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Abstract The aim of this paper is to introduce a new mod-

ified gravity theory named f (G, T ) gravity (G and T are the

Gauss–Bonnet invariant and trace of the energy-momentum

tensor, respectively) and investigate energy conditions for

two reconstructed models in the context of FRW universe.

We formulate general field equations, divergence of energy-

momentum tensor, equation of motion for test particles as

well as corresponding energy conditions. The massive test

particles follow non-geodesic lines of geometry due to the

presence of an extra force. We express the energy conditions

in terms of cosmological parameters like the deceleration,

jerk, and snap parameters. The reconstruction technique is

applied to this theory using de Sitter and power-law cosmo-

logical solutions. We analyze the energy bounds and obtain

feasible constraints on the free parameters.

1 Introduction

Current cosmic accelerated expansion has been affirmed

from a diverse set of observational data coming from sev-

eral pieces of astronomical evidence, including supernova

type Ia, large scale structure, cosmic microwave background

radiation etc. [1–4]. This expanding paradigm is considered

as a consequence of mysterious force dubbed dark energy

(DE), which possesses a large negative pressure. Modified

theories of gravity are considered as the favorite candidates

to unveil the enigmatic nature of this energy. These modified

theories are usually developed by including scalar invariants

and their corresponding generic functions in the Einstein–

Hilbert action.

A remarkably interesting gravity theory is the modified

Gauss–Bonnet (GB) theory. A linear combination of the form

G = Rαβξη Rαβξη − 4Rαβ Rαβ + R2,

a e-mail: msharif.math@pu.edu.pk

b e-mail: ayeshamaths91@gmail.com

where Rαβξη, Rαβ and R represent the Riemann tensor, the

Ricci tensor, and the Ricci scalar, respectively, is called a

Gauss–Bonnet invariant (G). It is a second order Lovelock

scalar invariant and thus free from spin-2 ghosts instabilities

[5–7]. The Gauss–Bonnet combination is a four-dimensional

topological invariant which does not involve the field equa-

tions. However, it provides interesting results in the same

dimensions when either coupled with a scalar field or when

an arbitrary function f (G) is added to the Einstein–Hilbert

action [8–10]. The latter approach is introduced by Nojiri and

Odintsov; it is known as the f (G) theory of gravity [11]. Like

other modified theories, this theory is an alternative to study

DE and is consistent with solar system constraints [12]. In

this context, there is a possibility to discuss a transition from

decelerated to accelerated as well as from non-phantom to

phantom phases and also to explain the unification of early

and late times accelerated expansion of the universe [13,14].

The fascinating problem of cosmic accelerated expansion

has successfully been discussed by taking into account mod-

ified theories of gravity with curvature–matter coupling. The

motion of test particles is studied in f (R) and f (G) gravity

theories non-minimally coupled with the matter Lagrangian

density (Lm). Consequently, the extra force experienced by

test particles is found to be orthogonal to their four velocities

and the motion becomes non-geodesic [15–17]. It is found

that, for certain choices of Lm , the presence of the extra force

vanishes in a non-minimal f (R) model, while it remains pre-

served in a non-minimal f (G) model. The geodesic deviation

is weaker in f (G) gravity for small curvatures as compared to

non-minimal f (R) gravity. Nojiri et al. [18] studied the non-

minimally coupling of f (R) and f (G) theories with Lm and

found that such a coupling naturally unifies the inflationary

era with current cosmic accelerated expansion.

In order to describe some realistic matter distribution, cer-

tain conditions must be imposed on the energy-momentum

tensor (Tαβ ) known as energy conditions. These conditions

originate from the Raychaudhuri equations with the require-

ment that not only gravity is attractive but also the energy
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density is positive. The null (NEC), weak (WEC), dominant

(DEC), and strong (SEC) energy conditions are the four fun-

damental conditions. They play a key role to study the theo-

rems related to singularity and black hole thermodynamics.

The null energy condition is important to discuss the second

law of black hole thermodynamics while its violation leads

to a Big-Rip singularity of the universe [19]. The proof of

the positive mass theorem is based on DEC [20], while SEC

is useful to study the Hawking–Penrose singularity theorem

[21].

The energy conditions have been investigated in differ-

ent modified theories of gravity like f (R) gravity, Brans–

Dicke theory, f (G) gravity, and generalized teleparallel the-

ory [22–25]. Banijamali et al. [26] investigated the energy

conditions for non-minimally coupling f (G) theory with

Lm and found that the WEC is satisfied for specific viable

f (G) models. Sharif and Waheed [27] explored the energy

bounds in the context of generalized second order scalar-

tensor gravity with the help of a power-law ansatz for the

scalar field. Sharif and Zubair [28] derived these conditions

in f (R, T, Rαβ T αβ) theory of gravity for two specific mod-

els and also examined the Dolgov–Kowasaki instability for

particular models of f (R, T ) gravity.

In this paper, we introduced a new modified theory of

gravity named f (G, T ) gravity, in which the gravitational

Lagrangian is obtained by adding a generic function f (G, T )

in the Einstein–Hilbert action. We study the energy condi-

tions for the reconstructed f (G, T ) models using an isotropic

homogeneous universe model. The paper has the following

format. In Sect. 2, we formulate the field equations of this

gravity and discuss the equation of motion for test particles,

while general expressions for the energy conditions as well

as formulations in terms of cosmological parameters are dis-

cussed in Sect. 3. The reconstruction of models and their

energy bounds is analyzed in Sect. 4. In the last section, we

summarize our results.

