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ABSTRACT

Waveguides in NDE applications are commonly of a regular geometry (e.g.

circular, ring cross section) for which analytical solutions exist. In this paper

wave propagation in infinitely long strips of large rectangular aspect ratio

is discussed. Due to the finite width of strips a large number of modes

exist within the structure. This complicates the analysis and usually dis-

courages the use of strip-waveguides in NDE sensors. However it is shown

that among the many modes of a strip there are some with very desirable

properties. This is highlighted by the example of two guided wave modes

of a large aspect ratio rectangular strip whose dispersion characteristics ap-

proach those of the fundamental modes of an infinitely wide plate at high

frequencies. The energy of these modes concentrates in the central region of

the strip and decays towards the edges so that the strip waveguide can easily

be mechanically attached to other components without influencing the wave

propagation. Dispersion curves and mode shapes were derived using a Semi

Analytical Finite Element (SAFE) technique and are presented over a range

of frequencies. It is shown that selective excitation of both modes is possible

in practice and the experimental setup is described.

PACS numbers: 43.20.Mv, 43.40.Le
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I INTRODUCTION

The analysis of guided wave propagation in infinitely wide plates, rods and

pipes is well established ([1], [2], [3], ...) and has been made use of in nu-

merous NDE applications such as large area inspection (eg. [4], [5]), long

range pipe inspection (eg. [6]) and material property measurements (eg. [7],

[8]) to mention only a few. Applications often make use of the low frequency

regime, where the modal density is low and selective mode excitation is easily

possible. Areas of high modal density such as at high frequency are usually

avoided because of the need for more sophisticated transducers and narrower

bandwidth of operation. In plates of finite width (strips) the modal density

is high due to additional modes in the width direction. The conventional

wisdom would suggest to avoid these geometries since excitation of selected

modes would be more difficult. However in certain applications a strip ge-

ometry can offer an advantage over other geometries.

The author was interested in the use of waveguides to convey ultrasonic

signals from a remote transducer to a component that is to be investigated.

Literature on source characteristics of sources of different geometry and sur-

face loading on half-spaces [9], [10] showed that anti-plane shear line sources

are potentially an attractive way to maximise transmission into half-spaces.

Since line sources do not exist in real life, large aspect ratio rectangular

sources (width >> thickness) are the closest practically implementable ap-

proximation. To transmit surface loads that are applied over a rectangular

cross section onto components the author analysed wave propagation in in-
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finitely long strip waveguides of large rectangular aspect ratio. During the

analysis the attention was focused on two modes that resemble the SH and

A0 modes of a plate of infinite width at high frequencies. Their properties

and experimental excitation are described in the following sections.

II THEORY - WAVE PROPAGATION IN

RECTANGULAR STRIPS AND THEIR

DISPERSION CHARACTERISTICS

The modelling of wave propagation remote from the edges in very wide plates

is accurately achieved by modelling plane wave propagation under plane

strain conditions. Software packages that accurately model the wave propa-

gation in plates under these conditions (e.g. DISPERSE [11]) exist. These

models work well in cases where the width (W) of the plate and propagation

distance (L) are comparable and much larger than the thickness (T). As the

propagation distance increases to be larger than the plate width, reflections

from the sides start to appear in the received signals and it becomes neces-

sary to deal with the three dimensional problem. This can be considered as

the propagation along a rectangular strip with constant cross section.

Mindlin and Fox [12] were the first to describe the propagating modes

of a bar of rectangular cross section. Their solution was made up of a su-

perposition of the flexural, longitudinal and shear modes that propagate in

infinitely wide plates of 2 different thicknesses. The thickness of the plates
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corresponded to the width and thickness of the rectangular bar. The solu-

tions for the infinitely wide plates were rotated by 90◦ relative to each other

and superposed in order to fulfil the boundary conditions of zero stress all

around the perimeter of the cross section. This method enabled them to de-

termine the propagating modes of the bar at distinct frequencies and aspect

ratios of the bar, but a solution for all frequencies and aspect ratios was not

possible. Also Fraser [13] presented an analytical method to calculate the

dispersion curves for infinitely long rectangular bars accurately for a limited

range of wavenumbers. More recently the continuous tracing of dispersion

curves for wave propagation in structures of arbitrary cross section has be-

come possible through the use of finite element (FE) eigensolvers. Wilcox

et al. [14], Mukdadi et al. [15], Hayashi et al. [16], Gavric [17], [18] and

others have reported methods of tracing dispersion curves for a range of dif-

ferent sections (L-shaped sections, rail heads and rectangular strips). These

techniques are now widely used and are often referred to as the SAFE (Semi

Analytical Finite Element) method. Predoi et al. [19] give an overview and

a number of references about the development of finite element techniques

for modelling of wave propagation in waveguides.

