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ABSTRACT As more and more attention is paid to green manufacturing, production scheduling has been

proved to be an efficient method for the reduction of environmental pollution. It is well-known that the

flexible job shop scheduling problem (FJSP) is a very complex combinatorial optimization problem with

strong theoretical and background for application. However, the problem has been extensively investigated

and historically concerned with some indicators related to time, e.g., flow time, makespan, and workload.

In this study, an energy-conscious FJSP is investigated with the consideration of the energy consumption.

First, a mathematical model of the energy-conscious FJSP is built with the objective of optimizing the sum

of the energy consumption cost and the completion-time cost. Due to the fact that the basic water wave

optimization (WWO) was developed for various continuous problems, a discrete water wave optimization

(DWWO) algorithm is proposed to solve the model. In our DWWO algorithm, a three-string encoding

approach is first adopted to represent each individual wave. To make the algorithm adapt for the considered

scheduling problem, three discrete evolutionary operations are redesigned according to the characteristics

of the problem, i.e., propagation, refraction, and breaking. Finally, extensive experimental simulations are

conducted to test the proposed DWWO algorithm. The comparison results demonstrate that the proposed

DWWO algorithm is efficient for the energy-conscious FJSP.

INDEX TERMS Flexible job shop, energy-conscious scheduling, energy consumption. discrete water wave

optimization algorithm.

I. INTRODUCTION

Flexible job shop scheduling problem (FJSP) is an extended

version of the job shop scheduling problem (JSP), which

presents a closer approximation to the real-life production

than the JSP. It has attracted much attention of researchers

in the manufacturing field [1]–[15]. However, these previous

researches mainly focused on the FJSP with some traditional

time-related objectives, such as makespan, flow time, work-

load, and so on. Nowadays, under the current environmental

pressure, some environmental metrics are taken into account

in the scheduling problems, such as energy consumption,

CO2 emission, carbon footprint, etc. The energy-conscious
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scheduling problem has become a new research hotspot in

the manufacturing filed [16]. Some previous studies can be

summarized according to the research workshops as below.

(1) Single-machine scheduling problem. Shrouf et al. [17]

investigated the problem to minimize energy consumption

costs by considering variable energy prices during a day.

Yildirim and Mouzon [18] established a mathematical model

of the problem and developed a genetic algorithm to mini-

mize the energy consumption and the total completion time.

Che et al. [19] proposed a greedy insertion algorithm to

solve the established model of a single-machine system

under time-of-use (TOU) policy. Mouzon and Yildirim [20]

proposed a greedy randomized adaptive algorithm to

minimize the total energy consumption and the total

tardiness.
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(2) Flow shop scheduling problem. Lu et al. [21] estab-

lished a mathematical model of a permutation flow shop

scheduling problem and presented a hybrid backtracking

search algorithm to optimize the makespan and the energy

consumption. Tang et al. [22] investigated a dynamic flexible

flow shop scheduling problem aiming to reduce the energy

consumption and the makespan. A particle swarm optimiza-

tion algorithm was proposed to obtain the Pareto optimum.

Liu et al. [23] considered a fuzzy flow shop scheduling

problem and proposed a hybrid genetic algorithm tominimize

the energy consumption and the tardiness. Yan et al. [24]

developed a multi-level optimization method for an energy-

efficient flexible flow shop scheduling. Mansouri et al. [25]

proposed amulti-objectivemodel of a two-machine flow shop

and proposed a heuristic method to find the Pareto front of the

makespan and the total energy consumption. Zhang et al. [26]

established a model to optimize the electricity cost and the

carbon footprint under time-of-use tariffs. Ding et al. [27]

considered a permutation flow shop scheduling problem

to optimize the total carbon emission and the makespan.

Meng et al. [28] established five mixed integer linear pro-

gramming models for an energy-conscious hybrid flow shop

scheduling problem with the energy-saving strategy of turn-

ing off and on. For the model, an improved genetic algorithm

was proposed.

