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Abstract: Multiscale computer simulation algorithms are required to describe complex molecular

systems with events occurring over a range of time and length scales. True multiscale simulations

must solve the interface, or hand-shaking, problem of coupling together different levels of

description in different spatial regions of the system. If the spatial regions of different resolution

move over time, or if material is allowed to flow over the inter-region boundaries, a mechanism

must be introduced into the multiscale algorithm to allow material to dynamically change its

representation. While such a mechanism is highly desirable in many instances, it is fraught with

technical difficulties. Here, we present a molecular dynamics simulation algorithm which is

multiscale in both time and space. We supplement the potential and kinetic energy expressions

with auxiliary terms in order to recover the total energy as a conserved quantity, even when the

total number of degrees of freedom changes during the simulation. This is crucial for a proper

assessment of the quality of adaptive hybrid algorithms, and in particular, it allows us to tune

the hierarchy of RESPA levels to optimize the integration scheme.

I. Introduction
In computer simulation, multiscale methods break the
calculation up into parts to be treated at different levels of
resolution or accuracy. Multiscale methods are therefore more
economical, allowing for larger systems, longer time scales,
or simply less resources than calculations performed entirely
at the most demanding level. An example of a successful
multiscale approach in molecular simulation is the quantum
mechanical/molecular mechanical (QM/MM) treatment of
enzymatic proteins, in which the chemically active region
of the enzyme is modeled with an accurate QM method,

while the remaining protein scaffold and the aqueous
environment are described with a classical MM force field.1,2

In this paper, we present a hybrid atomistic/coarse-grain
molecular dynamics method which allows parts of a molec-
ular system to be simulated in full atomistic detail while
treating the rest of the system at a coarse-grain (CG)
resolution. Here, CG refers to a dimensional reduction by
lumping atoms together into single interaction sites, that way
drastically reducing the number of particles and pair interac-
tions in the calculation. CG simulations can therefore access
much longer time scales and larger system sizes than
canonical molecular dynamics (MD) and has found success-
ful application in the modeling of polymer melts,3,4 bio-
membranes,5 and proteins.6,7

The idea of combining an atomistic with a lower-resolution
description is not new. Carloni et al. joined atomistic MD
with a Go-type of model for the simulation of proteins,8,11
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while Koumoutsakos et al. linked atomistic MD to a
continuum description to model nanoscale fluid mechanics.12

Kurkcuoglu et al. studied protein motions at mixed levels
of coarse-graining within an elastic network approach,9 and
Voth et al. used a force-field-fitting approach to parametrize
atom-CG bead interactions in a mixed atomistic and coarse-
grained MD simulation.10 A particularly advantageous ap-
proach was recently introduced by Kremer et al. which allows
particles to change their representation from atomistic to CG
and vice versa during a MD simulation,13,14 while Abrams
presented a similar adaptive dual-resolution method within
a Monte Carlo approach.15

It is important that molecules can adapt their representation
when they diffuse over the region boundaries in order to
maintain the spatial separation in regions of different
resolution. On very short time scales and in rigid molecular
systems, such diffusion is minimal, so that a nonadaptive
approach can be sufficient. This is often the case in the
aforementioned QM/MM simulation of enzymes. On the
other hand, when the chemical (QM-treated) region is
solvent-exposed and protons or water molecules take part
in the chemistry, MM-treated water molecules can replace
the QM ones, so that the chemistry is not correctly described
unless the representation adapts. Also, when the phenomenon
of high-resolution interest displaces through the system, an
adaptive scheme is required. The QM/MM treatment of the
propagation of a crack in a brittle solid, in which only the
atoms in the advancing crack tip region are modeled at the
QM tight-binding level of theory, is an example of such an
adaptive approach.16

In the case of an atomistic/CG molecular dynamics
treatment, the method is especially aimed to study molecular
motions on long time scales, making it natural to seek an
adaptive algorithm. Coarse-graining is typically applied to
model soft matter, and the range of phenomena in this field
that could be studied with an adaptive hybrid atomistic/
coarse-grained description is only limited by our imagination
but could include diffusion of molecules and ions in swollen
polymers, conformational dynamics in proteins, ligand dock-
ing, physisorption at a solid/liquid interface, permeation and
diffusion in biomembranes, and so forth.