The method of Wilcox et al.[14] has been employed here to analyse the

modes propagating in 1mm thick steel strips of a much larger width (>

15mm). The method works by defining an axisymmetric model with a very

large radius compared to the dimensions of the cross section. The section

of the axisymmetric body represents the cross section of the wave guide, see

figure 1. Due to the very large radius, the structure approximates a straight
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waveguide. For the finite element eigensolver a specific cyclic order can be

specified. This specifies the number of wavelengths that exist around the

circumference of the axisymmetric body. For example a cyclic order of 1

corresponds to a wavelength equal to the circumference of the structure. For

a cyclic order of 2 there are two wavelengths around the circumference and so

on. Therefore the wavelength of the solution is determined by the following

equation:

λ =
2πR

Corder

(1)

where R is the radius of the model and Corder is the cyclic order of the

FE eigensolver. At each cyclic order the FE-eigensolver routine will deter-

mine several resonance frequencies, each frequency corresponding to a differ-

ent mode. The wavenumber dispersion curves for the meshed cross section

can now be determined by plotting the resonance frequencies against the

wavenumber, which is determined using equation (1) and the identity

k =
2π

λ
(2)

where k is the circular wavenumber and λ the wavelength. This method

therefore yields a set of discrete frequency solutions at each wavenumber. A

typical set of results is shown in figure 2(a). Wilcox et al. [14] developed

software that connects adjacent solution points to form a continuous solution

line (mode) in the wavenumber frequency domain. The joining up of adjacent

points to form a line is carried out by comparing the mode shapes of adjacent

solutions and by using the slope of the curve of existing solutions to predict
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the continuation of the curve, which is similar to the method presented by

Lowe [3]. The finite element software that determined the eigen solutions

was the FINEL 77 code which was developed by Hitchings [20] at Imperial

College.

Phase velocity dispersion curves can be obtained from the wavenumber

frequency plot by converting them using the following identity:

Cph =
ω

k
(3)

Once the phase velocity is determined the group velocity can be calculated

using:

Cgr =
∂ω

∂k
= Cph + k

∂Cph

∂k
(4)

An interesting aspect to note about the technique is that the determined

FE eigen solutions are confined to a rectangular domain in the frequency -

wavenumber space. However when this is transformed into a phase velocity -

frequency space the solutions will be bound in a space between the two lines

Cph = (1/kmin)ω and Cph = (1/kmax)ω. This is illustrated in figure 2(b).

The mode shapes of each mode are a direct result of the FE analysis and can

be extracted at each frequency.

The technique described was used to generate dispersion curves for rect-

angular strips. The results for a steel (ρ = 7932kg/m3, E = 216.9GPa,

ν = 0.2865, unless otherwise stated) strip geometry of 1 mm thickness and
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width 30 mm are presented here. The radius of curvature of the FE model

was 2m in order to ensure accurate results. Wilcox et al. [14] reported

the appearance of discrepancies of the solution to the curved model and the

analytical solution above frequencies of 4MHz. Figure 3a and b shows the

frequency-wavenumber and phase velocity-frequency dispersion curves. For

comparison, figure 3c and d shows the phase velocity dispersion curves for

a 1mm thick infinite plate (c) and a 30mm thick infinite plate (d) of the

same material. The DISPERSE software [11] was used to trace the curves in

figure 3c and d. Many more modes with phase velocities below 3m/ms exist

at low frequencies in the strip than in the infinitely wide plate case; these

extra modes are due to the finite width of the strip.

III ANALYSIS OF THE SH0* AND A0* MODE

Two modes are highlighted in figure 3; These modes were named A0* and

SH0* (the * here and for the remainder of the paper indicates a strip mode),

after the well known fundamental A0 and SH0 plate modes because their

high frequency dispersion characteristics tend towards those of these plate

modes (assuming the smallest dimension to be the thickness). In addition

to this their mode shapes in the high frequency limit also are of the same

polarisation as the fundamental A0 and SH0 plate modes however they are

concentrate at the centre of the strip and their amplitudes decay towards the

edges of the strip. (The naming of these two strip modes thus does not follow

the same rules as the conventional naming of Lamb wave or SH wave modes
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but is done by comparing their properties and adding the * to indicate that

it is a strip mode). The A0* and SH0* modes are now investigated in detail.

