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ENERGY CONSISTENT DISCONTINUOUS GALERKIN

METHODS FOR THE NAVIER–STOKES–KORTEWEG SYSTEM

JAN GIESSELMANN, CHARALAMBOS MAKRIDAKIS, AND TRISTAN PRYER

Abstract. We design consistent discontinuous Galerkin finite element schemes
for the approximation of the Euler–Korteweg and the Navier–Stokes–Korteweg
systems. We show that the scheme for the Euler–Korteweg system is energy
and mass conservative and that the scheme for the Navier–Stokes–Korteweg
system is mass conservative and monotonically energy dissipative. In this case
the dissipation is isolated to viscous effects, that is, there is no numerical dis-
sipation. In this sense the methods are consistent with the energy dissipation
of the continuous PDE systems.

1. Introduction

In this work we propose a new class of finite element methods for the Navier–
Stokes–Korteweg system which are by design consistent with the energy dissipation
structure of the problem. The methods are of arbitrary high order of accuracy and
provide physically relevant approximations free of numerical artifacts. It seems that
these are the first methods in the literature to enjoy these properties.

Liquid vapour flow occurs in many technical applications and natural phenom-
ena. A particularly interesting and challenging case is when the fluid undergoes
phase transition, i.e., there is mass transfer between the phases, which is driven
by thermodynamics. The applications of these phenomena are extremely varied,
for example, it is applicable to modelling the fuel injection system in modern car
engines and also to the study of cloud formation. The modelling of these phenom-
ena can be traced back to [vdW,Kor01], however, there remain open questions, for
example, what is the correct model for the given application at hand.

The compressible flow of a single substance containing both a liquid and vapour
phase undergoing a phase transition can be modelled by different techniques. One
widely used approach for the treatment of these problems, which emerged in the
last few decades (see [AMW98] and references therein) is the so-called diffuse in-
terface approach. In this philosophy the phases are separated by a (thin) interfacial
layer across which the fields vary smoothly. The benefit of this approach is that
there is only one set of PDEs solved on the whole domain whose solution already
includes the position of the interfacial layer. However, these models must include
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(a) Pressure function (b) Double well potential

Figure 1. The relation between the pressure function and the
double well potential.

a parameter distinguishing when we are in one phase or another. In most diffuse
interface models this is a more or less arbitrary indicator function based on the
mass or volume fraction of one of the constituents.

In this contribution we will consider the isothermal Navier–Stokes–Korteweg sys-
tem which is a diffuse interface model, but here the mass density serves as a phase
indicator, it originates in the work of Korteweg [Kor01] and van der Walls [vdW]
and was derived in modern terminology in [DS85, TN92, JLCD01]. This model
includes surface tension effects by a third order term in the momentum balance
which corresponds to a non-local (gradient) contribution in the energy functional.
Another feature of compressible diffuse interface models is a non-monotone con-
stitutive relation for the pressure. This corresponds to a non-convex local part of
the energy; see equation (2.7). As can be seen from Figure 1 the phases of the
problem (liquid/vapour) are the corresponding regions where the pressure function
is monotonically increasing.

The Korteweg type third order term together with the non-monotonicity of the
pressure function cause several issues in the numerical treatment of this problem. In
previous numerical studies [JTB02,Die07,BP] it has been observed that “classical”
explicit-in-time finite volume (FV) and discontinuous Galerkin (DG) schemes which
use standard fluxes used in the computational conservation laws introduce several
numerical artifacts.

The first artifact is non-monotonicity of the energy. The Euler–Korteweg model
is energy conservative over time whereas the Navier–Stokes–Korteweg model is
monotonically energy dissipative. In the Navier–Stokes–Korteweg model all the
dissipation is due to viscous effects (see Lemma 2.3). The classical FV and DG
methods applied to the Navier–Stokes–Korteweg system lead to a non-monotone
behaviour of the energy. This is mainly due to the fact that these “classical”
schemes introduce standard diffusion in the mass conservation equation as a sta-
bilising mechanism. While for convex energies standard diffusion, in fact, leads
to energy dissipation, it may lead to an increase in energy for multiphase flow
[Die07,DGR]. In fact, standard diffusion is also present in the finite element method
proposed in [BP].
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The second artifact is so-called parasitic currents, i.e., the schemes are not well
balanced, as they do not preserve the correct equilibria. Parasitic currents occur
when equilibrium is approached and the numerical velocity field does not vanish
uniformly, but in the interfacial layer large velocities whose magnitude is dependent
on the gridsize and inversely dependent on the width of interfacial layer appear
[Die07, §5]. As the interfacial layer is extremely thin this effect cannot be neglected
in practical computations.

Both the non-monotone behaviour of the Navier–Stokes–Korteweg energy and
the parasitic currents are due to numerical regularisation terms which are not
adapted to the variational structure of the problem; see [DGR] for a study on
regularisation terms taking into account the underlying variational structure of
the problem. For previous works on scalar dispersive equations by discontinuous
Galerkin methods we refer to [CS08,BCKX11,XS11].

