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Energy conditions for an imperfect fluid 
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20921 Rio de Janeiro, Brazil 
5 Department of Physics, University of Ioannina, Ioannina, Greece 
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Abstract. The weak, dominant and strong energy conditions are investigated for various 
kinds of imperfect fluids. In this context, attention has been given to the model of a 
collapsing or expanding sphere of shear-free fluid which conducts heat and radiates energy 
to infinity. 

1. Introduction 

In a spacetime with metric gap (signature -, + , +, + ) the energy-momentum tensor 
of a viscous fluid with heat flow can be written in the form 

T a p  = ( ~ + + P - 5 8 ) U a U p + ( P - 5 8 ) g , p  -2n~"p+U"qp+Upqu (1.1) 

where uOL is the 4-velocity of the fluid, p is its rest energy density and p is the isotropic 
pressure. The contribution of viscosity to Tap is described by the term 

-Se(UaUp+ggolp)-2fla"p (1.2) 

where n 3 0 is the coefficient of dynamic viscosity and 5 3 0 is the coefficient of bulk 
viscosity. The quantities 

8 = ua;, (1.3) 

g a p  = %$)+ h t u p ,  -@(gap + U a p )  (1.4) 

(where the round brackets on the indices denote symmetrisation, the semicolon denotes 
covariant differentiation and the dot denotes differentiation in the direction of U") are 
the expansion and shear velocity of the fluid which, according to (1.4), satisfies the 
condition uOLaap = O .  The heat conduction is described by the heat flux vector qa 
defined as follows: 

q0u" = 0 (1.5a) 

qann = (heat per unit time crossing unit surface perpendicular to n " )  (1.5b) 

where nu is a unit spacelike vector. We note that, because of (1.5a), q a  is spacelike. 
In order that this fluid is physically reasonable it must obey the following energy 

conditions [ 1,2]. 

$ Present address: Department of Physics, University of Ioannina, Ioannina, Greece. 
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( a )  The weak energy condition. For any timelike future pointing vector w a  and at 
each event of the spacetime, TQpwawP 3 0. 

( b )  The dominant energy condition. For any timelike future pointing vector W "  and 
at each event of the spacetime the 4-momentum density vector, -- TQpwp, must be future 
pointing and timelike or null. 

( c )  The strong energy condition. For any timelike future pointing unit vector we 
and at each event of the spacetime the stresses of the matter are restricted according 
to the inequality 2TQPw"wP + T zz 0,  where T is the trace of Tmp. 

The weak and dominant energy conditions are satisfied by continuity and when 
the vector w" is null. The weak energy condition is equivalent to saying that the energy 
density of the fluid as measured by any observer is non-negative. The dominant energy 
condition can be interpreted as saying that the speed of energy flow of matter is less 
than the speed of light for any observer. The strong energy condition can be violated 
only if the total energy density TQPwUwp is negative or if, for TQpwawP > 0, there exists 
a large negative principal pressure of TQp. Note that the three energy conditions are 
always satisfied by the electromagnetic field. Note also that the dominant energy 
condition implies the weak energy condition. All known forms of matter obey the 
above energy conditions. For this reason a cosmological model or a star model based 
on some fluid which violates these conditions cannot be seriously considered as 
physically relevant. However, despite this and the fact that in the literature one can 
find a number of articles where imperfect fluids are considered, as a general rule the 
discussion of energy conditions is neglected. 

An investigation of the energy conditions is, in essence, an algebraic problem. It 
is closely related to the eigenvalue problem of Top and therefore, on a four-dimensional 
spacetime manifold, it leads to the search of the roots of a polynomial of degree 4. 
Because of this, in many situations one is confronted with complicated analytical 
expressions of the eigenvalues which make the problem intractable and its (non- 
numerical) discussion practically impossible in full generality. In spite of this we try 
to include here as many of the most general situations as possible. We consider only 
energy-momentum tensors of the Segre types [ 11 1,1], [ 11,2] and their degeneracies. 
The types [l, 31 and [11, zZ] are well known to violate even the weak energy condition 
[3] (see also [l]). 