A The SH0* Mode

Strictly speaking the term ’shear horizontal’ does not make sense in a ge-

ometry other than an infinite plate. Therefore it is stressed here again that

the name SH0* mode was chosen due to the high frequency characteristics

of the mode. At high frequencies the SH0* mode travels with the shear ve-

locity of the material and exhibits strong displacements in the y-direction

only that decay from the strip centre towards the edges (the behaviour on

the centre line being the same as that of the SH0 mode in an infinite plate).

The same mode could also be described as a bending mode of the strip in

the width-propagation direction (y-z) plane being similar to the A1 Lamb

mode in an infinitely wide plate of thickness equal to the width of the strip.

Just like the A1 Lamb mode the SH0* modes possess a cut off frequency

below which it does not propagated. Due to the finite strip width the SH0*

mode wavenumber in the propagation direction becomes imaginary below the

cut off frequency and the field decays exponentially along the waveguide axis.

The phase velocity dispersion curves for the SH0* mode of a 1mm thick

steel strip of different widths (30, 15 and 7.5mm) are shown in figure 4(a).

The SH0* mode has a cut-off that depends on the width of the strip. At fre-

quencies well above the cut-off, the phase velocity asymptotically approaches

the bulk shear velocity of the strip material. Figure 4b shows that the disper-
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sion behaviour is a function of the frequency-width product, all three curves

of figure 4b being coincident.

While strongly frequency (or width) dependent at low frequency-width

products, at high frequency-width products the SH0* mode phase velocity is

constant and equal to the bulk shear velocity, allowing non-dispersive wave

propagation without signal distortion. The transition from highly disper-

sive to non-dispersive is virtually complete at a frequency-width product

of 15MHz-mm where the SH0* mode velocity differs by less than 1% from

the bulk shear velocity. This point is marked by a vertical line in figure 4b

and marks the frequency-width product at which the wave-propagation is be-

coming non-dispersive for most practical purposes. The 15MHz-mm criterion

above which SH0* propagation becomes non-dispersive is material property

dependent and is specific to steel that was used in the analysis here. To

extend the criterion to other materials it is useful to specify a minimum strip

width in terms of shear bulk wavelengths. 15mm equates to roughly 5 bulk

shear wavelengths at 1MHz in steel. As a rule of thumb it can therefore be

expected that the strip width has to be larger than 5 shear bulk wavelengths

of the waveguide material in order to permit non-dispersive wave propaga-

tion in form of the SH0* mode.

The mode shapes of the SH0* mode at different frequencies are shown in

figure 5. The figure shows that at high frequencies the y displacement com-

ponent is dominant and concentrated in the centre of the strip. The mode

shape is constant across the thickness (x direction). Near cut-off (55kHz for
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30mm wide strip) there are displacements at the edges of the strip which

diminish as the frequency increases. This is better illustrated in figure 6

which shows the evolution of the dominant y displacement across the width

of the strip over a range of frequencies. In the graph each line represents

a mode shape starting from 200kHz and increasing in steps of 100kHz up

to 3MHz. At a frequency-width product of 15MHz-mm (i.e. the 4th line in

figure 6) the mode shape has started to concentrate in the centre of the strip,

displacements at the edge have decayed and the shape has become similar

to the final high frequency parabolic profile. A further increase in frequency

will only slightly refine the mode shape towards its final shape.

If the mode is to be used in practice it is important to be able to excite it

in a reliable way. It was investigated how accurately an exciting transducer

would have to reproduce the mode shape in order to selectively excite the

SH0* mode. The influence of the distribution of the excitation force was in-

vestigated using a finite element model. A finite element model for a 15mm

wide steel strip was prepared in the ABAQUS finite element software [21].

The model was two dimensional with a plane stress condition in the thick-

ness direction of the strip. Due to its special polarisation the SH0* mode

only contains σzy stress components, which satisfy the plane stress condition

(σxx = σxy = σxz = 0). A frequency domain solver was used. At one end

of the strip a force was applied while an absorbing region at the other end

of the strip prevented any reflections of the excited waves. This technique is

commonly used to remove the influence of unwanted reflections from bound-

aries in FE models [22], [23].
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A sketch of the FE model is displayed in figure 7. Square quadratic ele-

ments of size 0.25mm were used to mesh the strip and the absorbing region.