The key target in the work at hand is to consider a high-order DG discretisation
of the problem which aims at preserving the energy dissipation inequality satisfied
by the original problem and avoiding the introduction of any artificial diffusion
terms. By achieving this goal we can treat the case where the system preserves the
energy exactly. In addition, we can address the case where the system has natural
dissipation and the energy is diminishing. Our schemes are therefore energy con-
sistent in the sense that they are consistent with the energy dissipation structure
of the Navier–Stokes–Korteweg system. The resulting schemes are free from the
above mentioned artifacts of other approximating methods in the literature and are
successful in computing the physically relevant solution. It is to be noted that our
approach does not hinge on an adaptation of “entropy conservative schemes” devel-
oped for conservation laws, [Tad03]. The non-monotone pressure function makes a
direct application of this approach unfeasible in our case. Conservative DG schemes
for the scalar generalized KdV equation were suggested recently in [BCKX11]. To
achieve our goals we follow a constructive step-by-step approach. Motivated by
the proof of energy conservation at the continuous level we introduce a new mixed
formulation for the Navier–Stokes–Korteweg system. This mixed formulation will
be the basis of our discrete schemes. Discretisation in space is achieved by employ-
ing a DG approach with generic discrete fluxes. Then we specifically identify the
properties and thus the fluxes which yield energy consistent schemes.

We then consider a Crank–Nicolson type time discretisation and identify a pre-
cise time discrete method which is energy consistent. By combining the ideas of
space and time discretization we obtain the fully discrete schemes with the desired
properties.

We also note that higher order temporal discretisations are possible by appro-
priately modifying Gauss–Legendre Runge–Kutta methods, for example. Although
the framework presented herein can be used in deriving such methods, we shall not
insist on this issue.

As a further application we consider the case when the Euler–Korteweg system
has discontinuous initial conditions. In this case an energy consistent method may
be inappropriate due to the propagation of oscillations. We give an example of a
choice of fluxes which will naturally dissipate a small amount of energy.

In this work we will not present an error analysis for the scheme we derive. To the
authors knowledge there is no error analysis for discontinuous Galerkin schemes for
such dissipative-dispersive systems in multidimensions; for one-dimensional, scalar
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results see [CS08,BCKX11]. The derivation of such an error analysis is, thus, an
open problem. We do, however, numerically benchmark the approximation against
a known solution of the Euler–Korteweg system, showing optimal convergence in
L∞ (0, T ; L2(Ω)) for the approximations of both the density and velocity.

The structure of the paper is as follows: In §2 we introduce the Navier–Stokes–
Korteweg model problem as well as some of its conservative properties. We give the
mixed formulation and necessary notation which will be used throughout the paper.
In addition we describe the mixed formulation in the broken Sobolev framework
necessary for the construction of the DG scheme. In §3 we detail the construction
of the energy consistent DG scheme initially in the spatially semidiscrete case. We
then move on to the temporal semidiscrete case in §4 and combine the results to
obtain an energy consistent fully discrete scheme in §5. In §6 we perform various
numerical experiments to test the convergence, conservativity and computational
properties of the scheme.

2. Model problem, mixed formulation and discretisation

In this section we formulate the model problem, fix notation and give some basic
assumptions. Let Ω ⊂ Rd, with d = 1, 2, 3 be a bounded domain. We then begin
by introducing the Sobolev spaces [Cia78,Eva98]

(2.1) Hk(Ω) := {φ ∈ L2(Ω) : Dαφ ∈ L2(Ω), for |α| ≤ k} ,
which are equipped with norms and semi-norms

‖u‖2k := ‖u‖2Hk(Ω) =
∑

|α|≤k

‖Dαu‖2L2(Ω) ,(2.2)

|u|2k := |u|2Hk(Ω) =
∑

|α|=k

‖Dαu‖2L2(Ω) ,(2.3)

respectively, where α = {α1, ..., αd} is a multi-index, |α| = ∑d
i=1 αi and derivatives

Dα are understood in a weak sense. In addition, let
(2.4)

H1
0 :=

{

φ ∈ H1(Ω) : φ|∂Ω = 0
}

and H1
n
(Ω) :=

{

φ ∈
[

H1(Ω)
]d

: (φ|∂Ω)⊺n = 0
}

,

where n denotes the outward pointing normal to ∂Ω.
We use the convention that for a multivariate function, u, the quantity ∇u is a

column vector consisting of first-order partial derivatives with respect to the spatial
coordinates. The divergence operator, div , acts on a vector-valued multivariate
function and Δu := div (∇u) is the generalised Laplacian operator. We also note
that when the Laplacian acts on a vector-valued multivariate function, it is meant
componentwise. Moreover, for a vector field v, we denote its Jacobian by Dv. We
also make use of the following notation for time dependant Sobolev spaces:

(2.5) L2(0, T ; H
k(Ω)) :=

®

u : [0, T ] → Hk(Ω) :

∫ T

0

‖u(t)‖2k dt < ∞
´

.

2.1. Model problem. Consider a fluid in the domain Ω with density ρ and velocity
v. The Navier–Stokes–Korteweg system is made up of the balances of mass and
momentum of said fluid, that is,

∂tρ+ div (ρv) = 0,

∂t(ρv) + div (ρv ⊗ v) +∇p(ρ) = µΔv + γρ∇Δρ,
in Ω× (0, T ),(2.6)
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where p is a non–monotone pressure function, µ is a viscosity coefficient and γ a
capillarity coefficient. The pressure function p is linked to a double well-potential
W = W (ρ) via the relation (Figure 1)

(2.7) p(ρ) = ρW ′(ρ)−W (ρ).