The easiest way to write down the energy conditions is to calculate the eigenvalues 
of the energy-momentum tensor which, for the types [ 11 1,1] and [ 11,2], must be real. 
For the type [ 11 1,1] and if A0  denotes the eigenvalue corresponding to the timelike 
eigenvector, the energy conditions are equivalent to the following simple relations 
between the eigenvalues [2, 8 9.2, p 2191: 

- A 0 3 0  - A O + A ! a O  ( i  = 1,2,3)  (1.6) 

-A0 3 0 A D S  A i  6 -A0  ( i  = 1 ,2 ,3 )  (1.7) 

for the weak energy condition, 

for the dominant energy condition, and 

( i  = 1,2,3)  (1.8) 
i = l  

for the strong energy condition. For the type [ 11,2] let us denote by A ,  the eigenvalue 
of multiplicity 2 corresponding to the unique null eigenvector I" ,  and by v the quantity 

I /  = T,,k"kP (1.9) 
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where k" is a null vector non-collinear with I " ,  orthogonal to the eigenvectors corre- 
sponding to the other two eigenvalues A 2  and A 3  and normalised so that k"1, = 1. Then 
the energy conditions are equivalent to the relations? 

- A l  3 0 v > o  A ,  3 A I  ( i = 2 , 3 )  (1.10) 

for the weak energy condition, 

- A l s o  v > o  A i  S A i  S - A I  ( i  = 2,3) (1.11) 

for the dominant energy condition, and 

v > o  A 2 S  A 3  3 0 A i  3 A I  ( i  = 2,3) (1.12) 

for the strong energy condition. 
In the next section the eigenvalues are calculated in a locally Minkowskian coordin- 

ate system. However, we took care that the energy conditions are finally written in a 
coordinate-free manner so that they are of easy use in any coordinate system. Each 
energy condition is studied separately after substitution of the eigenvalues into the 
corresponding inequalities. In some cases these inequalities are not all independent. 
When this happens we always give a minimal set of independent conditions. The 
results are presented in the form of theorems so that the reader can use them quickly 
without entering into the details of our investigations. In this respect, we believe that 
this paper can save time for anyone who investigates imperfect fluids and would like 
to test if the energy conditions are fulfilled. A point worthwhile noting is that any 
energy-momentum tensor can be written in the general form [4] of equation (1.1). 
The dominant energy condition for a non-viscous fluid with heat flow is given by Hall 
[ 5 ]  and Hall and Negm [4]. Also, in these papers the eigenvalues for some simple 
cases of combinations of energy-momentum tensors (e.g. a perfect fluid with pure 
radiation field, a perfect fluid with non-null Maxwell field, a combination of two pure 
radiation fields and a combination of a non-null Maxwell field with a pure radiation 
field) are given explicitly. 

In § 3, we consider a well known collapsing model in spherical symmetry with 
emphasis on the energy conditions. The fluid we consider there is non-viscous with 
heat flow. From the results of this section we observe the important role played by 
the junction conditions which, together with some physically reasonable assumptions 
about the gradients of the energy density, pressure and heat flow, are sufficient to 
guarantee the validity of the energy conditions. 

2. Energy conditions for an imperfect fluid 

The eigenvalues A of the energy-momentum tensor (1.1) are the roots of the equation 

Because A is a scalar, we can simplify our calculations if, in the event of the spacetime 
under consideration, we use a locally Minkowskian coordinate system. Furthermore, 

t The dominant energy condition for the type [ l l ,  21 is given in [3]. 
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by making in this event Lorentz transformations of the coordinate axis, we can achieve 
the following: 

u n  = 8;  (2.2) 
qa = q87 

U,> = 0 

where in (2.3) q is the magnitude of q a :  

4 = (qaqa)1’2.  ( 2 . 5 )  
The coordinate xo is timelike and XI, x2, x3 are spacelike. The heat flow holds in the 
direction of the coordinate XI. With (2.2)-(2.4) the coordinate system is completely 
specified. Now, (2.1) can be written as 