To set up a (particle-based) dual-resolution simulation, the
system is, arbitrarily, spatially divided into a high-resolution
atomistic region (AR) and a low-resolution CG region
(CGR). For example, the AR can be defined within a sphere
of fixed-radius centered on a specific particle. This way, the
AR follows the tagged particle and evolves when particles
move through the spherical boundary. A standard force field
can be employed for the evolution of the individual atoms
in the AR, whereas the particles in the CGR are evolved
using a CG force fieldsfor example, one fitted against the
atomistic force field using force-matching methods17,18 or
inverse Monte Carlo techniques.19 The coupling between the
two regions is done at the CG level by first mapping the
AR into its CG representation (which involves grouping the
atoms into larger particles) and then evaluating the cross
interactions with the CG force field, after which the effective
forces on the CG particles in the AR are distributed mass-
weighted over their constituent atoms.13

Difficulties arise when particles are allowed to diffuse over
the regional boundaries and change their atomistic/coarse-
grain (A/CG) representation on the fly. In particular,
instantaneous switching of the atomistic potentials into the
CG ones or vice versa would cause spurious jumps in the
forces and velocities of the particles. Instead, the discontinu-
ity between the AR and CGR is bridged by an intermediate
healing region(HR), in which crossing particles gradually
acquire their new representation. In the scheme of Kremer
et al., this is done using force scaling.13 Instead, here, we
will scale the potentials, the advantages of which are the
main focus of this paper. Second, we exploit the reversible
RESPA multi-time-step approach,20 evaluating rapidly oscil-
lating forces, such as those arising from bond interactions
between atoms, more frequently than the slowly fluctuating
nonbonded forces. The natural hierarchy of RESPA levels
commonly employed in atomistic simulations generalizes in
a straightforward manner to the A/CG situation, allowing
us to tune the molecular dynamics integrator optimally across
the entire system.

II. Method
The present hybrid scheme assigns both atomistic and coarse-
grain positions and velocities throughout the entire system.
Given an atomistic configuration and a CG mapping (i.e., a
grouping of the atoms into CG particles), the coarse-grained
representation is readily computed, taking for each CG
position the center of mass of its constituent atoms and
likewise for the velocities. Recently, some of us developed
an efficient algorithm to obtain an atomistic configuration
from a CG one, the so-called inverse mapping, which is not
straightforward because of missing information.21 Molecules
in the AR and HR are evolved at the atomistic level, and
their CG positions (and velocities) are updated in the RESPA
substep for the evaluation of the inter-region interactions.
In the CGR, the CG particles are evolved, and their
corresponding atomistic positions and velocities are frozen
relative to these centers.

The accuracy of the integration of the equations of motion
(i.e., the quality of the simulation) is evaluated by monitoring
the total energy, which is a conserved quantity of the system.
The total energy in a hybrid system is composed of the sum
of kinetic and potential energies of the distinct spatial regions,
plus the energy that is exchanged with extended variables
(e.g., those of a thermostat), plus the change in kinetic and
potential energies due to particles that adapt their resolution.

The total kinetic energy,K, is

where, for each CG particleR in the AR and HR, we sum
the kinetic energy of its constituent atoms,i (with p the
momentum andm the mass), and for each CG particle in
the CGR, its kinetic energy, plus an extra term∆KA/CG:

K ) ∑
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∑
i∈R
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2mi
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This term is the surplus kinetic energy that is associated with
the atomistic representation of a CG particle but which is
“integrated out” upon coarse-graining. Its value is computed
at the start of the simulation and is then updated whenever
a particle R crosses the CGR/HR boundary, adding or
subtracting the kinetic energy difference between the two
representations of the particle. To distinguish the momenta
in eq 2 from the normal instantaneous momenta in eq 1, we
add here and hereafter a tilde to indicate a book-keeping
property that is only updated upon adaptation of a particle’s
resolution and frozen in between.