Let n be the outward pointing normal to ∂Ω, suppose the system (2.6) is given
with boundary conditions

(2.8) v = 0 and (∇ρ)⊺n = 0 on ∂Ω× (0, T )

and initial conditions

(2.9) ρ(·, 0) = ρ0, v(·, 0) = v0 in Ω

for given functions ρ0 ∈ H1(Ω) and v0 ∈ (H1(Ω))d such that W (ρ0) ∈ L1(Ω). The
system (2.6) conserves mass as well as satisfying a momentum balance together
with an energy dissipation equality, i.e.,

dt

Å∫

Ω

ρ dx

ã

= 0,(2.10)

dt

Å∫

Ω

ρv dx

ã

=

∫

∂Ω

(−p(ρ) + γρΔρ+ µ(Dv))n ds,(2.11)

dt

Å∫

Ω

W (ρ) +
1

2
ρ |v|2 + γ

2
|∇ρ|2 dx

ã

= −µ

∫

Ω

|Dv|2 dx,(2.12)

respectively. The energy dissipation equality is only valid for smooth solutions. In
case the system permits shocks, they would trigger additional energy dissipation
and (2.12) would have to be replaced by an inequality. While the first two equalities
follow by integrating the mass and momentum balance (2.6). The derivation of the
energy dissipation equality is a little bit more involved. For completeness the result
is formulated as Lemma 2.3. Moreover, the proof of Lemma 2.3 serves as a guideline
for the construction of energy consistent discrete schemes.

2.2. Assumption (finite Helmholtz energy). From here on we will assume that for
a given ρ we have that W (ρ) ∈ L1(0, T ; L1(Ω)).

2.3. Lemma (energy dissipation equality). For every smooth solution (ρ,v) ∈
L2(0, T ; H

3(Ω))×L2(0, T ; H
2(Ω))d of (2.6) such that (∂tρ, ∂tv) ∈ L2(0, T ; L2(Ω))×

L2(0, T ; L2(Ω))
d which satisfies the boundary conditions (2.8) we have

(2.13) dt

Å∫

Ω

W (ρ) +
1

2
ρ |v|2 + γ

2
|∇ρ|2 dx

ã

= −µ

∫

Ω

|Dv|2 dx.

Proof. Let us first note that the second equation of (2.6) can be reformulated as

(2.14) ρ∂tv + div(ρv ⊗ v)− div(ρv)v + ρ∇W ′(ρ)− µΔv − γρ∇Δρ = 0.

Multiplying the first equation of (2.6) by W ′(ρ) + 1
2 |v|

2 − γΔρ we see that

0 = W ′(ρ)∂tρ+W ′(ρ) div (ρv) +
1

2
|v|2 ∂tρ+

1

2
|v|2 div (ρv)

− γΔρ∂tρ− γΔρ div (ρv) .
(2.15)
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Then by multiplying (2.14) by v and summing together with (2.15) we obtain

0 = W ′(ρ)∂tρ+
1

2
∂tρ |v|2 − γΔρ∂tρ+W ′(ρ) div(ρv)− 1

2
div(ρv) |v|2

− γ div(ρv)Δρ+ ρv⊺∂tv + v⊺ div(ρv ⊗ v) + ρv⊺∇W ′(ρ)

− µv⊺Δv − γρv⊺∇Δρ.

(2.16)

We integrate (2.16) over Ω and by Green’s formula we have

0 =

∫

Ω

W ′(ρ)∂tρ+
1

2
∂tρ |v|2 + ρv⊺∂tv +

γ

2
∂t |∇ρ|2 + µ |Dv|2 dx

+

∫

∂Ω

ÅÅ

−γ∂tρ∇ρ+
1

2
ρv |v|2 − γρvΔρ+ ρvW ′(ρ)

ã⊺

− µv⊺Dv

ã

n ds.

(2.17)

The boundary integral in (2.17) vanishes because of the boundary conditions. �

2.4. Remark (stable steady states). The energy dissipation equality gives rise to the
fact that the (stable) steady states of (2.6) are minimizers of the energy functional

(2.18) E[ρ,v] :=

∫

Ω

W (ρ) +
1

2
ρ |v|2 + γ

2
|∇ρ|2 dx,

under the constraint

(2.19)

∫

Ω

ρ dx = m,

for some given m > 0 and therefore satisfy the Euler–Lagrange equations

v = 0,(2.20)

W ′(ρ)− γΔρ = λ,(2.21)

where λ is the Lagrange multiplier associated with the mass conservation contraint
(2.19).

Note that (2.21) is equivalent to

0 = ∇ (W ′(ρ)− γΔρ)

= ∇p(ρ)− γρ∇Δρ
(2.22)

using the relation

(2.23) ∇p(ρ) = ρ∇W ′(ρ),

which is readily derived from (2.7).

2.5. Classical solvability of the problem. The well–posedness of the Navier–
Stokes–Korteweg system and similar systems was considered by several authors
[BGDDJ07,BDL03,DD01,Fei02,HL96,Kot08]. For completeness we will state some
results.

2.6. Theorem (existence of a solution to the Euler–Korteweg system [BGDDJ07]).
Let s > d

2 + 1 and

(2.24) Hs := Hs+1(Rd)×Hs(Rd,Rd).