2 Field equations of f (G, T ) gravity

In this section, we formulate the field equations for f (G, T )

gravity. For this purpose, we assume an action of the follow-

ing form:

S =
1

2κ2

∫

d4x
√

−g[R + f (G, T )] +
∫

d4x
√

−gLm,

(1)

where g and κ represent the determinant of the metric tensor

(gαβ) and the coupling constant, respectively. The energy-

momentum tensor is defined as [29]

Tαβ = −
2

√−g

δ(
√−gLm)

δgαβ
. (2)

Assuming that the matter distribution depends on the com-

ponents of gαβ but has no dependence on its derivatives, we

obtain

Tαβ = gαβLm − 2
∂Lm

∂gαβ
. (3)

The variation in the action (1) gives

0 = δS =
1

2κ2

∫

d4x[(R + f (G, T ))δ
√

−g +
√

−g(δR + fG

× (G, T )δG + fT (G, T )δT )] +
∫

d4xδ(
√

−gLm), (4)

where fG(G, T ) = ∂ f (G,T )
∂G

and fT (G, T ) = ∂ f (G,T )
∂T

. The

variations of
√−g, R

ξ
αβη, Rαη, and R provide the following

expressions:

δ
√

−g = −
1

2

√
−ggαβδgαβ ,

δR
ξ
αβη = ∇β(δŴξ

ηα) − ∇η(δŴ
ξ
βα),

= (gαλ∇[η∇β] + gλ[β∇η]∇α)δgξλ + ∇[η∇ξ δgβ]α,

δRαη = δR
ξ
αξη, δR = (Rαβ + gαβ∇2 − ∇α∇β)δgαβ ,

(5)

where Ŵ
ξ
αβ and ∇α represent the Christoffel symbol and

covariant derivative, respectively. The variations of G and

T yield

δG = 2RδR − 4δ(Rαβ Rαβ) + δ(Rαβξη Rαβξη),

δT = (Tαβ + �αβ)δgαβ , �αβ = gξη δTξη

δgαβ

. (6)

Using these variational relations in Eq. (4), we obtain the

field equations of f (G, T ) gravity after simplification as fol-

lows:

Gαβ = κ2Tαβ − (Tαβ + �αβ) fT (G, T ) +
1

2
gαβ f (G, T )

− (2R Rαβ − 4Rξ
α Rξβ − 4Rαξβη Rξη

+ 2Rξηδ
α Rβξηδ) fG(G, T ) − (2Rgαβ∇2

− 2R∇α∇β −4gαβ Rξη∇ξ∇η−4Rαβ∇2+4Rξ
α∇β∇ξ

+ 4R
ξ
β∇α∇ξ + 4Rαξβη∇ξ∇η) fG(G, T ), (7)

where Gαβ = Rαβ − 1
2

gαβ R and ∇2 = � = ∇α∇α denote

the Einstein tensor and the d’Alembert operator, respectively.

It is worth mentioning here that, for f (G, T ) = f (G), Eq. (7)

reduces to the field equations for f (G) gravity, while �(T )

gravity (� is the cosmological constant) is obtained in the

absence of the quadratic invariant G [11,30]. Furthermore,

the Einstein field equations are recovered when f (G, T ) = 0.

The trace of Eq. (7) is given by

R + κ2T − (T + �) fT (G, T ) + 2 f (G, T )

+ 2G fG(G, T ) − 2R∇2 fG(G, T )

+ 4Rαβ∇α∇β fG(G, T ) = 0,
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where � = �α
α . In this theory, the covariant divergence of

Eq. (7) is non-zero, given by

∇αTαβ =
fT (G, T )

κ2 − fT (G, T )

[

(Tαβ + �αβ)∇α(ln fT (G, T ))

+∇α�αβ −
1

2
gαβ∇αT

]

. (8)

To obtain a useful expression for �αβ , we differentiate Eq.

(3) with respect to the metric tensor

δTαβ

δgξη
=

δgαβ

δgξη
Lm + gαβ

∂Lm

∂gξη
− 2

∂2Lm

∂gξη∂gαβ
. (9)

Using the relations

δgαβ

δgξη
= −gαμgβνδ

μν
ξη , δ

μν
ξη =

δgμν

δgξη
,

where δ
μν
ξη is the generalized Kronecker symbol and putting

Eq. (9) into (6), we obtain

�αβ = −2Tαβ + gαβLm − 2gξη ∂2Lm

∂gαβ∂gξη
. (10)

This shows that once the value of Lm is determined, we can

find the expression for the tensor �αβ .

We consider the matter distribution as a perfect fluid given

by

Tαβ = (ρ + P)VαVβ − Pgαβ , (11)

where ρ, P and Vα are the density, pressure, and four veloc-

ity of the fluid, respectively. The four velocity satisfies the

relation VαV α = 1 and the corresponding Lagrangian den-

sity can be taken as Lm = −P [31]. Thus Eq. (10) yields

�αβ = −2Tαβ − Pgαβ . (12)

Equation (7) can be written in a form identical to the Einstein

field equations as

Gαβ = κ2T
(eff)
αβ = κ2(Tαβ + T

GT
αβ ), (13)

where T GT
αβ is the f (G, T ) contribution. For the case of a

perfect fluid, the expression for T GT
αβ is given by

T
GT
αβ =

1

κ2

[

(ρ + P)VαVβ fT (G, T ) +
1

2
gαβ f (G, T )