P + A  -4 0 0 
-q p”-A-2nu1, 0 -2na,, 
0 0 p” - A - 2na2, -2nu2, 
0 -2nu,, -2na2, p”- A -2na,, 

= O  (2.6) 

where 

p ” = p - i e  (2.7) 
is the effective pressure. It turns out that the eigenvalues are determined by p, p”, q 
and the four invariants a, u, p, y constructed from qa and amp as follows: 

aq2 = q a q b m p  

u2 = 2uapuap 

p = 4qaq%T:u,, 

y+aup p Y‘Q’ y 

By setting 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

x=p”-A (2.12) 

we can easily prove that the characteristic polynomial assumes the form 

x4-(p+p”)x3+(q2-n*a2)x2+[2naq2+(p+p”)n2u2-  yn3]x 
+ ( p + p ” ) y n 3 + n 2 p - q  2 2 2  n u = o .  (2.13) 

The roots of this equation can be explicitly found but they are too complicated to 
permit us to follow our study in full generality. In order to have simpler expressions 
we must introduce here some restriction on the coefficients of the characteristic 
polynomial. We will suppose that, if n f 0, there exist no shear velocities between 
neighbourhood surface elements orthogonal to the direction of the heat flux. This 
means that the heat flux vector is an eigenvector of crap : 

n(qauap - aqp)  = 0. (2.14) 

When n f 0, we can easily prove [4] that (2.14) is satisfied if and only if the heat flux 
vector and fluid 4-velocity vector span a timelike invariant 2-space of Tap. We also 
observe that (2.14) is equivalent to saying that the heat flux vector is an eigenvector 
of the tensor (1.2) describing the fluid viscosity. Of course, (2.14) is a restrictive 
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assumption but we believe that it is physically relevant as it is expected to be satisfied 
by every fluid in which the heat is transmitted only by convection. Furthermore, and 
independent of this, it is identically satisfied if the spacetime is spherically symmetric 
and  the fluid moves radially? (i.e. the 4-velocity vector is orthogonal to the isometry 
group orbits). Now (2.14) permits a simple factorisation of (2.13). This can be done 
by starting from (2.13) and by using the equations y = 8a3 -2au’  and p = 4 a 2 q 2  which 
are valid in this case, but it is better to proceed directly from (2.6). In fact, in the 
locally Minkowskian coordinate system specified by (2.2)-(2.4), because of (2.14) we 
have cI3 = 0. The four eigenvalues assume the form 

A o = $ ( p ” - p - 2 n ~ ~ - A )  (2.15) 

A ,  = ;( p ” -  p - 2na +A) (2.16) 

A,=p”+na - f l ( ~ * - 3 ~ y ~ ) ~ ”  

A 3  = f i +  na + n ( u 2  -3a2)”’ 

where 

A = [ ( p ” + p ~ - 2 n c ~ ) ’ - 4 q ’ ] ’ ’ ~  

(2.17) 

(2.18) 

(2.19) 

As we noticed before, in order that the energy conditions are satisfied, the eigenvalues 
must be real. Thus, if n # 0, we must have 

(p”+ p - 2 n a ) ’ 3  4q2 

u 2 2 3 a 2 .  

(2.20) 

(2.21) 

If p +p” - 2na s 0, the eigenvector corresponding to the eigenvalue A is timelike 
or  null. Independent of the Segre type of Tmp the weak energy condition yields, in 
this case, - A l  + A o 3  0. On the other hand, from (2.15) and (2.16) we have - A l  + A o S  0 
and thus A. = A I  and p +p” - 2na = -2q. Now we can easily see that the Segre type of 
Tap is [ l l ,  21 with the unique null eigenvector ( l / q ) q “  -U“. A direct calculation of 
the quantity Y defined by (1.9) yields v = - q < O  which violates the three energy 
conditions. 