Suppose the initial data (ρ0,v0) ∈ (ρ(0),v(0)) +Hs where ρ,v is a special solution
such that ρ is bounded away from zero and the Hessian of ρ, D∇ρ, as well as

the Jacobian of v, Dv are both C([0, T ], Hs+3(Rd,Rd×d)) for some T > 0. Then the
Euler–Korteweg system admits a unique solution (ρ,v) ∈ (ρ,v)+C1([0, T ), Hs−2)∩
C([0, T ), Hs) satisfying the initial data (ρ0,v0).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ENERGY CONSISTENT DG METHODS FOR THE NSK SYSTEM 2077

2.7. Theorem (existence of a solution to the Navier–Stokes–Korteweg system
[DD01]). Let Bs = Bs

2,1(R
d) denote the homogeneous Besov space. Let ρ̄ > 0

be a reference density such that p′(ρ̄) > 0. Suppose also that the initial data ρ0,v0

satisfies ρ0 − ρ̄ ∈ Bd/2, ρ0 ≥ c > 0 and v0 ∈ (Bd/2−1)d.
Then there exists a T > 0 such that the Navier–Stokes–Korteweg system has a

unique solution (ρ,v) with initial data ρ0,v0 such that ρ − ρ̄ ∈ C([0, T ), Bd/2) ∩
L1([0, T ), Bd/2+2) and v ∈ C([0, T ), (Bd/2−1))d ∩ L1([0, T ), (Bd/2+1))d.

2.8. Remark. Theorems 2.6 and 2.7 motivate us to construct numerical schemes
which are adapted to the smooth situation. In particular, enforcing the energy
dissipation equality proven in Lemma 2.3.

2.9. Mixed formulation. To mimic the proof of Lemma 2.3 at the discrete level
it will be essential to have at our disposal a numerical formulation in which the
velocity, v, and the variation of the energy with respect to ρ, which depend non-
linearly on the original variables ρ and ρv, are permitted as test functions. Indeed,
this is our main motivation to reformulate the Navier–Stokes–Korteweg system (2.6)
as a mixed system of PDEs by the introduction of two auxilliary variables, τ and q,
and using the relation of the pressure function and the double well potential (2.23).

The mixed formulation is then to seek (ρ,v, τ, q) such that

∂tρ+ div (ρv) = 0,(2.25)

ρ∂tv + div (ρv ⊗ v)− div (ρv) v + ρ∇τ − 1

2
ρ∇ |v|2 − µΔv = 0,(2.26)

τ −W ′(ρ) + γ div (q)− 1

2
|v|2 = 0,(2.27)

q −∇ρ = 0,(2.28)

which is coupled with the boundary conditions

(2.29) v = 0 and q⊺n = 0 on ∂Ω× (0, T )

and the initial conditions (2.9).

2.10. Remark (non-conservative momentum formulation). Notice that the formula-
tion (2.26) is not written in conservative form for the momentum. In view of this
fact it becomes challenging to design discretisations which conserve the momentum,
as well. This is discussed in detail in Proposition 3.11.

Our use of a non-conservative discretisation is due to the following: In the deriva-
tion of the energy dissipation Lemma 2.3 we tacitly used (2.23). This requires the
chain rule, which is clearly not available to us at the discrete level unless we use a
non-conservative discretisation of the pressure gradient. It is well known for hyper-
bolic conservation laws that non-conservative schemes may converge to an incorrect
solution in the presence of shocks [HL94]. Due to the energy dissipation equality
given in Lemma 2.3, given smooth initial data, solutions should have sufficient reg-
ularity, specifically ρ ∈ L∞

(

[0, T ],H1(Ω)
)

, such that shocks do not form. Indeed,
in the numerical experiments given in §6 we observe that initial discontinuities are
immediately smoothed out in the case µ > 0. The case µ = 0 and non-smooth
initial data will be discussed in the sequel (see Remark 3.9).
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2.11. Remark (alternate notation). We note that the second and third term on the
left-hand side of (2.26) can be rewritten as

(2.30) div (ρv ⊗ v)− div (ρv)v = ρ (v⊺∇)v,

which is the standard notation in the incompressible scenario.

2.12. Discretisation. Let T be a conforming, shape regular triangulation of Ω,
namely, T is a finite family of sets such that

(1) K ∈ T implies K is an open simplex (segment for d = 1, triangle for d = 2,
tetrahedron for d = 3),

(2) for any K, J ∈ T we have that K ∩ J is a full subsimplex (i.e., it is either
∅, a vertex, an edge, a face, or the whole of K and J) of both K and J ,
and

(3)
⋃

K∈T K = Ω.

We use the convention where h : Ω → R denotes the meshsize function of T , i.e.,

(2.31) h(x) := max
K∋x

hK ,

where hK is the diameter of an element K. We let E be the skeleton (set of common
interfaces) of the triangulation T and say e ∈ E if e is on the interior of Ω and
e ∈ ∂Ω if e lies on the boundary ∂Ω.

2.13. Definition (broken Sobolev spaces, trace spaces). We introduce the broken
Sobolev space

(2.32) Hk(T ) :=
¶

φ : φ|K ∈ Hk(K), for each K ∈ T

©

,

similarly for H1
0(T ) and H1

n
(T ).

We also make use of functions defined in these broken spaces restricted to the
skeleton of the triagulation. This requires an appropriate trace space:

(2.33) T (E ) :=
∏

K∈T

L2(∂K) ⊂
∏

K∈T

H
1
2 (K).

Let Pp(T ) denote the space of piecewise polynomials of degree p over the trian-
gulation T . We then introduce the finite element spaces,

V := DG(T , p) = P
p(T ),(2.34)

◦

V := V ∩H1
0(T ),(2.35)

n

V := V
d ∩H1

n
(T ),(2.36)

to be the usual spaces of (discontinuous) piecewise polynomial functions. For sim-
plicity we will assume that V is constant in time.