− (2R Rαβ − 4Rξ
α Rξβ − 4Rαξβη Rξη + 2Rξηδ

α Rβξηδ)

× fG(G, T ) − (2Rgαβ∇2 − 2R∇α∇β

− 4gαβ Rξη∇ξ∇η − 4Rαβ∇2 + 4Rξ
α∇β∇ξ + 4R

ξ
β∇α∇ξ

+ 4Rαξβη∇ξ∇η) fG(G, T )

]

. (14)

The line element for FRW universe model is

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (15)

where a(t) represents the scale factor. The corresponding

field equations are

3H2 = κ2ρeff , −(2Ḣ + 3H2) = κ2 Peff , (16)

where

ρeff = ρ +
1

κ2

[

(ρ + P) fT (G, T ) +
1

2
f (G, T ) − 12H2

× (H2 + Ḣ) fG(G, T ) + 12H3∂t fG(G, T )

]

, (17)

Peff = P −
1

κ2

[

1

2
f (G, T ) − 12H2(H2 + Ḣ) fG(G, T )

+ 8H(H2 + Ḣ)∂t fG(G, T )+4H2∂t t fG(G, T )

]

,

(18)

G = 24H2(H2 + Ḣ), H = ȧ/a is the Hubble parameter and

a dot represents the time derivative. The divergence of Tαβ

takes the form

ρ̇ + 3H(ρ + P) =
−1

κ2 + fT (G, T )

×
[(

Ṗ +
1

2
Ṫ

)

fT (G, T ) + (ρ + P)∂t fT (G, T )

]

. (19)

To obtain a standard conservation equation,

ρ̇ + 3H(ρ + P) = 0, (20)

we need an additional constraint by taking the right side of

Eq. (19) equal to zero:
(

Ṗ +
1

2
Ṫ

)

fT (G, T ) + (ρ + P)∂t fT (G, T ) = 0. (21)

Now, we briefly discuss the motion of test particles in

f (G, T ) gravity. For this purpose, using Eqs. (11) and (12)

in (8), the divergence of the energy-momentum tensor for

perfect fluid is given by

∇β(ρ + P)V αV β + (ρ + P)[V β∇β V α

+V α∇β V β ] − gαβ∇β P

=
−2

2κ2 + 3 fT (G, T )

[

T αβ∇β fT (G, T )

+ gαβ∇β(P fT (G, T ))
]

.

The contraction of the above equation with the projection

operator (hαξ = gαξ − Vαξ ) gives the following expression:

gαξ V β∇β V α =
(2κ2 + fT (G, T ))∇β

(ρ + P)(2κ2 + 3 fT (G, T ))
h

β
ξ , (22)

where we have used the relations V α∇β Vα = 0, hαξ V α = 0,

and hαξ T αβ = −Ph
β
ξ . Multiplying Eq. (22) with gμξ and

using the following identity [31]:

V β∇β V α =
d2xα

ds2
+ Ŵα

βξ V β V ξ ,
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we obtain the equation of motion for massive test particles

in this model of gravity as

d2xα

ds2
+ Ŵα

βξ V β V ξ = ζα, (23)

where

ζα =
(2κ2+ fT (G, T ))

(ρ+P)(2κ2 + 3 fT (G, T ))
(gαβ −V αV β)∇β P (24)

represents the extra force acting on the test particles and is

perpendicular to the four velocity of the fluid (ζαVα = 0).

For a pressureless fluid, Eq. (24) gives ζα = 0 and hence the

dust particles follow the geodesic trajectories both in gen-

eral relativity as well as in f (G, T ) gravity. The equation of

motion for a perfect fluid in general relativity is recovered in

the absence of coupling between matter and geometry [32].

3 Energy conditions

The energy conditions are the coordinate invariant which

incorporate the common characteristics shared by almost

every matter field. The concept of energy conditions came

from the Raychaudhuri equations which play a key role in any

discussion of the congruence of null and timelike geodesics

with the requirement that not only the gravity is attractive but

also the energy density is positive. These equations describe

the temporal evolution of the expansion scalar (θ) as follows

[33]:

dθ

dτ
= −

1

3
θ2 + ωαβωαβ − σαβσαβ − Rαβuαuβ , (25)

dθ

dτ
= −

1

2
θ2 + ωαβωαβ − σαβσαβ − Rαβkαkβ , (26)

where ωαβ , σαβ , uα and kα represent the rotation, shear ten-

sor, timelike, and null tangent vectors in the congruences,

respectively. For non-geodesic congruences, the temporal

evolution of θ is affected by the presence of an accelera-

tion term which arises due to a non-gravitational force like

pressure gradient as [34,35]

dθ

dτ
= −

1

3
θ2 + ωαβωαβ − σαβσαβ

+∇α(V β∇β V α) − Rαβ V αV β . (27)

Neglecting the quadratic terms due to rotation-free as well as

small distortions described by σαβ , Eqs. (25) and (26) yield

θ = −τ Rαβuαuβ , θ = −τ Rαβkαkβ .

Using the condition for gravity to be attractive, i.e., θ < 0,

we obtain Rαβuαuβ ≥ 0 and Rαβkαkβ ≥ 0. The equivalent

form of these inequalities can be obtained by the inversion

of the Einstein field equations as

(

Tαβ −
1

2
gαβT

)

uαuβ ≥ 0,

(

Tαβ −
1

2
gαβT

)

kαkβ ≥ 0.

