.55 0.37

over different payload sizes, each time assuming a four byte overhead. Until the
payload reaches 29 bytes AES consumes less or almost equally as much energy
as SHA-1. For payloads of 29 bytes or larger AES has to run more than twice
while for SHA-1 two iteration are sufficient, due to its longer input size.

Encryption. Even though TinySec does not specify an encryption only format
we still consider it for comparison purposes. We assume that only the payload
has to be encrypted and the packet header is transmitted in the clear. Table 2
shows that the difference in Energy consumption between SHA-1 and AES are
less dramatic for encryption than for MAC computation. Fig. 4 shows that SHA-
1 follows AES closely. This comes from the fact that the input size of AES is
128 bits and of SHA-1 in encryption mode (SHACAL-1) is 160 bits.
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Authentication and Encryption. The packet format for Authentication and En-
cryption specifies a payload of upto 29 bytes and a packet header of eight bytes
length. Only the payload has to be encrypted but the MAC is computed over the
payload and the message header. Assuming a 29-byte payload, AES consumes
almost 1/3 more energy than SHA-1 (see Table 2. For larger payloads the SHA-1
consumes significantly less power (see Fig. 5).

6 Conclusion

This paper presented a novel ultra-low power implementation of SHA-1 and an
ultra-low power and low energy AES design. Both circuits consume less than
30 µW of power and could therefore be powered by scavenger circuits. We ana-
lyzed the energy consumption of SHA-1 and AES based encryption and message
authentication functions. The result of our analysis is that SHA-1 and AES seem
to be equally well suited for ultra-low power applications if the payload size is
below 17 bytes. For payloads of 17 bytes or above SHA-1 needs significantly fewer
iterations than AES and, therefore, has a shorter running time which conserves
energy. We want to emphasize that the power consumption of both algorithms
is about the same.
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