(3) Job shop scheduling problem. Zhang and Chiong [29]

developed a genetic algorithm to solve a multi-objective

energy-efficient job shop scheduling problem. Liu et al. [30]

adopted a non-dominant sorting genetic algorithm to mini-

mize the total electricity consumption and the total weighted

tardiness. May et al. [31] developed a genetic algorithm to

improve the productive and the environmental performances.

Salido et al. [32] presented a genetic algorithm to solve an

energy-efficient job shop scheduling problem with machine

speed scaling. Tang and Dai [33] built a mixed integer

programming mathematical model and proposed a genetic-

simulated annealing algorithm to find the optimal solution

of the energy-efficient JSP. Escamilla et al. [34] presented

a genetic algorithm to solve an energy-efficient JSP, where

machines can work at different speeds.

With regards to the literature about the energy-conscious

production scheduling problems, most of existing studies

focus on some simple manufacturing systems. Flexible job

shop is a very important workshop type and plays a great

role in the manufacturing filed. However, to the best of the

authors’ knowledge, the research on the energy-conscious

FJSP has only just started [35]. Jiang et al. [36] con-

structed a model of a multi-objective FJSP and proposed

a non-dominated sorting genetic algorithm to minimize the

makespan, processing cost, energy consumption and cost-

weighted processing quality. Mokhtari and Hasani [37] inves-

tigated an energy-efficient FJSP to optimize total completion

time, total availability of the system, and total energy cost.

Piroozfard et al. [38] established a model with the consid-

eration of the energy consumption and preventive mainte-

nance of machines. An NSGA-II algorithm was presented

to obtain the minimization of total production energy costs

and total maintenance energy costs. Meng et al. [39] investi-

gated the flexible job shop scheduling problem to minimize

the total energy consumption and proposed six mixed inte-

ger linear programming models with turning off/on strategy.

Meng et al. [40] studied the dual-resource constrained flex-

ible job shop scheduling problem with minimizing energy

consumption and proposed a variable neighborhood search

algorithm for the problem. However, facing to the environ-

mental pressure, considerable work has yet to be carried out,

and some realistic constraints should be considered in the

energy-conscious FJSP.

For the above reviewed literature, the processing

time of each job on machines are fixed and certain.

However, in some actual manufacturing systems, such as

CNC machines, machines can work at different speeds when

dealing with different jobs. When working at a higher speed,

the processing time decreases but the energy consumption

increases, and when working at a lower speed, the processing

time increases while the energy consumption decreases [32].

This mechanism provides an opportunity to control the

energy consumption by adjusting the machine speed. There-

fore, the machine speed should be taken as a decision-making

variable. The energy-conscious FJSP is consisted of three

sub-problems: machine assignment, operation permutation

and speed selection. The addition of speed selection greatly

increases the complexity of the problem. There are rather few

literature about the energy-conscious FJSP with adjustable

machine speeds. Lei et al. [41] proposed a shuffled frog-

leaping algorithm (SFLA) to minimize the workload balance

and the energy consumption. Wu and Sun [42] formulated

a mathematical model of FJSP with the objective of sav-

ing energy consumption. A non-dominated sorted genetic

algorithm was developed to determine when to turn-on/off

machines and which speed level to choose. In view of the

complexity of the considered problem, it is very difficult

to get the optimal solution through exact methods even for

a small-scale instance. In recent years, the application of

intelligence algorithms on workshop scheduling problems

has become a research hotspot. Therefore, more effective

and efficient intelligence algorithms are highly desirable for

solving the energy-conscious FJSP.