For a perfect fluid matter distribution, these inequalities

provide the energy constraints defined by:

• NEC: ρ + P ≥ 0,

• WEC: ρ + P ≥ 0, ρ ≥ 0,

• SEC: ρ + P ≥ 0, ρ + 3P ≥ 0,

• DEC: ρ ± P ≥ 0, ρ ≥ 0.

These conditions show that the violation of the NEC leads

to the violation of all other conditions. Due to the purely

geometric nature of the Raychaudhuri equations, the con-

cept of energy bounds in modified theories of gravity can be

extended with the assumption that the total cosmic matter

distribution acts like a perfect fluid. The energy conditions

can be formulated by replacing ρ and P with ρeff and Peff ,

respectively. The geodesic lines of geometry are followed

by dust particles in f (G, T ) gravity, therefore we consider

a pressureless fluid to discuss the energy conditions. These

conditions take the following form:

NEC: ρeff + Peff = ρ +
1

κ2

[

ρ fT (G, T ) + 4H

× (H2 − 2Ḣ)∂t fG(G, T ) − 4H2∂t t fG(G, T )

]

≥ 0, (28)

WEC: ρeff = ρ +
1

2κ2

[

2ρ fT (G, T ) + f (G, T ) − 24H2

× (H2 + Ḣ) fG(G, T ) + 24H3∂t fG(G, T )

]

≥ 0, (29)

SEC: ρeff + 3Peff = ρ −
1

κ2

×
[

f (G, T ) − ρ fT (G, T ) − 24H2(H2 + Ḣ)

× fG(G, T ) + 12H(H2 + 2Ḣ)∂t fG(G, T )

+ 12H2∂t t fG(G, T )

]

≥ 0, (30)

DEC: ρeff − Peff = ρ +
1

κ2

[

ρ fT (G, T ) + f (G, T )

− 24H2(H2 + Ḣ)

× fG(G, T ) + 4H(5H2 + 2Ḣ)∂t fG(G, T )

+ 4H2∂t t fG(G, T )

]

≥ 0. (31)

The Hubble parameter, the Ricci scalar, the GB invariant, and

their derivatives can be written in terms of cosmic parameters

as

Ḣ = −H2(1 + q), Ḧ = H3( j + 3q + 2),
...
H = H4(s − 4 j − 3q2 − 12q − 6), (32)

R = −6H2(1 − q), Ṙ = −6H3( j − q − 2),

123



Eur. Phys. J. C (2016) 76 :640 Page 5 of 13 640

R̈ = −6H4(s + 8q + q2 + 6), (33)

G = −24q H4, Ġ = 24H5( j + 3q + 2q2),

G̈ = 24H6(s − 6 j − 6q j − 12q − 15q2 − 2q3), (34)

where q, j , and s denote the deceleration, jerk, and snap

parameters, respectively, and are defined as [36,37]

q = −
1

H2

ä

a
, j =

1

H3

...
a

a
, s =

1

H4

....
a

a
. (35)

The energy conditions (28)–(31) in the form of the above

parameters are

NEC: ρeff + Peff = ρ +
1

κ2

[

ρ fT + 4H3

×(3 + 2q)( fGG Ġ + fGT Ṫ )

− 4H2( fGGG Ġ
2 + 2 fGGT ĠṪ + fGT T Ṫ 2

+ fGG G̈ + fGT T̈ )

]

≥ 0, (36)

WEC: ρeff = ρ +
1

2κ2

[

f + 2ρ fT + 24q H4 fG

+ 24H3( fGG Ġ + fGT Ṫ )

]

≥ 0, (37)

SEC: ρeff + 3Peff = ρ +
1

κ2

[

− f + ρ fT

− 24q H4 fG + 12H3(1 + 2q)

× ( fGG Ġ + fGT Ṫ ) − 12H2( fGGG Ġ
2 + 2 fGGT ĠṪ

+ fGT T Ṫ 2 + fGG G̈ + fGT T̈ )

]

≥ 0, (38)

DEC: ρeff − Peff = ρ +
1

κ2
[ f + ρ fT + 24q H4 fG

+ 4H3(3 − 2q)( fGG Ġ + fGT Ṫ ) + 4H2( fGGG Ġ
2

+ 2 fGGT ĠṪ + fGT T Ṫ 2 + fGG G̈ + fGT T̈ )

]

≥ 0. (39)

4 Reconstruction of f (G, T ) models

In this section, we use the reconstruction technique and dis-

cuss the energy conditions for de Sitter and power-law uni-

verse models.

4.1 de Sitter universe model

This cosmological model explains the exponential expansion

of the universe with constant Hubble expansion rate. The

scale factor is defined as [38]

a(t) = a0eH0t , H = H0, (40)

where a0 is constant at t0. The values of R and the GB invari-

ant are

R = −12H2
0 , G = 24H4

0 . (41)

For pressureless fluid, Eq. (20) gives the energy density of

the form

ρ = ρ0e−3H0t . (42)

The trace of the energy-momentum tensor and its derivatives

have the following expressions:

T = ρ, Ṫ = −3H0T, T̈ = 9H2
0 T . (43)

Using Eqs. (40)–(43) in Eq. (16), we obtain a partial differ-

ential equation

κ2T +
1

2
f (G, T ) − 12H4

0 fG(G, T ) + T fT (G, T )

− 36H4
0 T fGT (G, T ) − 3H2

0 = 0, (44)

whose solution is given by

f (G, T ) = c1c2

(

ec1GT γ1 + T γ2
)

+ γ3T + γ4, (45)

where the ci are integration constants and

γ1 = −
1

2

(

1 − 24c1 H4
0

1 − 36c1 H4
0

)

, γ2 = −
1

2
,

γ3 = −
2

3
κ2, γ4 = 6H2

0 .