The potential-energy function is separated into interactions
that are confined between sites within a single CG particle
and interactions between sites spanning more than one CG
particle. The first type of interactions, termedintra-CG
particle interactions and shown in eq 3, consists of atomistic
potentials,Φij, wherei andj are atoms belonging to the same
CG particleR. They are evaluated in the AR and HR but
not in the CGR where the atoms are frozen with respect to
the CG particle they are associated with. Similar to the kinetic
energy, an extra term,∆WintraCG, arises to account for this
frozen inherent atomistic potential energy,Φ̃, within each
CG particle in the CGR; its value is recorded at the start of
the simulation, after which it is updated whenever a particle
crosses the CGR/HR boundary.

All other interactions, termedinter-CG particleinteractions,
are governed by eq 5. That is, the interaction between CG
particlesR and â is composed of the scaled CG potential
ΦRâ and the scaled atomistic interactionsΦij between atoms
i and j belonging toR andâ, respectively, with the scaling
factor λ a number between 0 and 1.

Equation 5 also contains an extra term,∆WinterCG, that
accounts for the changes inVinterCG when particles change
their A/CG character.

For an infinitely thin HR, the scaling factor,λ, becomes
simply a Heaviside step function,Θ, that is equal to unity if
one or both particles are in the CGR and is equal to 0
otherwise. In such a case of instantaneous resolution switch-
ing, ∆WinterCG can be explicitly expressed and computed as
the energy difference inVinterCG when particleR crosses the
region boundary, analogous to the auxiliary terms in eqs 2
and 4:

Note however that, contrary to the other two auxiliary terms

∆KR
A/CG and ∆WR

intraCG, which are local and consist of
constant (frozen) intra-CG atomistic contributions of particles
in the CGR, evaluation of∆WinterCG requires nonlocal
information including inter-CG atomistic interactions that are
not constant, which would nullify the efficiency of the CG
representation. That is, we can indeed store that part of the
kinetic and potential energies that become inherent to the
CG bead when a particleR moves from the AR to the CGR
by taking the energy difference (using eqs 2, 4, and 6), but
when this particle returns to the AR and the inherent energies
become explicit again,∆WR

interCG is of course not the same
as when it left the AR, thus rendering the absolute value of
∆WR

interCG meaningless. Instead, we will only book-keep the
changes to this term when molecules change representation,
where we make use of a smoothly changing scaling function,
λ, in the HR in the following manner.

The scaling factor is equal to

wheresR is the fraction of CG character of particleR, which
depends on its positionr relative to the regional boundaries
as illustrated in Figure 1. For particles in the AR,s is 0; in
the CGR,s is 1, and in the HR,s has an intermediate value,
signifying a hybrid character. Here, we takes to be a simple
polynomial function of the distanceq between the particle
and a fixed position that smoothly switches from
0 to 1 between the AR/HR boundary atR1 and the HR/CGR
boundary atR2:

Let us consider for a moment the forces on the particles by
taking the derivatives of the potentialV ) VintraCG+ VinterCG,
namely eq 3 plus eq 5. The derivatives of the first part give

VintraCG) ∑
R∈(AR,HR)

∑
i∈R
j∈R

Φij + ∑
R∈(CGR)

∆WR
intraCG (3)

∆WR
intraCG) ∑

i∈R
j∈R

Φ̃ij (4)

VinterCG)

∑
R

{∑
â>R

λRâΦRâ + ∑
â>R

(1 - λRâ) ∑
i∈R
j∈R

Φij + ∆WR
interCG} (5)

∆WR
interCG) Θ ∑

R
(Φ̃Râ - ∑

i∈R
j∈R

Φ̃ij) (6)

Figure 1. Switch function s shown as a function of an
arbitrary distance q. Here, s ) 0 for each CG particle (and its
atoms) within a sphere q < R1 (atomistic region) and s ) 1
for particles outside q > R2 (coarse-grained region). Pair
interactions are scaled by λ ) max[s1,s2].