2.14. Definition (jumps and averages). We may define average and jump operators

over T (E ) for arbitrary scalar, v ∈ T (E ), and vector-valued functions, v ∈ T (E )d.

(2.37)
{{ · }} : T (E ) → L2(E ),

v 
→ 1
2 (v|K1

+ v|K2
) ,

(2.38)
{{ · }} : (T (E ))

d → (L2(E ))
d
,

v 
→ 1
2 (v|K1

+ v|K2
) ,
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(2.39)
�·� : (T (E )) → (L2(E ))d ,

v 
→ v|K1
nK1

+ v|K2
nK2

,

(2.40)
�·� : (T (E ))

d → (L2(E )) ,
v 
→ (v|K1

)
⊺
nK1

+ (v|K2
)
⊺
nK2

,

(2.41)
�·�⊗ : (T (E ∪ ∂Ω))d → (L2(E ))d×d ,

v 
→ v|K1
⊗ nK1

+ v|K2
⊗ nK2

,

where nKi
denotes the outward pointing normal to Ki. Note that on the boundary

of the domain ∂Ω the jump and average operators are defined as

�v�
∣

∣

∣

∂Ω
:= vn �v�

∣

∣

∣

∂Ω
:= v⊺n,(2.42)

{{ v }}
∣

∣

∣

∂Ω
:= v {{ v }}

∣

∣

∣

∂Ω
:= v.(2.43)

2.15. Elementwise formulation and discrete fluxes. As a next step towards
the construction of a numerical scheme we give the elementwise variational formu-
lation to the problem in mixed form (2.25)–(2.28). It is required to find (ρ,v) ∈
L2(0, T ; H

1(T ))×
(

L2(0, T ; H
1
0(T )

)d
with (∂tρ, ∂tv) ∈ L2(0, T ; L2(T ))× (L2(0, T ;

L2(T ))d and (τ, q) ∈ L2(0, T ; H
1(T ))×L2(0, T ; H

1
n
(T )) such thatW ′(ρ) ∈ L2(0, T ;

L2(T )) and

0 =

∫

Ω

(∂tρ+ div (ρv))ψ dx+

∫

E

F1 (ρ,v, τ, q, ψ) ds ∀ ψ ∈ H1(T ),

0 =

∫

Ω

Å

ρ∂tv + div (ρv ⊗ v)− div (ρv) v + ρ∇τ − 1

2
ρ∇ |v|2

ã⊺

χ dx

+

∫

E

F2 (ρ,v, τ, q,χ) ds+ µB(v,χ) ∀ χ ∈
(

H1
0(T )

)d
,

0 =

∫

Ω

Å

τ −W ′(ρ) + γ div (q)− 1

2
|v|2
ã

ξ dx

+

∫

E

F3 (ρ,v, τ, q, ξ) ds ∀ ξ ∈ H1(T ),

0 =

∫

Ω

(q −∇ρ)
⊺
ζ dx+

∫

E

F4 (ρ,v, τ, q, ζ) ds ∀ ζ ∈ H1
n
(T ),

(2.44)

where

F1, F3 : H1(T )×H1
0(T )d ×H1(T )× H1

n
(T )×H1(T ) → L2(E ),

F2 : H1(T )×H1
0(T )d ×H1(T )× H1

n
(T )×H1

0(T )d → L2(E ),

F4 : H1(T )×H1
0(T )d ×H1(T )× H1

n
(T )×H1

n
(T ) → L2(E ),

(2.45)

are appropriate choices of elementwise fluxes to be chosen in the sequel to suit
our purposes; the operators div and ∇ are understood henceforth to be defined

elementwise and B :
(

H1
0(T )

)d×
(

H1
0(T )

)d → R is a bilinear form, corresponding to
a weak formulation of the Laplacian. We will also assume that the fluxes F1, . . . , F4

only depend on the traces of their arguments and are linear in the test functions.
We would like to mention that the spaces for the variational formulation are chosen
such that all integrals in (2.44) are well defined. We do not claim that there is
a well-posedness analysis for (2.44) with the given spaces; (2.44) serves only as a
basis to define the spatial discrete DG scheme in the next section.
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3. Development of energy consistent numerical methods:
the spatially discrete case

In this section we will detail the methodology behind the construction of the
energy consistent finite element scheme. We present our main results which show
the conditions a generic scheme applied to the variational formulation (2.44) with
no diffusion (i.e., µ = 0) is mass and energy conservative. If a scheme conserves
mass for µ = 0 this does not change for µ �= 0, as the mass conservation equation is
not affected by a reasonable discretization of the viscosity. Moreover, if a scheme
conserves energy for µ = 0, for µ �= 0 all energy dissipation is due to viscosity.
For simplicity we first detail the calculations for the spatially discrete case, then
construct a temporally discrete scheme. We also give a condition when a scheme
falling under our framework can also conserve momentum.

3.1. Spatially discrete scheme. Throughout the calculations in this section we
will regularly refer to the following proposition.

3.2. Proposition (elementwise integration). Let

(3.1) Hdiv(T ) :=
{

p ∈ (L2(T ))d : div p ∈ L2(T )
}

.

Suppose p ∈ Hdiv(T ) and φ ∈ H1(T ), then

∑

K∈T

∫

K

div (p)φ dx =
∑

K∈T

Å

−
∫

K

p⊺∇φ dx+

∫

∂K

φp⊺nK ds

ã

.(3.2)

In particular, we have p ∈ T (E )
d
and φ ∈ T (E ), and the following identity holds:

(3.3)
∑

K∈T

∫

∂K

φp⊺nK ds =

∫

E

�p� {{ φ }} ds+

∫

E∪∂Ω

�φ�⊺ {{ p }} ds =

∫

E∪∂Ω

�pφ� ds.