The additional constraint (21) becomes

c1c2

(1 − 24c1 H4
0 )(1 − 30c1 H4

0 )

(1 − 36c1 H4
0 )2

ec1GT γ1

+ c1c2T γ2 + γ3T = 0.

This equation splits Eq. (45) into two f (G, T ) functions with

some additional constant relations between the coefficients.

The reconstructed model (45) can be written as a combination

of those functions. We analyze the energy conditions for the

f (G, T ) model given in Eq. (45) instead of analyzing them

separately. Using model (45) in the energy conditions (28)–

(31), it follows that

NEC: ρeff + Peff = ρ

+
1

κ2

[

ρ
{

c1c2(γ1ec1GT (γ1−1) + γ2T (γ2−1)) + γ3

}

+ 12c2
1c2γ1 H4

0 (1 − 3γ1)e
c1GT γ1

]

≥ 0, (46)

WEC: ρeff = ρ +
1

2κ2

[

2ρ{c1c2

× (ec1Gγ1T (γ1−1) + γ2T (γ2−1)) + γ3}
+ {c1c2(e

c1GT γ1 + T γ2) + γ3T + γ4}
− 24c2

1c2 H4
0 ec1GT γ1(1 + 3γ1)

]

≥ 0, (47)

SEC: ρeff + 3Peff = ρ −
1

κ2

[

c1c2(e
c1GT γ1 + T γ2)

+ γ3T + γ4 − ρ

×
{

c1c2

(

γ1ec1GT (γ1−1) + γ2T (γ2−1)
)

+ γ3

}

− 12c2
1c2ec1G H4

0 T γ1

×{2 + 3γ1 − 9γ 2
1 }

]

≥ 0, (48)

123
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DEC: ρeff − Peff = ρ

+
1

κ2
[ρ{c1c2(e

c1Gγ1T (γ1−1) + γ2T (γ2−1)) + γ3}

+ {c1c2(e
c1GT γ1 + T γ2) + γ3T + γ4} − 12c2

1c2 H4
0 ec1GT γ1

×{2 + γ1(5 − 3γ1)}] ≥ 0. (49)

Figures 1 and 2 show the variation of the NEC and WEC for

the case c1 > 0 and c2 < 0 with κ = 1. We use the following

values of the cosmological parameters: H0 = 0.718, q =
−0.64, j = 1.02 and s = −0.39 [39–41]. In these plots, we

fix the constant c1 for two arbitrarily chosen values, while c2

varies from [−10, 0]. Figure 1 shows the positively increas-

ing behavior of the NEC as well as WEC with respect to

time in the considered interval of c2. Figure 2 shows a sim-

ilar behavior for c1 = 4. In this case, both conditions are

satisfied for all values of c1 and c2. The energy conditions

for (c1, c2) > 0 are discussed in Figs. 3 and 4. The left plot

of Fig. 3 shows that the NEC is satisfied for t < 3, t < 2.28

and t = 2 for c2 = 0.005, 0.05 and 0.1, respectively. Figure

4 (left) shows a similar decreasing behavior of time as the

value of c2 increases for c1 = 0.01. It is also observed that

as the value of c1 increases, the time interval for a valid NEC

decreases, while the positivity of ρeff is shown in the right

panel of both figures. For the case (c1, c2) > 0, both NEC

and WEC are satisfied for small values of c1 and c2 in a very

small time interval.

Figures 5 and 6 deal with the case c1 < 0 and c2 > 0.

For arbitrarily chosen values of c1, the increasing behavior

of the NEC with respect to time is observed in the left panel

of both figures for all values of c2. The right plot of Fig. 5

shows the positivity of ρeff for t < 34, while it remains pos-

itive throughout the time interval for c1 = −0.001 as shown

in Fig. 6 (right panel). The last possibility, i.e., c1 < 0 and

c2 < 0 is examined in Figs. 7 and 8. The left panels of both

figures show the decreasing and increasing behavior of the

NEC as the time and integration constant c2 increase, respec-

tively. The effective energy density exhibits a constant behav-

ior for the assumed values of c1 in the considered interval of

c2.

Fig. 1 Energy conditions for c1 = 0.001

Fig. 2 Energy conditions for c1 = 4
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Fig. 3 Energy conditions for c1 = 0.001

Fig. 4 Energy conditions for c1 = 0.01

Fig. 5 Energy conditions for c1 = −0.01
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Fig. 6 Energy conditions for c1 = −0.001

Fig. 7 Energy conditions for c1 = −0.001

Fig. 8 Energy conditions for c1 = −0.01

4.2 Power-law solution

The power-law solution is of great interest to discuss the

cosmic evolution and its scale factor is defined as [38]

a(t) = a0tn, H =
n

t
, (50)

where n > 0. For 0 < n < 1, we have a decelerated universe,

which leads to a radiation dominated era for n = 1
2

and a dust

dominated era for n = 2
3

, while a cosmic accelerated era is

observed for n > 1. The Ricci scalar and GB invariant are

R =
6n

t2
(1 − 2n), G =

24n3

t4
(n − 1). (51)
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The energy density for dust fluid is obtained from Eq. (20)

as

ρ = ρ0t−3n . (52)

The trace of Tαβ and its time derivatives take the form

T = ρ, Ṫ = −
3n

t
T, T̈ =

3n

t2
(1 + 3n)T . (53)