Water wave optimization (WWO) is a new population-

based intelligence algorithm, which originates from shallow

water wave models to deal with continuous optimization

problems [43]. Three wave motions (propagation, breaking

and refraction) are included in the algorithm to implement

the iterative searching process. The cooperation between the

operators makes the WWOmaintain a good balance between

exploration and exploitation. Meanwhile, compared with

other meta-heuristic algorithms, WWO performs well with a

small-scale population, which make it has low computational

effort. Currently, WWO has been successfully employed to

deal with various optimization problems [44]–[49]. Neverthe-

less, due to the fact that WWO has been proposed not so long

time, the applications of the algorithm are still scare. To the
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best of our knowledge, the application of WWO for solving

the energy-conscious FJSP has not yet been reported. There-

fore, the reasons above motivate us to design a discreteWWO

(DWWO) to solve the energy-conscious FJSP. The main

contribution can be summarized as follows: (1) This study

attempts to study the energy-conscious FJSP with adjustable

machine speeds, which is seldom considered in the existing

literature. (2) A new mathematical model of the energy-

conscious FJSP is established with the criterion to minimize

the sum of the energy consumption cost and the completion-

time cost. (3) As mentioned before, WWO was originally

proposed for global optimization in continuous search spaces.

However, the considered problem in this study is a discrete

problem. Therefore, according to the characteristics of the

problem, the three evolutionary operators are redesigned to

make the algorithm directly search in a discrete scheduling

domain. For the propagation operator, three mutation opera-

tors are adopted to obtain a new wave. The seeking memory

pool mechanism of cat swarm optimization (CSO) is used to

avoid generating poor solutions; For the refraction operator,

the crossover operation is conducted between the poor solu-

tion and the current best solution to absorb some desirable

information; For the breaking operator, a local search strategy

is designed to enhance the exploitation capability.

The rest of the paper is organized as follows. Section II

introduces the description of the problem and the model.

Section III addresses the basic water wave optimization algo-

rithm. Section IV describes the implementation of the pro-

posed DWWO algorithm. Section V shows the experimental

results and Section VI gives conclusions and future works.

II. MATHEMATICAL MODEL OF THE ENERGY-

CONSCIOUS FJSP

The energy-conscious FJSP can be described as follows: there

is a set of n jobs to be processed on m machines. Each job

consists of a sequence of several operations. The processing

time depends on the assigned machine of each operation and

the selected speed level of the machine. Here, a finite and

discrete speed set v = {v1, v2, · · · , vd } is considered for

each machine. The selected speed affects the production rate

and the energy consumption. Here, Oij means operation i of

job j. If Oij is assigned to machine k , a basic processing time

is represented by qijk . If Oij is processed on machine k at

speed vd , the actual processing time pijkd equals to qijk/vd ,

and the energy consumption cost per unit time is measured

by Ekd . Furthermore, if vd ′ > vd , Ekd ′ × pijkd ′ > Ekd × pijkd
is assumed to bemet.Whenwaiting for process, machine runs

with an energy consumption cost per unit time measured by

SEk in the stand-by mode. Some constraints are involved as

below.

(1) All machines and jobs are ready at the beginning time.

(2) Eachmachine must process at most one operation at the

same time.

(3) Each job must not be reassigned when it is being

processed.

(4) Preemption is not permitted for each operation.

(5) Each operation cannot be processed until the immediate

predecessor is completed.

(6) Setup and breakdown of machines are not considered.

(7) The speed of a machine must not be changed when

processing a job.

(8) Any machine cannot be stopped until all assigned jobs

are finished.

The optimization objective is to minimize the sum of total

energy consumption cost and the completion-time cost. For

the mathematical model, some symbols and variables are

listed as below.

n : The number of jobs;

m : The number of machines;

Ji : The number of operations in job i;

γ : The completion-time cost per unit time;

Cmax : The final completion time;

STij : The start time of Oij;

CTij : The completion time of Oij;

ξ : A big positive constant number;

CS : The total cost in the workshop;

CTk : The completion time of machine k;

Wk : The workload of machine k;

yijkd : 0-1 variable, ifOij is processed onmachine k at speed

vd , yijkd = 1; otherwise, yijkd = 0;

ziji′j′k : 0-1 variable, if Oij is processed on machine k prior

to Oi′j′ , ziji′j′k = 1; otherwise, ziji′j′k = 0.