By taking into account (2.20) we must therefore have 

(2.22) 

Because of (2.22) the eigenvector corresponding to the eigenvalue A. is timelike or  
null. We can easily prove that the null case holds if and only if p + f i  - 2na = 2q and  
this relation implies that the Segre type of Tap is [ 11,2] with v = q > 0. By substitution 
of (2.15)-(2.18) into (1.6)-(1.8) for the type [ l l l ,  11 and into (1.10)-(1.12) for the type 
[ 11,2] we obtain the restrictions that the energy conditions impose on  the quantities 
p, p”, a, q, (T and n. It turns out that the results obtained for the type [ l l ,  21 follow 
from those of the type [ 11 1, 11 if we set p +p” - 2na = 2q. Finally, for the weak energy 
condition we obtained 

p -p”+2na + A  3 0 

p +p”+4na + A  - 2 n ( u 2  -3a2)I/* > 0. 

(2.23) 

(2.24) 

f This can be proved as follows. Because u a  is radial we can always introduce spherical and comoving 
coordinates xo = I, x ’  = r, xz = 8, x3 = p, so that uu - 8 : .  In this coordinate system, spherical symmetry and 
the Einstein field equations yield To, = To, = TI, = TI, = 0. From the equations To, = To3 = uo2 = uo3 = 0 and 
(1.1) we take q2 = q3 = 0, i.e. q a  is radial and thus q” - 8 : .  This and the equations TI, = T,, = 0 yield 
u12 = uI3 = 0. I n  addition, as uIo = 0, it follows that the vector q”ut is collinear with qp. 
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For the dominant energy condition, in addition to (2.24) these inequalities must be 
satisfied: 

p -p’+2na 2 0 (2.25) 

p - 3 i +  A -  2n( u2 - 3a2)”* > 0. (2.26) 

For the strong energy condition, in addition to (2.24) we must have 

2 ( i +  n a )  + A 3 0. (2.27) 

The above results are recapitulated in the following theorem. 

Theorem. A fluid with non-zero heat flow restricted by (2.14) fulfils the weak energy 
condition if and only if (2.21)-(2.24) are satisfied. The dominant energy condition is 
fulfilled if and only if, in addition to (2.21), (2.22) and (2.24) are satisfied and also 
the inequalities (2.25) and (2.26). Finally, the strong energy condition is satisfied if 
and only if, in addition to (2.21), (2.22) and (2.24) are satisfied and also the inequality 
(2.27). 

It must be noted that a necessary condition for the fulfillment of the weak energy 
condition is that the energy density in the fluid rest frame is positive: p 3 0. In fact, 
one can easily see that this follows from (2.22) and (2.23). From this theorem by 
setting n = 0 or upv = 0 we obtain as a corollary the energy conditions for a fluid with 
vanishing coefficient of dynamic viscosity or the energy conditions for a fluid with 
shear-free motion. As we pointed out in 0 1, the dominant energy condition in this 
case is given in a paper by Hall and Negm [4]. However, we believe that it is useful 
to present this corollary here because it gives separately the three energy conditions 
and because we will use it in the next section. 

Corollary 1. 
of dynamic viscosity satisfies the weak energy condition if and only if 

A fluid which undergoes shear-free motion or has a vanishing coefficient 

p + F 2 2 q  (2.28) 

p - p ’ + A > O .  (2.29) 

The dominant energy condition is satisfied if and only if, in addition to (2.28), we have 

p - - p 2 0  (2.30) 

p - 3 i +  A 2  0. (2.31) 

Finally, the strong energy condition is satisfied if and only if, in addition to (2.28), 
we have 

2 i +  A >  0. (2.32) 

We shall close this section with the investigation of a viscous fluid with n # 0 and 
vanishing heat flux, q = 0. In this case we have the obvious eigenvalue 

A 0  = -p. (2.33) 

To this eigenvalue corresponds the timelike eigenvector ua and the Segre type of Tap 
is [ l l l ,  11. The other three eigenvalues are determined by the equation 

(2.34) x3-  n2u2x - n 3  y = 0. 
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The eigenvalues of the symmetric tensor uap in a Euclidean space with signature 
( + , + , + ) are necessarily real. It follows that the roots of the equation (2.34) are real. 
Thus, the inequality ( ~ 7 ~ / 3 ) ~  a (y/2)* is identically satisfied. If y # 0, this inequality 
permits us to put 