The viscoelastic parameters of the absorbing region were increased in a cubic

fashion from the interface with the strip. They were determined as described

by Drodz et al. [23]. Different distributions of exciting force over the width

of the steel strip (ρ = 7932 kg/m3, E = 216.9 GPa, ν = 0.2865) were used

to see the influence of the excitation force profile on the waves excited in the

strip.

The results of the FE analysis are displayed in figure 8. In the figure

three different profiles of excitation force across the width are shown, to-

gether with the y (width) direction displacement field that they produce; the

excitation frequency was 2MHz. In the picture the displacement fields are

normalised to show displacements on a scale between +100 and −100 so that

the relative amplitude of the modes excited by the different force profiles

could be assessed. For a uniformly applied force the displacement field in the

strip becomes relatively complicated. It can be concluded that many modes

are excited and interfere. If the stress profile of the SH0* mode (from FE

eigensolver) is applied at the strip end, a pure mode can be excited in the

strip [24]. Displacements are concentrated at the centre of the strip. For a

triangular forcing profile, the SH0* mode is also preferentially excited. There

is a marginal difference in the displacement field excited by the exact mode

shape forcing compared to the triangular forcing profile; the difference is only

visible at the edges of the strip where the amplitude of the SH0* mode is
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weakest. This shows that other modes are excited at much lower levels than

the SH0* mode and their contribution to the overall displacement field is

negligible. It was concluded that any excitation that is constant across the

thickness of the strip and resembles the mode shape better than a triangular

forcing in the width direction will allow the excitation of an almost pure

SH0* mode in the strip.

B The A0* Mode

The A0* mode is very similar to the commonly known A0 mode in an in-

finitely wide plate. It is a flexural mode with respect to the thickness (x di-

rection); however due to the finite width the mode also has a variation across

the width (y direction). Just as the dominant displacements (y-direction) of

the SH0* mode are symmetric about the width, the dominant displacements

(x-direction) of the A0* mode are also symmetric about the width with max-

imum displacement at the centre of the rectangular strip. The relationship

of the mode to the A0 mode in an infinitely wide plate is underlined by their

similarity in phase velocity. Figure 9 shows the phase velocity of both modes

as a function of frequency, the difference being greatest at low frequency near

the cut off of the A0* mode and becoming negligible at high frequency. This

trend is similar to the SH0* mode case where the strip mode asymptotically

approaches the plate mode properties at high frequency.

The mode shape of the A0* mode also shows similar behaviour to the

SH0* mode as the dominant displacement concentrates in the centre of the
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strip with increasing frequency. Figure 10 shows the mode shape of the A0*

mode of a 1mm thick, 30mm wide strip at different frequencies. The main

displacement component is in the x direction and displacements are signifi-

cantly concentrated at the centre of the strip as the frequency increases. This

is better seen in figure 11 where the x displacement component on the centre

line of the strip is shown over a range of frequencies.

So far displacement components have been shown to illustrate the polari-

sation of the mode as well as its concentration of energy at the centre. Being

proportional to the square of the displacement amplitude, the concentration

of the mode energy is even more drastic.

IV EXPERIMENTS

The experimental investigation of wave propagation in rectangular strips was

focused on exciting A0* and SH0* modes. To achieve this the exciting trans-

ducer has to mimic the mode shape as closely as possible and, for broadband

signals, the mode shape should not change significantly over the range of

excited frequencies. As shown in figure 8 it is insufficient to simply impose

an uniform excitation across the waveguide width. However, mode shapes

being uniform across the thickness the transducer output has to be varied

across the width of the strip only (see figures 5 and 10). Displacements for

both modes are strong at the centre of the strip and decay towards the edges

in approximately parabolic fashion. The main difference between the two
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modes is the polarisation of the A0* mode in the thickness (x) direction and

the polarisation of the SH0* mode displacements in the width (y) direction.

It was found that good results could be achieved by simply coupling a

standard circular ultrasonic shear transducer (Panametrics V 154) to the end

cross section of the strip. The circular shape of the piezo electric element

within the transducer was believed to transmit larger shear stresses at the

centre of the strip width than at the outside and thus lead to preferential

excitation of the SH0* or A0* mode when rotated by 90◦.