Inserting Eqs. (50)–(53) in the first field equation (16), we

obtain

κ2T +
1

2
f (G, T ) −

1

2
G fG(G, T ) + T fT (G, T )

−
(

2

n − 1

)

G
2 fGG(G, T )

−
(

3n

2(n − 1)

)

GT fGT (G, T ) − 3n2

(

T

ρ0

)
2

3n

= 0, (54)

whose solution is given by

f (G, T ) = d1d3T d2G
1
4 (χ1+χ2)+d2d3T d2G

− 1
4 (χ1−χ2) + χ3T

+ d1d2T χ4 + χ5T χ6, (55)

where di are constants of integration and

χ1 =
1

2

[

n2(1+3d2(3d2+2))+2d2(n − 16)+3(2n + 3)
]

1
2 ,

χ2 =
1

2
[5 − n(1 + 3d2)] , χ3 = −

2

3
κ2, χ4 = −

1

2
,

χ5 =
(

18n3

2 + 3n

)

ρ
− 2

3n

0 , χ6 =
2

3n
.

In this case, Eq. (21) takes the form

d1d3T d2G
1
4 (χ1+χ2)

[

d2

6n
{3n(2d2 − 1) + 2(χ1 + χ2)}

]

+ d2d3T d2G
− 1

4 (χ1−χ2)

×
[

d2

6n
{3n(2d2 − 1) − 2(χ1 − χ2)}

]

+χ3T + d1d2χ
2
4 T χ4 + χ5χ

2
6 T χ6 = 0.

Solving Eq. (55) with the above equation as in the previ-

ous section, we obtain two functions whose combination is

equivalent to the reconstructed power-law f (G, T ) model.

Inserting the model (55) in the energy conditions (36)–

(39), we obtain

NEC: ρeff + Peff = ρ +
1

κ2

[

4H3(3 + 2q)

([

1

4
d1d3

× (χ1 + χ2)

[

1

4
(χ1 + χ2) − 1

]

× T d2G
1
4 (χ1+χ2)−2 +

1

4
d2d3(χ1 − χ2)

×
[

1

4
(χ1 − χ2) + 1

]

T d2G
− 1

4 (χ1−χ2)−2

]

Ġ

+
[

1

4
d1d2d3(χ1 + χ2)T

d2−1

×G
1
4 (χ1+χ2)−1−

1

4
d2

2 d3(χ1−χ2)T
d2−1

G
− 1

4 (χ1−χ2)−1

]

Ṫ

)

− 4H2

([

1

4
d1d3(χ1 + χ2)

×
[

1

4
(χ1 + χ2) − 1

] [

1

4
(χ1 + χ2) − 2

]

T d2

×G
1
4 (χ1+χ2)−3 −

1

4
d2d3(χ1 − χ2)

[

1

4
(χ1 − χ2) + 1

]

×
[

1

4
(χ1 − χ2) + 2

]

× T d2G
− 1

4 (χ1−χ2)−3

]

Ġ
2 + 2

[

1

4
d1d2d3(χ1 + χ2)

×
[

1

4
(χ1 + χ2) − 1

]

T d2−1

×G
1
4 (χ1+χ2)−2 +

1

4
d2

2 d3(χ1 − χ2)

[

1

4
(χ1 − χ2) + 1

]

× T d2−1
G

− 1
4 (χ1−χ2)−2

]

× ĠṪ +
[

1

4
d1d2d3(d2 − 1)(χ1 + χ2)T

d2−2

×G
1
4 (χ1+χ2)−1 −

1

4
d2

2 d3(d2 − 1)

× (χ1 − χ2)T
d2−2

G
− 1

4 (χ1−χ2)−1

]

Ṫ 2 +
[

1

4
d1d3(χ1 + χ2)

×
[

1

4
(χ1 + χ2) − 1

]

× T d2G
1
4 (χ1+χ2)−2 +

1

4
d2d3(χ1 − χ2)

×
[

1

4
(χ1 − χ2) + 1

]

T d2G
− 1

4 (χ1−χ2)−2

]

× G̈ +
[

1

4
d1d2d3(χ1 + χ2)T

d2−1

×G
1
4 (χ1+χ2)−1 −

1

4
d2

2 d3(χ1 − χ2)T
d2−1

×G
− 1

4 (χ1−χ2)−1

]

T̈

)

+ ρ
[

d1d2d3T d2−1
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×G
1
4 (χ1+χ2) + d2

2 d3T d2−1

×G
− 1

4 (χ1−χ2)−χ3+d1d2χ4T χ4−1+χ5χ6T χ6−1
]

]

≥0,

(56)

WEC: ρeff = ρ +
1

2κ2

[

d1d3T d2

×G
1
4 (χ1+χ2) + d2d3T d2G

− 1
4 (χ1−χ2)

−χ3T + d1d2T χ4 + χ5T χ6 + 2ρ[d1d2d3T d2−1

×G
1
4 (χ1+χ2) + d2

2 d3T d2−1

×G
− 1

4 (χ1−χ2)

−χ3 + d1d2χ4T χ4−1 + χ5χ6T χ6−1] + 24q H4

×
[

1

4
d1d3(χ1 + χ2)T

d2G
1
4 (χ1+χ2)−1

−
1

4
d2d3(χ1 − χ2)T

d2G
− 1

4 (χ1−χ2)−1

]

+ 24H3

([

1

4
d1d3(χ1 + χ2)

×
[

1

4
(χ1 + χ2) − 1

]