3.3. General numerical scheme. A generic spatially discrete DG formulation
to the problem in mixed form (2.25)–(2.28) is to find ρh, τh : [0, T ] → V and

vh : [0, T ] →
◦

Vd and qh : [0, T ] →
n

V such that

0 =

∫

Ω

(∂tρh + div (ρhvh))Ψdx+

∫

E

F1 (ρh,vh, τh, qh,Ψ) ds ∀Ψ ∈ V,

0 =

∫

Ω

Å

ρh∂tvh + div (ρhvh ⊗ vh)− div (ρhvh)vh + ρh∇τh − 1

2
ρh∇ |vh|2

ã⊺

X dx

+

∫

E

F2 (ρh,vh, τh, qh,X) ds+ µBh(vh,X) ∀X ∈
◦

V
d,

0 =

∫

Ω

Å

τh −W ′(ρh) + γ div (qh)−
1

2
|vh|2

ã

Ξdx

+

∫

E

F3 (ρh,vh, τh, qh,Ξ) ds ∀ Ξ ∈ V,

0 =

∫

Ω

(qh −∇ρh)
⊺
Z dx+

∫

E

F4 (ρh,vh, τh, qh,Z) ds ∀ Z ∈
n

V,

(3.4)

where Bh :
◦

Vd ×
◦

Vd → R is a discretization of B.
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3.4. Consistency and conservation. Now we will give abstract properties of
the fluxes which determine whether the scheme is consistent and conserves mass,
momentum or energy.

3.5. Definition (consistency). A generic scheme having the form (3.4) is said to
be consistent provided

(3.5) Fi(ρ,v, τ, q, ·) ≡ 0 for i = 1, . . . , 4

for all smooth functions ρ, τ ∈ L2(0, T ; H
1(Ω)) and v, q ∈

[

L2(0, T ; H
1(Ω))

]d
.

3.6. Theorem (conservation). For µ = 0 a generic scheme of the form (3.4) con-
serves:

(1) Mass, that is,

(3.6) dt

Å∫

Ω

ρh dx

ã

= 0

if and only if

(3.7)

∫

E

F1(ρh,vh, τh, qh, 1) ds = −
∫

E

�ρhvh� ds ∀ ρh, τh ∈ V,vh ∈
◦

V
d, qh ∈

n

V,

where 1 is the the constant element of H1(T ) which is 1 everywhere.
(2) Energy, that is,

(3.8) dt

Å∫

Ω

W (ρh) +
1

2
ρh |vh|2 +

γ

2
|qh|2 dx

ã

= 0

if and only if
∫

E

F1(ρh,vh, τh, qh, τh) + F2(ρh,vh, τh, qh,vh) + �ρhτhvh� ds = 0,

∫

E

F3(ρh,vh, τh, qh, ∂tρh)− γDtF4(ρh,vh, τh, qh, qh) + γ �∂tρhqh� ds = 0,

(3.9)

for all ρh, τh : [0, T ] → V,vh : [0, T ] →
◦

Vd and qh : [0, T ] →
n

V. Note that
we use the notation DtF4(ρh,vh, τh, qh,Z) for the time derivative since

ρh,vh, τh, qh are time dependent but Z is independent of time, as
n

V is
independent of time.

3.7. Corollary (energy dissipation). Let Bh be a coercive discretisation of B, then
for µ > 0 a generic scheme of the form (3.4) conserves mass, if and only if (3.7)
is satisfied and it satisfies the energy dissipation equality

(3.10) dt

Å∫

Ω

W (ρh) +
1

2
ρh |vh|2 +

γ

2
|qh|2 dx

ã

= −µBh(vh,vh) ≤ 0

if and only if the following holds:
∫

E

F1(ρh,vh, τh, qh, τh) + F2(ρh,vh, τh, qh,vh) + �ρhτhvh� ds = 0,

∫

E

F3(ρh,vh, τh, qh, ∂tρh)− γDtF4(ρh,vh, τh, qh, qh) + γ �∂tρhqh� ds = 0.

(3.11)

We are now in a position to choose fluxes which give certain desired properties,
in this case, energy consistency and mass conservation.
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3.8. Corollary (consistency, conservation and dissipation). For µ = 0 the following
spatially discrete scheme

0 =

∫

Ω

(∂tρh + div (ρhvh))Ψdx−
∫

E

�ρhvh� {{ Ψ }} ds ∀Ψ ∈ V,

0 =

∫

Ω

Å

ρh∂tvh + div (ρhvh ⊗ vh)− div (ρhvh)vh + ρh∇τh − 1

2
ρh∇ |vh|2

ã⊺

X dx

−
∫

E

�τh�⊺ {{ ρhX }} ds+ µBh(vh,X) ∀X ∈
◦

V
d,

0 =

∫

Ω

Å

τh −W ′(ρh) + γ div (qh)−
1

2
|vh|2

ã

Ξdx

−
∫

E

γ �qh� {{ Ξ }} ds ∀ Ξ ∈ V,

0 =

∫

Ω

(qh −∇ρh)
⊺
Z dx+

∫

E

�ρh�⊺ {{ Z }} ds ∀ Z ∈
n

V,

(3.12)

is consistent and conserves mass (3.6) and energy (3.8).
Let Bh(u,w) be the symmetric interior penalty method for the componentwise

Laplacian given by
(3.13)

Bh(u,w) =

∫

Ω

Du:Dw dx−
∫

E∪∂Ω

{{ Dw }} :�u�⊗+ {{ Du }} :�w�⊗− σ

h
�u�⊗:�w�⊗ ds,

where : denotes the Frobenius inner product between two d×d matrices, i.e., X:Y :=
trace (X⊺Y ) and the average of a matrix is defined analogously to the average of
a vector, as in Definition 2.14. It is well known for large (enough) σ that this
is a coercive discretisation of the componentwise Laplacian. Thus, for µ > 0,
the numerical scheme (3.12) with (3.13) is consistent, conserves mass (3.6) and
dissipates energy (3.10).