Y = - (y/ lYl)(nlul /m (2.35) 

cos w = ; d 3 ~ y ~ / ~ u ~ 3  (0" =s w -s goo) (2.36) 

and then the remaining eigenvalues are given by 

AI=j?+2ycosfw (2.37) 

A 2  =j? - 2y cos(60" -;CO) (2.38) 

A 3  =j? - 2 ~  c 0 s ( 6 0 ° + ~ ~ ) .  (2.39) 

By substitution of (2.37)-(2.39) into (1.6)-( 1.8) we obtain the restrictions that the 
energy conditions impose on p, j?, n and U,+". Thus, we see that the weak energy 
condition is fulfilled if and only if 

p a 0  (2.40) 

p +;+2y cos ;w 3 0 (2.41) 

/.L +j? -2y cos(60°-fw) 2 0. (2.42) 

The inequality - A o + A 3 3 0  is omitted here because it is proved to be a consequence 
of (2.41) and (2.42). The dominant energy condition is satisfied if and only if, in 
addition to (2.40)-(2.42), we have 

p -5 -2y cos ;w a 0 

p - j? + 2y cos(60" - 4 ~ )  3 0. 

(2.43) 

(2.44) 

Again, the inequality corresponding to A 3  is a consequence of (2.43) and (2.44) and 
it is omitted. Finally, the strong energy condition is fulfilled if and only if, in addition 
to (2.41) and (2.42), we have 

p+3baO. (2.45) 

From (2.41) and (2.42) we observe that a necessary condition for the fulfillment of the 
weak energy condition is 

p+j?>O (2.46) 

where the inequality - A o + A , 2 0  is also used. Similarly, from (2.43) and (2.44) and 
-Ao  - A,  a 0 we notice that a necessary condition for the fulfillment of the dominant 
energy condition is 

p aj?. (2.47) 

It must be noted that, according to the sign of y, the system of the inequalities (2.41) 
and (2.42) collapses to only one inequality. So, if y > 0, it is equivalent to (2.41) while 
if y < 0 it is equivalent to (2.42). Similarly, the system (2.43) and (2.44) is equivalent 
to (2.44) if y > 0 and to (2.43) if y < 0. These results are recapitulated in the following 
theorem. 
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Theorem. A fluid with vanishing heat flow and  y # 0 fulfils the weak energy condition 
if and only if, in addition to (2.40), the inequality (2.41) is satisfied if y>O, or the 
inequality (2.42) if y < 0. The dominant energy condition is fulfilled if and only if, in 
addition to the above conditions, the inequality (2.44) is satisfied if y > 0 ,  or the 
inequality (2.43) if y<O. Finally, the strong energy condition is fulfilled if and only 
if, in addition to (2.45), the inequality (2.41) is satisfied if y>O,  o r  the inequality 
(2.42) if y < 0. 

Except perhaps for some very particular cases, the investigation of the validity of 
(2.41)-(2.44) needs the use of numerical calculations. However, the following corollary 
could be proved very useful in practice. Its proof is very simple and  for this reason 
it is omitted. 

Corollary 2. A sufficient condition for a fluid with vanishing heat flow and y # 0 to 
fulfil the weak energy condition is that it satisfies (2.40) and 

2 
p +p '̂,,7 nlul. (2.48) 

A sufficient condition for the validity of the dominant energy condition is that the 
fluid satisfies 

(2.49) 

The strong energy condition is fulfilled if (2.48) and (2.45) are satisfied. 

To close the investigation of the fluids with vanishing heat flow it remains to consider 
the case 

y = o .  (2.50) 

Now (2.34) is resolved to yield the eigenvalues 

A ,  = p  (2.51) 

h2 = i+  nu (2.52) 

A 3  = p' - nu. (2.53) 

The energy conditions are easily obtained by substitution into (1.6)-( 1.8). The results 
are recapitulated in the next theorem. 