T d2G
1
4 (χ1+χ2)−2 +

1

4
d2d3

× (χ1 − χ2)

[

1

4
(χ1 − χ2) + 1

]

× T d2G
− 1

4 (χ1−χ2)−2

]

Ġ +
[

1

4
d1d2d3(χ1 + χ2)

× T d2−1
G

1
4 (χ1+χ2)−1 −

1

4
d2

2 d3

× (χ1 − χ2)T
d2−1

G
− 1

4 (χ1−χ2)−1

]

Ṫ

)]

≥ 0, (57)

SEC: ρeff + 3Peff = ρ

+
1

κ2

[

− [d1d3T d2G
1
4 (χ1+χ2) + d2d3T d2

×G
− 1

4 (χ1−χ2) − χ3T + d1d2T χ4 + χ5T χ6]
+ ρ[d1d2d3T d2−1

G
1
4 (χ1+χ2)

+ d2
2 d3T d2−1

G
− 1

4 (χ1−χ2) − χ3 + d1d2χ4T χ4−1

+χ5χ6T χ6−1] − 24q H4

×
[

1

4
d1d3(χ1 + χ2)T

d2G
1
4 (χ1+χ2)−1

−
1

4
d2d3(χ1 − χ2)T

d2G
− 1

4 (χ1−χ2)−1

]

+ 12H3(1 + 2q)

([

1

4
d1d3(χ1 + χ2)

×
[

1

4
(χ1 + χ2) − 1

]

T d2G
1
4 (χ1+χ2)−2

+
1

4
d2d3(χ1 − χ2)

[

1

4
(χ1 − χ2) + 1

]

× T d2G
− 1

4 (χ1−χ2)−2

]

Ġ +
[

1

4
d1d2d3

× (χ1 + χ2)T
d2−1

G
1
4 (χ1+χ2)−1 −

1

4
d2

2 d3(χ1 − χ2)

× T d2−1
G

− 1
4 (χ1−χ2)−1

]

Ṫ

)

− 12H2

([

1

4
d1d3(χ1 + χ2)

[

1

4
(χ1 + χ2) − 1

]

×
[

1

4
(χ1 + χ2) − 2

]

T d2

×G
1
4 (χ1+χ2)−3 −

1

4
d2d3(χ1 − χ2)

[

1

4
(χ1 − χ2) + 1

]

×
[

1

4
(χ1 − χ2) + 2

]

× T d2G
− 1

4 (χ1−χ2)−3

]

Ġ
2 + 2

[

1

4
d1d2d3(χ1 + χ2)

×
[

1

4
(χ1 + χ2) − 1

]

T d2−1

×G
1
4 (χ1+χ2)−2 +

1

4
d2

2 d3(χ1 − χ2)

[

1

4
(χ1 − χ2) + 1

]

× T d2−1
G

− 1
4 (χ1−χ2)−2

]

× ĠṪ +
[

1

4
d1d2d3(d2 − 1)(χ1 + χ2)T

d2−2

×G
1
4 (χ1+χ2)−1 −

1

4
d2

2 d3(d2 − 1)

× (χ1 − χ2)T
d2−2

G
− 1

4 (χ1−χ2)−1

]

Ṫ 2 +
[

1

4
d1d3(χ1 + χ2)

×
[

1

4
(χ1 + χ2) − 1

]

T d2

×G
1
4 (χ1+χ2)−2 +

1

4
d2d3(χ1 − χ2)

[

1

4
(χ1 − χ2) + 1

]

T d2

×G
− 1

4 (χ1−χ2)−2

]

G̈ +
[

1

4
d1d2d3(χ1 + χ2)

× T d2−1
G

1
4 (χ1+χ2)−1 −

1

4
d2

2 d3

× (χ1 − χ2)T
d2−1

G
− 1

4 (χ1−χ2)−1

]

T̈

)]

≥ 0, (58)

DEC: ρeff − Peff = ρ +
1

κ2

[

[

d1d3T d2G
1
4 (χ1+χ2)

+ d2d3T d2

×G
− 1

4 (χ1−χ2) − χ3T + d1d2T χ4 + χ5T χ6
]

+ ρ[d1d2d3T d2−1

×G
1
4 (χ1+χ2) + d2

2 d3T d2−1
G

− 1
4 (χ1−χ2) − χ3

+ d1d2χ4T χ4−1 + χ5χ6T χ6−1

]

+ 24q H4

[

1

4
d1d3(χ1 + χ2)T

d2G
1
4 (χ1+χ2)−1

−
1

4
d2d3(χ1 − χ2)T

d2
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×G
− 1

4 (χ1−χ2)−1

]

+ 4H3(3 − 2q)

([

1

4
d1d3(χ1 + χ2)

×
[

1

4
(χ1 + χ2) − 1

]

× T d2G
1
4 (χ1+χ2)−2 +

1

4
d2d3(χ1 − χ2)

[

1

4
(χ1 − χ2) + 1

]

× T d2G
− 1

4 (χ1−χ2)−2

]

× Ġ +
[

1

4
d1d2d3(χ1 + χ2)T

d2−1
G

1
4 (χ1+χ2)−1

−
1

4
d2

2 d3(χ1 − χ2)T
d2−1

×G
− 1

4 (χ1−χ2)−1

]

Ṫ

)

+ 4H2

([

1

4
d1d3(χ1 + χ2)

×
[

1

4
(χ1 + χ2) − 1

]

×
[

1

4
(χ1 + χ2) − 2

]

T d2G
1
4 (χ1+χ2)−3 −

1

4
d2d3(χ1 − χ2)