A SH0* Mode Excitation

Figure 12 shows a 5 cycle 2MHz Hanning windowed toneburst that was sent

and received in pulse echo mode from a 15mm wide, 1mm thick and 300mm

long stainless steel strip. The ∅13mm transducer (Panametrics V 154) was

clamped to the steel strip by a purpose made clamp using treacle (a very

viscous fluid, similar to honey) as a shear couplant between the transducer

face and the waveguide end section. The transducer was polarised in the

direction of the width of the strip (y direction). Figure 12 shows that a very

clean signal without significant dispersion can be excited and received in the

strip. The presence of other modes about 30dB weaker than the main signal

can also be seen in figure 12. The presence of higher order modes that are

notably slower can be explained by transducer misalignment and other im-

perfections within the strip and during reflection at the waveguide end.

15



To be certain that the desired mode was excited in the experiment an

in-plane dual head laser doppler vibrometer (Polytech OFV 512) was used to

measure the in-plane surface displacement (y direction) of the strip along the

centre line of the strip. The signal was recorded every 0.5mm over a distance

of 200mm at a sampling frequency of 10MHz. This is schematically illustrated

in figure 13(a). From the measurements a two dimensional Fourier Trans-

form was computed [25]. The 2D-FFT displays the frequency- wavenumber

relationship of the signals that have been measured in the waveguide. This

plot can directly be compared to analytical frequency-wavenumber predic-

tions. In figure 13(b) the 2D-FFT result for a 30mm wide and 1mm thick

steel strip is plotted. A line indicating the theoretically predicted SH0* mode

frequency-wavenumber relation for a 30mm wide and 1mm thick steel strip

(ρ = 7932kg/m3, Cl=6000 m/s, Cs= 3060 m/s) is also displayed. There is

very good agreement between the measured data and the predicted values

for the SH0* mode. The noise floor in the 2DFFT plot is relatively high; this

is due to strong noise and drop outs in the laser vibrometer measurements.

B A0* Mode Excitation

The setup was slightly changed to excite the A0* mode. A 30 mm wide,

0.2mm thick and 300mm long steel strip was used and the transducer was

turned by 90◦ to excite displacements in the thickness (x) direction. Figure

14(a) shows the pulse echo signal received by the transducer following excita-
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tion by a 10 cycle Hanning windowed toneburst with 2MHz centre frequency.

The A0* mode is very dispersive in this frequency range which explains the

very strong distortion of the signal. Despite the strong dispersion the signal

is due to a single dominant mode as suggested by Figure 14(b) which shows

a smooth spectrum of the signal without dips and interference from other

modes.

Again to verify the excited modes in the strip the laser vibrometer was

scanned along the centre line of the strip and a 2D-FFT was computed.

Figure 15 shows the result. Out-of-plane (x direction) displacement mea-

surements were carried out over a distance of 200 mm at increments of 0.5

mm with a temporal sampling frequency of 10 MHz. The 2D-FFT shows

that the A0* mode is the dominant mode. Other modes are ∼ 20 dB less

strong than the A0* mode.

V CONCLUSIONS

Two particular guided wave modes (SH0* and A0*) of a large aspect ratio

rectangular cross section waveguide were investigated in detail. It is shown

that in both modes energy concentration at the centre of the waveguide is

observed at high frequencies. At the same time the mode characteristics con-

verge towards those of the fundamental modes (SH and A0) in the infinitely

wide plate case. One of the modes also assymptotically approaches the shear

velocity at high frequencies and therefore becomes almost non-dispersive,
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which allows the propagation of undistorted signals over large distances.

It is experimentally demonstrated that these modes can easily be excited

by standard techniques with signal to coherent noise ratios of 20dB and bet-

ter. Essentially, at large frequency-width products the modes that concen-

trate at the strip centre resemble the fundamental plane strain guided wave

modes of a plate in the central region of the strip and decay towards the edges

of the strip. For the SH0* mode it was possible to define a minimum strip

width above which wave propagation will be non-dispersive. Any SH0* signal

whose wavelength is smaller than a fifth of the strip width will propagate vir-

tually non-dispersively at the bulk shear velocity along the waveguide centre.

Potential applications of these modes are in any field where guided plate

waves are to be used but space is confined. An example from the author’s

experience is the development of non-dispersive buffer waveguide strips for

high temperature thickness gauging. The waveguide allows the separation

of the transducer from the measurement zone which can be useful for trans-

ducer longevity and accessibility reasons. Work on the development of the

thickness gauge will be presented in a future publication.
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