Theorem. A viscous fluid with vanishing heat flow and y = 0 fulfils the weak energy 
condition if and only if 

p a 0  (2.54) 

p + p s  nlul, (2.55) 

It fulfils the dominant energy condition if and  only if 

p ' p +  n / u / .  (2.56) 

Finally, the strong energy condition is fulfilled if and only if, in addition to (2.55), we 
have 

p L 3 i s O .  (2.57) 
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3. Energy conditions for a collapsing radiating sphere 

Let us consider in the context of general relativity theory the energy conditions for a 
collapsing (or expanding) sphere consisting of a non-viscous fluid with energy- 
momentum tensor: 

T a p  = (CL +p)uaup +pg,p + uaqp + upqa. (3.1) 

Because of the spherical symmetry the vector q a  points in the radial direction and 
according to (1.5b) the heat per unit time crossing a unit spherical surface is 

qana = (q,q")"' (3.2) 

where n" is a unit radial vector. In order that the collapse (or the expansion) is 
physically plausible we expect that the energy density in the rest frame of the fluid p 
and the pressure p decrease outward: 

p'<O (3.3) 

p'<O (3.4) 

where the prime denotes differentiation in the radial direction. It seems that there 
exist no general physical reasons which imply a definite sign for the gradient of the 
heat flow. However, as far as the heat is transmitted by convection and because the 
mobility of the fluid is expected to be greater in the outer regions of the sphere, the 
heat flow should increase outward. So we will make the hypothesis 

( q a q a ) ' >  0 (3.5) 

and will prove that it has the merit to imply, together with (3.3), (3.4) and p 2 3p, the 
validity of the energy conditions. For such a collapsing (or expanding) model, energy 
must be dissipated by the fluid to the exterior. It follows that the exterior metric 
matched with the interior on a spherical hypersurface C cannot be that of Schwarzschild. 
If one wishes to make an exact treatment of the field equations it seems that the best 
choice is to consider as exterior the spherically symmetric outgoing Vaidya metric [ 6 ] .  
Collapsing star models based on the Vaidya metric have been investigated by many 
authors [7] (these references are far from exhaustive). A model based on the Vaidya 
metric and on a non-viscous fluid with energy-momentum tensor (3.1) was proposed 
first by Glass [8] and investigated in more detail by Santos [9]. One interesting 
consequence of the matching conditions for this model is that the pressure of the fluid 
interior on X is given by 

p z  = ( qaq a ) y > 0 (3.6) 

where the suffix C means that the quantities are to be calculated on C. It must be 
noted that for an interior solution such that p z  < 0, the matching conditions yield an 
unphysical outgoing Vaidya metric in which the mass is an increasing function of the 
retarded time. It must be noted also that the case of a fluid with non-vanishing 
coefficient of bulk viscosity can be obtained if, in equations (3.1), (3.4) and (3.6), we 
substitute p by i. Nevertheless, we adopt here the case 5 = 0. So, for the investigation 
of the energy conditions we will apply corollary 1 of the preceding section with the 
tacit assumption p = jj. 
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From (3.4) and (3.6) it follows that p > 0 and so (2.32) is trivially satisfied. Thus, 
in this model the strong energy condition is satisfied if the weak energy condition is 
satisfied. Now, by virtue of (2.30) and (3.3)-(3.6) we have 

(3.7) 

(3.8) 

It follows that (2.28) is always fulfilled when (2.30) and (3.3)-(3.5) are satisfied. As 
far as conditions (2.30) and (2.31) are concerned we notice that both are satisfied if 
p 3 3p. If, on the other hand, p < 3p then the inequality (2.3 1) is equivalent to 

ZAP - P )  2 4ef.  (3.9) 

To recapitulate we state this theorem. 

Theorem. We consider a general relativistic star model consisting of a spherically 
symmetric shear-free fluid whose energy-momentum tensor is given by (3.1) and which 
radiates energy to infinity in the form of a null dust which is described by the outgoing 
Vaidya metric. Then the energy conditions are fulfilled if the energy density in the 
rest frame of the fluid, the pressure and the heat flow satisfy the conditions (3.3)-(3.5) 
and p 3 3p. If, however, p < 3 p  then, in addition to (3.3)-(3.5), the relations (2.30) 
and (3.9) must also be satisfied. 
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