λRâ ) max[s(rR),s(râ)] (7)

sR(q) )

{0 if q < R1

(q - R1)
2(3R2 - R1 - 2q)/(R2 - R1)

3 if R1 e q e R2

1 if q > R2

(8)
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the usual contributions to the forces; however, applying the
chain rule to the scaled potentials inVinterCGresults in forces
of the following shape:

Here, the usual forces∂Φ/∂rR are recognized in the first term,
scaled byλ, but the second term introduces a new force,
consisting of the derivative of the scaling function multiplied
by the potential. This term is only nonzero for particles in
the HR and gives rise to a force on these particles that
changes their A/CG character,s(r ), which is seen to be
spurious.

To understand the origin of this new force, consider an
atomistic torsion potential,Vijkl

dihedral, spanning two CG par-
ticles (i, j ∈ R, andk, l ∈ â) located in the HR. The molecule
can now lose this torsional potential energy in two ways:
(1) by gaining kinetic energy in the usual physical manner
via a motion in the direction of the first term in eq 9 or 2 by
moving in the direction of the second term (i.e., toward the
CGR) so that the potential is scaled down to 0. The second
term thus causes a spurious flux of particles through the HR.
Note, however, that the loss of the atomistic torsional
potential energy that causes this force should be canceled
by CG potential terms (on average) and that any instanta-
neous differences should be taken as inherent CG energy,
stored in∆WinterCG. In other words, even though we do not
have an explicit expression for∆WinterCG in the case of
smoothly scaled potentials, we can keep track of the energy
flow from and to∆WinterCG because we know its derivative
as minus the second term in eq 9.22

With the second term in the force expression canceled,
only the first term, namely, the scaled force, is left in the
equations of motion. To obtain the total energy, however,
we need to accurately book-keep the amount of nonlocal
“inter-GC particle” potential energy that transfers from
explicit (atomistic) into the inherent CG term,∆WinterCG. This
is done in a manner analogous to the thermodynamic
integration applied in free-energy perturbation methods. That
is, the energy flow is evaluated by integration of the
derivative ofWinterCG (i.e., minus the second term in eq 9)
on the fly for particles moving in the HR:

where the sum runs over all scaled inter-CG interactions
(including the atomistic ones) between CG particlesR and
â and the integral is approximated by a Riemann’s sum over
time stepst, making use of the fact that the change inλ
equals the change ins of the particle (R) with maximums
(see eq 7). Here,∆q is the displacement of the particle in
the direction of changings (i.e., toward or from the CGR).

The main function of the HR is to facilitate the introduction
of atomistic detail when a CG particle leaves the CGR.
Without a HR, instantaneous switching to the atomistic

interactions would lead to large repulsive forces due to
overlaps of the nonequilibrated atoms. Rather, the atomistic
interactions are turned on gradually across the width of the
healing region. In addition, many-body interactions, such as
bend and torsion potentials spanning more than one CG
particle, are evaluated as in eq 5, whereλ is determined by
the particle with the maximum CG character.