min CS=

n∑

i=1

Ji∑

j=1

m∑

k=1

D∑

d=1

Ekdyijkdpijkd

+

m∑

k=1

SEk (CTk −Wk )+ γCmax (1)

s.t. CTij − STij=

m∑

k=1

D∑

d=1

yijkdpijkd , i=1, 2, · · · , n;

j=1, 2, · · · , Ji (2)

STi(j+1) − CTij ≥ 0, i=1, 2, · · · , n; j=1, 2, · · · , Ji−1

(3)

STi′j′ + ξ (1− ziji′j′k ) ≥ CTij,

i, i′=1, 2, · · · , n; j, j′=1, 2, · · · , Ji; k=1, 2, · · · ,m

(4)

STij + ξziji′j′k ≥ CTi′j′ ,

i, i′=1, 2, · · · , n; j, j′=1, 2, · · · , Ji; k=1, 2, · · · ,m

(5)
m∑

k=1

D∑

d=1

yijkd=1, i=1, 2, · · · , n; j=1, 2, · · · , Ji (6)

yijkd ∈ {0, 1} ,

i=1, 2, · · · , n; j=1, 2, · · · , Ji; k=1, 2, · · · ,m;

d=1, 2, · · · ,D (7)

ziji′j′k ∈ {0, 1} ,

i, i′=1, 2, · · · , n; j, j′=1, 2, · · · , Ji; k=1, 2, · · · ,m

(8)
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Equation (1) is the optimization function with three items,

each of which represents a different cost. The first item

is the total energy consumption cost for processing opera-

tions, the second is the total energy consumption cost when

machines run in the stand-by mode, and the third is the cost

related to the completion-time; Constraint (2) indicates that

preemption is not allowed during the processing period of

each operation; Constraint (3) shows the precedence rela-

tionship of operations. That is to say, each operation cannot

be processed until the immediate predecessor is completed;

Constraints (4) and (5) guarantee that each machine must

process no more than one operation simultaneously; Con-

straint (6) means that any operation cannot be assigned to

another machine when it has been started, and the speed of

a machine cannot be changed when it is processing a job.

Constraints (7) and (8) presents the decision variables.

III. INTRODUCTION TO THE BASIC WATER WAVE

OPTIMIZATION

Water wave optimization (WWO) algorithm is inspired from

shallow wave models and proposed by Zheng [43] for solv-

ing various continuous optimization problems. In the WWO,

each individual is taken as a wave with a height h and a

wavelength λ. The searching space corresponds to the seabed

area. For a maximization optimization problem, the fitness of

each solution is measured inversely by its seabed depth [43].

For each wave x = {x(1), x(2), · · · , x(l)}, h is initially set to

be a constant hmax and λ is set to be 0.5. During the evo-

lutionary process, three operations (propagation, refraction

and breaking) are involved in the algorithm and performed

to waves.

In the propagation phase, for each individual, a new

wave x′ is created based on the original one η at each gen-

eration, which can be shown in Equation (9).

x ′(a) = x(a)+ rand(−1, 1)λL(a) (9)

rand(−1, 1) defines a random number in the range [−1,1]

with a uniform distribution, and L(a) represents the length

of ath dimension of the search space. If x′ is better than x,

x is replaced by x′, and the height h of x′ is reset to hmax.

Otherwise, x is unchanged, but its height h is decreased by

one. After each generation, the wavelength of each wave x is

updated by Equation (10).

λ = λα−(f−fmin+ε)/(fmax−fmin+ε) (10)

where f is the fitness function, fmax and fmin represents

the maximum and minimum values of f , α is the wave-

length reduction coefficient, and ε is a factor used to avoid

division-by-zero.