Proof of Theorem 3.6. Let us first consider the proof of conservation of mass. By
using Ψ ≡ 1 as a test function in (3.4)1 we want to show

0 = dt

Å∫

Ω

ρh dx

ã

=

∫

Ω

∂tρh dx = −
∫

Ω

div(ρhvh) dx−
∫

E

F1(ρh,vh, τh, qh, 1) ds

= −
∫

E

�ρhvh� {{ 1 }} dx−
∫

E

F1(ρh,vh, τh, qh, 1) ds,

(3.14)

by Proposition 3.2 with p = ρhvh and φ = 1 and noting vh = 0 on ∂Ω. Hence the
scheme conserves mass if the condition (3.7) is true.

Let us now turn to the conservation of energy. Define

(3.15) E(ρh,vh, qh) :=

∫

Ω

W (ρh) +
1

2
ρh |vh|2 +

γ

2
|qh|2 dx.

Again we want to show that

(3.16) 0 = dtE(ρh,vh, qh).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ENERGY CONSISTENT DG METHODS FOR THE NSK SYSTEM 2083

Explicitly computing the time derivative

dtE(ρh,vh, qh) =

∫

Ω

W ′(ρh)∂tρh +
1

2
∂tρh |vh|2 + ρh(vh)

⊺∂tvh + γ(qh)
⊺∂tqh dx.

(3.17)

In view of (3.4)4 and Proposition 3.2 we see that

dtE(ρh,vh, qh) =

∫

Ω

W ′(ρh)∂tρh +
1

2
∂tρh |vh|2 + ρh(vh)

⊺∂tvh + γ(∇∂tρh)
⊺
qh dx,

− γ

∫

E

DtF4(ρh,vh, τh, qh, qh) ds,

=

∫

Ω

W ′(ρh)∂tρ+
1

2
∂tρh |vh|2 + ρh(vh)

⊺∂tvh − γ(∂tρh)
⊺ div qh dx

− γ

∫

E

DtF4(ρh,vh, τh, qh, qh)− �(∂tρh)qh� ds,

(3.18)

as qh
⊺n = 0 on ∂Ω. Making use of (3.4)2 and (3.4)3 we see that

dtE(ρh,vh, qh) =

∫

Ω

τh∂tρh − vh
⊺ div(ρhvh ⊗ vh) + div(ρhvh) |vh|2 − ρhvh

⊺∇τh

+
1

2
ρhvh

⊺∇
Ä

|vh|2
ä

dx

−
∫

E

γDtF4(ρh,vh, τh, qh, qh)− γ �(∂tρh)qh�

− F3(ρh,vh, τh, qh, ∂tρh) + F2(ρh,vh, τh, qh,vh) ds.

(3.19)

Now by (3.4)1 and Proposition 3.2 we see, as vh ∈
◦

Vd, that

dtE(ρh,vh, qh) =

∫

Ω

− div(ρhvh)τh − vh
⊺ div(ρhvh ⊗ vh) + div(ρhvh) |vh|2

− ρhvh∇τh +
1

2
ρhvh∇

Ä

|vh|2
ä

dx

−
∫

E

γDtF4(ρh,vh, τh, qh, qh)− γ �(∂tρh)qh�

− F3(ρh,vh, τh, qh, ∂tρh) ds

−
∫

E

F2(ρh,vh, τh, qh,vh) + F1(ρh,vh, τh, qh, τh) ds

= −
∫

E

γDtF4(ρh,vh, τh, qh, qh)− γ �(∂tρh)qh�

− F3(ρh,vh, τh, qh, ∂tρh) ds

−
∫

E

F2(ρh,vh, τh, qh,vh) + F1(ρh,vh, τh, qh, τh)

+ �ρhτhvh� ds.

(3.20)
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Thus, an energy conserving scheme has to satisfy

0 =

∫

E

−γDtF4(ρh,vh, τh, qh, qh) + γ �(∂tρh)qh� + F3(ρh,vh, τh, qh, ∂tρh) ds

−
∫

E

F2(ρh,vh, τh, qh,vh) + F1(ρh,vh, τh, qh, τh) + �ρhτhvh� ds.

(3.21)

Note that when (3.21) holds, F4 cannot depend on vh, τh, qh. Furthermore, every
summand inDtF4 and F3 has to depend on ∂tρh. As the trace of ∂tρh is independent
of the traces of ρh,vh, τh, qh the quantities containing ∂tρh must cancel each other,
and the ones not containing ∂tρh must cancel each other. �

Proof of Corollary 3.7. The proof of conservation of mass is exactly the same as in
the proof of Theorem 3.6 because (3.4)1 does not depend on µ. For the dissipation
of energy the only difference to the proof of Theorem 3.6 is that, when (3.4)2 is
tested with X = vh an additional summand µBh(vh,vh) is created and this term
is not altered by the subsequent calculations. �

3.9. Remark (choice of fluxes). Theorem 3.6 and Corollary 3.7 give conditions on the
fluxes such that the numerical scheme will conserve (the case µ = 0) and dissipate
(the case µ > 0) energy, respectively.