All particles are coupled to individual Nose-Hoover
thermostat chains, which are frozen when the particles are
not explicitly evolved upon crossing regional boundaries
(namely, for CG particles in the AR and HR and for atoms
in the CGR). Coupling of the atoms to thermostats in the
healing region is particularly important for two reasons. First,
the particles that leave the CGR have atomistic velocities
that were stored from the last time they left the AR (or were
drawn from a random distribution at time zero) and, thus,
need to be updated before entering the AR. Second, the
atomistic positions of such particles also need to be
equilibrated because these particles tend to be too high on
the atomistic potential energy surface. This excess potential
energy is transformed into kinetic energy while the atoms
cross the HR heading toward the AR, which is conveniently
removed with a thermostat. Consequently, we expect to see
a decreasing∆WinterCG, as molecules moving from the CGR
toward the AR on average have a higher atomistic potential
than molecules moving in the opposite direction (e.g.,
consider also the case of eq 6), with a slope with opposite
sign and equal magnitude as the potential energy of the
thermostat (see the Supporting Information for an illustra-
tion). The requirement of thermostats excludes the calculation
of transport properties, although in principle, it is possible
to only couple particles in the HR to a thermostat and reduce
the influence on the dynamics in the other regions.

In the rest of this paper, we will illustrate the method by
applying it to two model systems: first, a single two-particle
molecule moving across the regional boundaries and, second,
a periodic box of dense methane.

III. Applications
A. Simple Bead and Spring Molecule Changing Repre-
sentation.Figure 2 illustrates the first application, namely,
a single molecule that is represented at both the atomistic
and CG levels by two atoms connected with a bond. The
only difference is the force constant of the harmonic bond
potential, which is 10 times smaller in the CGR than in the
AR. The AR is a two-dimensional slab of thickness 2rAR )
10 Å, flanked on both sides by a 5-Å-thick HR and an outer
CGR. The cubic box with edge lengthL ) 30 Å is subject
to periodic boundary conditions, and the molecule has a
velocity parallel to the AR slab normal vector that takes it 6
ps to move through the entire box. The∆KA/CG and∆WintraCG

terms are 0 in this special case of a one-to-one mapping,
and the remaining nonzero∆WinterCG term allows us to test
the integration scheme. The solid black lines show the total
energy (with and without the correction) when the molecule
is oriented with the bond stretch vibration perpendicular to
the velocity, while the red lines show the energies in the
case of parallel orientation (see also the yellow inset). The
dashed lines show the correction,WinterCG. The inset in the

fR ) -λ(rR,râ)
∂Φ(rR,râ)

∂rR
-

∂λ(rR,râ)

∂rR
Φ(rR,râ) - ... (9)

∆∆WinterCG)

∫∆r ∑
R∈HR

â∈AA,HR

Φ(r )
dλ

dr
dr ′ ≈ ∑

t
∑

R∈HR
â∈AA,HR

Φ(r )
ds(qR)

dqR

∆qR

sR > sâ (10)
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upper right-hand corner of Figure 2 zooms in on the
fluctuations of the total energy, showing strong oscillations
when the integral is estimated by the straightforward
rectangular Riemann’s sum of eq 10, which uses only the
end-point evaluation of the function on the interval∆q (not
taking into account the “midpoint rule” of integration). Much
better total energy conservation is obtained by including the
function value at the start point of the time-step interval and
taking the average (making use of the “trapezoid rule”):

Clearly, the integration scheme works to recover the total
energy as a conserved quantity in this example of adaptive
hybrid MD.

B. Hybrid Molecular Dynamics of Liquid Methane. The
second, more realistic, illustration is a cubic box containing
8000 methane molecules. The box has an edge length of 79.9
Å and is subject to periodic boundary conditions. In a
spherical AR with a radius of 8 Å, the CH4 molecules are
represented in atomistic detail with flexible bonds and
bends.23 The AR is surrounded by a 4-Å-thick spherical
healing region. Both regions are centered on a noninteracting
dummy particle that is fixed in space, but in other test
simulations, we have also used a methane molecule to center
these regions, in which case the AR and HR follow the
motion of that methane molecule. In the outlying CGR, the
molecules are represented by a single van der Waals sphere
using Jorgensen’s united atom model.24 The density of
methane in this setup is 0.418 g/mL, which is close to the
actual density of liquid methane (at 1 atm and 111.5 K) of
0.423 g/mL.