After the propagation operation, if a wave has not been

improved and its height h equals to 0, a refraction operation

in Equation (11) is employed to make the wave move to a new

position by learning from the current best wave x∗.

x ′(a) = N (
x∗(a)+ x(a)

2
,
|x∗(a)− x(a)|

2
) (11)

FIGURE 1. The framework of the original WWO algorithm.

where N means a Gaussian random number with specified

mean and standard deviation. After the refraction operation,

x is taken place by x′, and its height h is reset to hmax, and the

wavelength λ is calculated by λ′ = λ
f (x)
f (x ′)

.

In theWWO, the breaking operator is used to enhance local

search around a promising solution. If a wave is better than

the current best solution x∗, kk dimensions of the waves will

be randomly selected first. Then the breaking operation in

Equation (12) will be performed to each selected dimension

to generate kk new waves.

x ′(a) = x(a)+ N (0, 1)βL(a) (12)

where β is named as the breaking coefficient, kk is a ran-

dom number selected from [1, kkmax], kkmax is a predefined

parameter. If none of the new waves are better than x∗, x∗ is

unchanged; otherwise, x∗ is replaced by the best one among

the new waves generated by Equation (12). The steps of the

WWO algorithm can be shown by Figure 1.

IV. IMPLEMENTATION OF THE PROPOSED DWWO

A. ENCODING AND DECODING APPROACH

As stated above, WWO was originally proposed for solving

continuous optimization problems. Therefore, the first task

is to design an appropriate encoding approach to represent

the scheduling solution. Here, a three-string encodingmethod

is adopted for the energy-conscious FJSP. The first string

defines the machine assignment, the second shows the speed

level selection, and the third is the operation permutation.
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FIGURE 2. Encoding scheme for a 3 × 3 × 2 energy-conscious FJSP.

For a 3 × 3 × 2 problem, three jobs are assumed to be

processed on three machines, and two speed levels can be

selected for each machine. Each job consists of two opera-

tions. The encoding scheme can be illustrated in Figure 2.

In the first string, each element is the code of the selected

machine for each operation. In the second string, each ele-

ment is the selected speed level for processing each operation.

In the third string, elements with the same values represent

different operations in the same job.

In this paper, the population is randomly initialized accord-

ing to the encoding method. In order to obtain a feasible

scheduling scheme, the decoding procedure can be described

as follows:

Step 1: Scan the operation permutation in the first string

from left to right, read the machine information in the first

string, and find the speed level of the assigned machine in

the second string.

Step 2: The first operation in the third string is first

arranged, and then the second one is done, and so on; each

operation is allocated in the best available time on its assigned

machine. The procedure is repeated until a scheduling scheme

is obtained.

B. PROPAGATION OPERATOR

In the WWO algorithm, the propagation operator is used to

generate a new wave. During the evolutionary process, each

wave has to propagate to implement the individual updating.

Observed from Figure 2, Equation (9) cannot be directly con-

ducted to scheduling solutions. Thus, a modified propagation

operator is presented according to the characteristics of the

problem.

In the proposed DWWO, a perturbation procedure is pro-

posed based on three mutation operations and performed to

obtain a new solution. The wavelength λ is taken as the

mutation probability, which can be calculated according to

Equation (13), where f is the fitness function represented by

W/CS (W is a constant). Seen from Equation (13), the wave-

length of each wave varies according to the fitness. A poor

solution has a larger λ, and thus has a larger probability

of being mutated; on the contrary, a good solution has a

smaller λ, and thus has a smaller probability to be mutated.

λ =
fmax − fk

fmax − fmin
(13)

Three mutation operators are adopted as follows:

Machine Assignment: Randomly select an operation with

more than one alternative machine from the first part of the

scheduling solution, and then a different machine is randomly

selected from the alternative machine set of the selected

operation to replace the original machine.

FIGURE 3. TPX crossover for the machine assignment part.

Speed-level Selection: Randomly selected an operation

with more than one alternative speed level from the second

part, and then a different speed level is randomly selected to

replace the original speed.