×
[

1

4
(χ1 − χ2) + 1

][

1

4
(χ1 − χ2) + 2

]

T d2

×G
− 1

4 (χ1−χ2)−3

]

Ġ
2 + 2

[

1

4
d1d2d3(χ1 + χ2)

×
[

1

4
(χ1+χ2)−1

]

T d2−1
G

1
4 (χ1+χ2)−2 +

1

4
d2

2 d3(χ1−χ2)

×
[

1

4
(χ1 − χ2) + 1

]

T d2−1
G

− 1
4 (χ1−χ2)−2

]

× ĠṪ +
[

1

4
d1d2d3(d2 − 1)(χ1 + χ2)

× T d2−2
G

1
4 (χ1+χ2)−1 −

1

4
d2

2 d3(d2 − 1)(χ1 − χ2)

× T d2−2
G

− 1
4 (χ1−χ2)−1

]

Ṫ 2

+
[

1

4
d1d3(χ1 + χ2)

[

1

4
(χ1 + χ2) − 1

]

T d2G
1
4 (χ1+χ2)−2

+
1

4
d2d3(χ1 − χ2)

Fig. 9 Energy conditions for d2 = 0.1 and d3 = 1

Fig. 10 Energy conditions for d2 = 0.1 and d3 = −0.5
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Fig. 11 Energy conditions for d2 = −0.1 and d3 = 0.5

Fig. 12 Energy conditions for d2 = −0.1 and d3 = −1

×
[

1

4
(χ1 − χ2) + 1

]

T d2G
− 1

4 (χ1−χ2)−2]G̈

+
[

1

4
d1d2d3(χ1 + χ2)T

d2−1

×G
1
4 (χ1+χ2)−1 −

1

4
d2

2 d3

×(χ1 − χ2)T
d2−1

G
− 1

4 (χ1−χ2)−1

]

T̈

)]

≥ 0. (59)

The NEC and WEC depend on four parameters t, d1, d2

and d3. We plot these conditions against t and d1 for n = 2
3

with possible signs of d2 and d3. The left plot of Fig. 9 shows

a positively increasing behavior of NEC for −10 ≤ d1 ≤ 0

with respect to time while invalid for d1 > 0. The effective

energy density remains positive for all values of (t, d1) as

shown in Fig. 9 (right). The same behavior of both conditions

are obtained for 0 < d2 ≤ 0.51 with d3 > 0 as well as

for d2 > 0 with d3 = 0. The left plot of Fig. 10 shows

a similar behavior of the NEC for d2 > 0 and d3 < 0,

while ρeff remains positive for 0 < t < 23. Similarly, for

d3 = −1 and −10, WEC is valid for 0 < t < 14 and

0 < t < 4.5, respectively, with d2 = 0.1. The right plots of

Figs. 11 and 12 show the validity of NEC for d1 ≥ 0, while it

does not hold for negative values of d1. The effective energy

density remains positive for the time interval 1 ≤ t ≤ 10

with d3 = 0.5 as shown in Fig. 11 (right panel), while for

d3 = 1 and 10, the acceptable intervals are 1 ≤ t ≤ 7 and

1 ≤ t ≤ 3, respectively. This shows that the validity region

of the WEC decreases as the value of integration constant

d3 increases. The right plot of Fig. 12 shows the positivity

of ρeff for (d2, d3) < 0, which confirms the positivity of the

WEC with d1 > 0.

5 Final remarks

In this paper, we have presented a generalized modified the-

ory of gravity with an arbitrary coupling between geome-

try and matter. The gravitational Lagrangian is obtained by

adding an arbitrary function f (G, T ) in the Einstein–Hilbert

action. We have formulated the corresponding field equations

using the least action principle and calculated the non-zero
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covariant divergence of Tαβ consistent with f (R, T ) theory

[31]. Consequently, the test particles follow non-geodesic

trajectories due to the presence of an extra force originat-

ing from the non-minimal coupling, while they move along

geodesics for a pressureless fluid. We have constructed the

energy conditions for an FRW universe model filled with dust

fluid in terms of the deceleration, jerk, and snap (q, j, s) cos-

mological parameters. The reconstruction technique has been

applied to f (G, T ) gravity using the well-known de Sitter and

power-law universe models. The results are summarized as

follows.

• In the de Sitter reconstructed model, the energy bounds

have dependence on three parameters t, c1 and c2. We

have plotted NEC and WEC against t and c2 with four

possible signatures of c1 and c2 as shown in Figs. 1, 2,

3, 4, 5, 6, 7, and 8. It is found that NEC and WEC are

satisfied for c1 > 0 and c2 < 0 throughout the time

interval for cases (c1, c2) > 0 and (c1, c2) < 0 that the

energy conditions are satisfied for small values of the ci

in a very small time interval. It is observed that the NEC

shows a positively increasing behavior for all negative

values of c1 with c2 > 0, while the validity ranges of the

WEC show dependence on c1.

• For a power-law reconstructed model, we have explored

the behavior of the four parameters t, d1, d2, and d3 with

n = 2
3

. In this case, we have plotted the energy condi-

tions against (t, d1) and analyzed the possible behavior

of remaining constants. In Figs. 9, 10, 11, and 12, we

have taken −10 ≤ d1 ≤ 10 and found the valid regions

where the energy conditions are satisfied.

Finally, we conclude that the NEC and WEC are satisfied in

both reconstructed f (G, T ) models with a suitable choice of

the free parameters.
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