The multi-time-step approach is employed with an outer
time step of 2 fs and substeps in which the CG long-range

van der Waals interactions are updated once, the CG short-
range Van der Waals interactions twice, the atomistic long-
range and short-range van der Waals and electrostatics twice
and four times, respectively, and the bond and bend interac-
tions 32 times (for further details, see the Supporting
Information). A further speedup is gained by treating the
periodic boundary conditions for the AR and HR in the CG
representation, which is allowed when the longest distance
in those regions is smaller than half of the shortest box edge.
For systems with charged CG particles, the long-range
electrostatics are taken into account using Ewald summation
at the CG level.

As seen in the first example above, the best total energy
conservation is reached by averagingΦdλ/dq in the integra-
tion scheme (eq 11). Implemented in that form, however,
requires storingΦdλ/dq of the previous time step (t - 1)
for all scaled interactions. Instead, we can rewrite eq 11 in
sums ofΦdλ/dq that have the same displacement∆q. The
displacement is determined by the interacting particle with
the maximum CG character, so that the number of terms to
be stored is only as large as the number of CG particles in
the HR.

In Figure 3, the total energy from the first 100 ps of this
hybrid MD simulation is compared with those from hybrid
simulations using different outer time steps and different HR
widths. A clear trend can be observed of total energy
conservation improvement with decreasing time-step and
increasing HR-width.

Further details on the analysis of a 600 ps trajectory of
the best combination are found in the Supporting Information.
The numbers of methane molecules in the AR, HR, and CGR
were 34.0( 2.3, 77.5( 3.8, and 7889.4( 3.8, respectively.
The radial distribution functions, mean square displacements,
and velocity autocorrelation functions of the hybrid MD
simulation averaged over the methane atoms in the AR show
excellent agreement with those from a purely atomistic MD
simulation of a box of 1000 methane molecules.

IV. Conclusions
We have presented a hybrid atomistic/CG MD method that
allows particles to change resolution on the fly. By introduc-

Figure 2. Total energy of a two-atom molecule that moves
from the AR via a HR into the CGR (where the bond is 10×
weaker) and back. Black lines: molecule orientation perpen-
dicular to its velocity. Red lines: parallel orientation (see the
yellow inset). Green line: potential energy during the parallel
orientation trajectory. The inset shows the superiority of the
trapezoidal Riemann’s sum (eq 11).

∆∆WinterCG)

∑
t

∑
R∈HR

â∈AA,HR

1

2[Φt(r )
dst(qR)

dqR

+ Φt-1(r )
dst-1(qR)

dqR
]∆qR

sR > sâ (11)

Figure 3. Total energies (shifted for comparison) of hybrid
MD simulations of 8000 methane molecules, using different
time steps and healing region widths. The energy is well-
conserved using a time step of 2 fs and a HR width of 4 Å.
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ing auxiliary terms to the kinetic and potential energy
expressions, we recover the total energy as a conserved
quantity, even when the total number of degrees of freedom
changes during the simulation. These auxiliary energy terms
should be seen as the inherent energy of the CG particles
that is “integrated out” upon the dimensional reduction and
becomes explicit again when switching back to the atomistic
representation. Using a reversible RESPA multistep integra-
tion scheme, our method has the benefits of being truly
multiscale in both time and space. Conserving energy is
particularly important in hybrid MD, as it is the fundamental
property used to evaluate the choice of the subtime steps
and the size of the intermediate healing region with respect
to the quality of the simulation. In particular for hybrid MD
simulations of more complex systems than methane, in which
case it is expected that a wider healing region is required,
we now have the machinery in place to assess the quality of
hybrid MD.

Supporting Information Available: Technical details
and analysis of the hybrid MD simulation of methane,
including a short illustrative mpeg movie. This material is
available free of charge via the Internet at http:///pubs.acs.org.
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