Operation Permutation: Randomly select two operations

belonging to different jobs in the third part, and then the

positions of the selected operations are exchanged.

In every iteration, for each individual, a random number

is generated from [0,1] following the uniform distribution.

If the random number is smaller than the wavelength λ, a new

solution is created by randomly performing one mutation

operator or one combination of them to the current solution.

It should be indicated that a random perturbation may result

to a poor solution. To overcome this drawback, the seeking

memory pool (SMP) mechanism of the cat swarm optimiza-

tion (CSO) proposed by Chu [50] is adopted for each current

wave, which can be described as follows:

Step 1: Generate η copies of the current wave x.

Step 2: Perform the mutation operators to each copy at

random.

Step 3: Evaluate the fitness values of all copies, and find

the copy x′ with the best fitness.

Step 4: If the best copy x′ is better than the original wave x,

update the wave x by x′; otherwise, maintain the value of the

original wave.

C. REFRACTION OPERATOR

The refraction operator is mainly used to make poor solu-

tion obtain some desirable information from the current best

solution. If x is not improved after several propagation oper-

ations and its wave height λ equals to zero, a refraction

operation should be conducted to x. In this study, a crossover

operator is employed to implement the refraction operation,

which is carried out between the current wave x and the best

wave x∗. Here, a two-point crossover (TPX) is used both for

the machine assignment part and the speed-level selection

part, and the precedence preserving order-based crossover

(POX) is adopted for the operation permutation part.

The detailed steps of the TPX are illustrated in

Figures 3-4 and described as follows:

Step 1: Randomly select two positions from machine

assignment part or speed-level selection part.

Step 2: Exchange the elements between the selected

positions.

Step 3: End the procedure.
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FIGURE 4. TPX crossover for the speed-level selection part.

FIGURE 5. POX crossover operation.

The detailed steps of the POX crossover are illustrated

in Figure 5 and described as follows:

Step 1: Create two job sets Job1 and Job2.

Step 2: Randomly select some jobs to Job1, others are

selected to Job2.

Step 3: Copy the jobs in Job1 from Parent 1 to Child 1 and

from Parent 2 to Child 2.

Step 4: Copy the jobs in Job2 from Parent 2 to Child 1 and

from Parent 1 to Child 2.

Step 5: End the procedure.

D. BREAKING OPERATOR

The breaking operator aims to enhance the exploitation ability

around the optimal solution. When a new wave generated

from the propagation phase is better than the current best

solution, the breaking operator is performed to the new wave

and generate a better solution. The local search strategy (LS)

has been widely used to find more promising solutions. Here,

it is employed to be the breaking operator. In the proposed

LS, the mutation operators in Section B are taken as the

neighborhood structures. The procedure of the LS can be

shown as below.

Step 1: Obtain the initial solution x, and set ρmax ← 3,

ζ ← 1 and the maximum iteration ζmax.

Step 2: Set ρ ← 1.

Step 3: Perform the below procedure until ρ > ρmax.

if ρ = 1 then x′ ∈ OperationPermutation(x)

elseif ρ = 2 then x′ ∈ MachineAssignment(x)

else x′ ∈ SpeedSelection(x)

endif

if f (x′) > f (x) then x← x
′, ρ ← ρ

else ρ ← ρ + 1

endif

FIGURE 6. The procedure of the proposed DWWO.

Step 4: Set ζ ← ζ+1, if ζ > ζmax, go to Step 5, otherwise,

go to Step 2.

Step 5: End the procedure.

E. PROCEDURE OF THE PROPOSED DWWO

Based on the above description, the whole framework of

DWWO algorithm is illustrated in Figure 6.

V. COMPUTATIONAL EXPERIMENTS

The DWWO algorithm is implemented by using FORTRAN

language and run on a VMware Workstation Pro 14 with

2GB main memory under WinXP. Here, 56 instances

(RM01-RM56) are designed to evaluate the performance of

the proposed DWWO. For each instance, ten independent

replications are conducted for different algorithms.

A. EXPERIMENTAL INSTANCES

The RM01-RM56 instances are constructed according to the

number of machines (m ∈ {10, 15, 20, 25, 30, 35, 40}) and

the number of jobs (n ∈ {20, 30, 50, 70, 80, 100, 120, 150}).

In addition, some main parameters are randomly generated

following a discrete uniform distribution. The number of

operations of each job is generated in the range [1, 5],

the number of alternative machines for each operation is

generated in the range [1, m], the basic processing time of

each operation is drawn from the range [1, 20]. The speed of

each machine can be selected from v = {v1, v2, v3, v4, v5} =

{1.0, 1.2, 1.5, 2.0, 2.5}. Moreover, Ekd can be measured
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TABLE 1. Parameter levels.

TABLE 2. Orthogonal array and Avg values.

by ξk × v2d , d = 1, 2, 3, 4, 5, where ξk is randomly chosen

in [2, 4] with a discrete uniform distribution. SEk can be

calculated by ξk/4. And γ is set to be 15.0.

B. PARAMETERS SETTING

In the DWWO, four parameters need to be tuned, i.e., the pop-

ulation size (PS), the maximum height (hmax), the maximum

iteration (ζmax) of local search strategy in the breaking oper-

ator, the number of copies (η) generated for each solution in

the propagation operator. Here, the Taguchi method of Design

of Experiments (DOE) is used to determine these parameters.

For each parameter, four levels are considered in Table 1. For

each parameter setting, the DWWO algorithm is conducted

with the maximum iteration 5×m× n. The orthogonal array

L16(4
4) is listed in Table 2. In the table, experiments are con-

ducted based on an instance with 15 machines and 50 opera-

tions (RM11). The average value of objective function in the

ten runs (Avg) is adopted to verify the computational results.

According to Table 2, the response value and the signifi-

cance rank are shown in Table 3. Then, the factor level trend

of each parameter is illustrated in Figure 7. It can be observed

from Table 3 that η is the most significant parameter. The sec-

ond significant parameter is hmax. Besides, Table 3 shows that

PS is more significant than ζmax for the performance of the

TABLE 3. Response value and significance rank.

FIGURE 7. Factor level trend of parameters in DWWO.

DWWO. According to Figure 7, we set PS = 30, hmax = 5,

ζmax = 40, and η = 20 for DWWO in the following

simulation test.

C. RESULTS AND COMPARISON

To test the performance of the DWWO algorithm, we com-

pare it with the modified genetic algorithm (MGA) [32],

the improved whale optimization algorithm (IWOA) [51],

and the grey wolf optimization algorithm with double-

searching mode (DMGWO) [52]. In the compared algo-

rithms, the initial solutions are also generated at random. The

machine assignment is added to the MGA and IWOA algo-

rithms. The machine assignment and speed level selection are

added to the DMGWO algorithm. In the MGA and IWOA,

the evolutionary operations performed on themachine assign-

ment part are the same with those for the speed level selection

part in the original algorithms. In the DMGWO, the TPX

crossover operator is added to perform on machine assign-

ment part and speed level selection part to implement the

individual updating. In addition, themutation operators in this

paper are taken as the neighborhood structures of the local

search strategy in the DMGWO.

To facilitate the comparison, the population size and the

maximum iteration of the compared algorithms are samewith

those of the DWWO. In addition, the mutation rate and the

crossover rate of MGA are 0.2 and 0.8, respectively; the
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TABLE 4. Comparison between different algorithms.
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TABLE 4. (Continued.) Comparison between different algorithms.

VOLUME 7, 2019 101569



Y. Lu et al.: Energy-Conscious Scheduling Problem in a Flexible Job Shop Using a DWWO Algorithm

TABLE 4. (Continued.) Comparison between different algorithms.

TABLE 5. ANOVA for ARPD of the compared algorithms.

maximum iteration of local search in DMGWO is equal to 5.

The comparison results are listed in Table 4. In the table,

‘ARPD’ represents the average relative percent deviation,

i.e., ARPD =
L∑
l=1

100×(Algl−Min)
Min

/L, ‘L’ is the number of

runs, ‘Min’ is the minimum result among all the conducted

experiments, Algl is the obtained value in the lth run by an

algorithm. ‘SD’ is the standard deviation of computational

results obtained in the ten runs. ‘Time’ represents the average

run time (in seconds). ‘Mean’ represents the average values

of the data in each column. The boldface represents the better

solutions obtained by the compared algorithms.

Seen from Table 4, it can be summarized that: (1) For

the ‘Best’ value, DMGWO obtains 29 boldface values. Our

DWWO yields 26 boldface values, which is the second best

algorithm. According to the last row, the proposed DWWO

algorithm obtains an average value of 4093.9, which is better

than those of MGA and IWOA. (2) For the ‘Avg’ value,

DWWO gets 31 boldface values out of 56 instances, which

performs better than other three algorithms. The second

best algorithm, namely DMGWO, can obtain 26 boldface

values. According to the last row, the proposed DWWO

algorithm can obtain an average value of 4145.5, which is

better than those of MGA and IWOA. (3) For the ‘ARPD’

value, DWWO obtains 31 boldface values, which is better

than other algorithms. The second best algorithm, namely

DMGWO, can obtain 26 boldface values. According to the
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FIGURE 8. Gantt chart for instance RM22.

FIGURE 9. Gantt chart for instance RM43.

last row, the proposed DWWO algorithm yields an aver-

age value of 2.5, which is better than those of MGA and

IWOA. (4) For the ‘SD’ value, DWWO yields 42 bold-

face values. The second best algorithm, namely DMGWO,

can obtain 14 boldface values. According to the last row,

the proposed DWWO algorithm obtains an average value

of 34.2, which is better than those of other three algo-

rithms. It demonstrates the strong robustness of our proposed

algorithm. (5) For the ‘Time’ value, DWWO spends more

time to run. However, our algorithm effectively improves

the quality of the solution when compared with other

algorithms.

Figures 8∼10 show the Gantt charts of the instances

RM22, RM43 and RM53 obtained by our DWWO algorithm.

The analysis of variance (ANOVA) is conducted

in Table 5 according to the data in Table 4. The algorithms

are taken as levels, and ARPD is regarded as the response

variable. In the table, the results of statistical analysis show

that there are significant differences among the algorithms

due to the fact that p-value is equal to zero.
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FIGURE 10. Gantt chart for instance RM53.

VI. CONCLUSION

In this paper, a mathematical model of the energy-conscious

flexible job shop scheduling problem, which considers

the machine speed selection and the energy consumption

reduction simultaneously, was built. With the promotion of

sustainable development, the energy-conscious FJSP is more

suitable for practical production compared with the tradi-

tional FJSP.

A new discrete water wave optimization (DWWO) algo-

rithm was proposed to solve the energy-conscious FJSP.

According to the characteristics of the problem, three oper-

ators (propagation, breaking and refraction) were redesigned

to make the algorithm directly work in a discrete domain.

In the experimental section, 56 instances (RM01-RM56)

were designed to evaluate the performance of the proposed

DWWO algorithm. Based on the comparison results, the

proposed algorithm has advantages in solving the energy-

conscious FJSP.

In the future, we will study the energy-conscious FJSP in

greater depth. Some constraints will be taken into considera-

tion as follows: (1) In real-life production, workers can only

operate a fraction of the machines with different skill levels.

Therefore, the dual-resource constrained energy-conscious

FJSP with worker flexibility will be studied in the future

work; (2) Time-varying electricity price will be considered

to estimate the total energy-consumption costs, such as time-

of-use pricing policy; (3) Renewable energy can reduce non-

renewable energy consumption in the production process.

The energy-conscious FJSP with renewable energy will be

a new research direction.
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