Even for µ = 0 the energy estimate (Lemma 2.3) gives an a priori estimate for ρ
in L∞([0, T );H1(Ω)) provided the initial energy is finite. Thus, we do not expect
discontinuities to form (in ρ), given that the initial data are smooth. Of course,
for µ = 0 we cannot exclude discontinuities in v. However, in the case where the
initial data is discontinuous, for example, shocks may form. We may use the generic
framework developed in the Proof of Theorem 3.6 to design the fluxes such that in
the case of irregular initial conditions we may dissipate a small amount of energy,
i.e.,

(3.22) dt

Å∫

Ω

W (ρh) +
1

2
ρh |vh|2 +

γ

2
|qh|2 dx

ã

≤ 0.

The conditions on the fluxes necessary for (3.22) to hold are
∫

E

F1(ρh,vh, τh, qh, τh) + F2(ρh,vh, τh, qh,vh) + �ρhτhvh� ds ≥ 0,

∫

E

F3(ρh,vh, τh, qh, ∂tρh)− γDtF4(ρh,vh, τh, qh, qh) + γ �∂tρhqh� ds ≤ 0.

(3.23)

This may also prove useful as a stabilising mechanism for some temporal dis-
cretisations, e.g., in the case where explicit time stepping is considered.

3.10. Example. For α, β > 0 the choice of fluxes

F1(ρh,vh, τh, qh,Ψ) = − �ρhvh� {{ Ψ }} +α�τh�⊺ �Ψ� ,
F2(ρh,vh, τh, qh,X) = −�τh�⊺ {{ ρhX }} +β �vh� �X� ,
F3(ρh,vh, τh, qh,Ξ) = −γ �qh� {{ Ξ }} ,
F4(ρh,vh, τh, qh,Z) = �ρh�⊺ {{ Z }} ,

(3.24)

in (3.4) yields a scheme which is consistent, conserves mass and dissipates energy.
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Further to Remark 2.10 we will now show that it is very restrictive for schemes
given by (3.4) to be consistent, conserve momentum and energy and, in fact, we will
prove that the fluxes specified in Corollary 3.7 and Example 3.10 do not conserve
momentum.

3.11. Proposition (momentum conservation). Let ei be the ith coordinate vector
of R

d. A generic scheme of the form (3.4) is momentum conservative, i.e., satisfies

(3.25) dt

Å∫

Ω

ρhvh dx

ã

= 0

if and only if

0 = −
∫

E

F1(ρh,vh, τh, qh, ei
⊺vh) + F2(ρh,vh, τh, qh, ei)

+ F3(ρh,vh, τh, qh, ∂xi
ρh) + F4(ρh,vh, τh, qh,∇∂xi

ρh) ds

+

∫

E∪∂Ω

− �ρhτhei� +
�
Å

W (ρh) +
1

2
ρh |vh|2

ã

ei

�
− �ρhei⊺ (vh ⊗ vh)�

− γ �∂xi
ρhqh� + γ �ρh∇∂xi

ρh�

− γ

�
ρhΔρhei +

1

2
|∇ρh|2 ei − ∂xi

ρh∇ρh

�
ds.

(3.26)

The proof consists of calculating of the change of momentum in direction ei for
i = 1, . . . , d for the generic scheme (3.4).

3.12. Remark (restrictions for momentum conservation). Since the right-hand side
of (3.26) depends non-linearly on ρh, it is not expected that the jump terms involv-
ing ∇ρh and qh will necessarily cancel with the other terms appearing. Only in the
case F4 ≡ 0 will the ∇ρh and qh terms cancel each other. In this case (3.9)2 gives
us the condition that

(3.27) F3(ρh,vh, τh, qh,Ξ) = −γ �qhΞ�

which excludes consistency. In the event that F4 �≡ 0, the terms involving ∇ρh in
(3.26) would be required to cancel independently, yielding a condition on F3 which
again excludes consistency.

4. Development of energy consistent numerical methods:
the temporal discrete case

For the readers convenience, we will present an argument for designing the tem-
porally discrete scheme in the spatially continuous setting. To obtain a fully dis-
crete version the spatial and temporal discretisations have to be combined which is
straightforward as presented in (5.2) and Theorem 5.1.

We subdivide the time interval [0, T ] into a partition of N consecutive adjacent
subintervals whose endpoints are denoted t0 = 0 < t1 < · · · < tN = T . The
n-th timestep is defined as kn := tn+1 − tn. We will consistently use the short-

hand Fn(·) := F (·, tn) for a generic time function F . We also denote Fn+
1
2 :=

1
2

(

Fn + Fn+1
)

.
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4.1. Theorem (temporally discrete energy consistent scheme). Given initial con-
ditions ρ0,v0, τ0 and q0 the temporal semi-discrete scheme is: For n ∈ N, find
ρn+1,vn+1, τn+1 and qn+1 such that vn+1 = 0 and

(

qn+1
)⊺

n = 0 on ∂Ω and

0 =
ρn+1 − ρn

kn
+ div

Å

ρn+
1
2vn+

1
2

ã

,

0 = ρn+
1
2

Å

vn+1 − vn

kn

ã

+ div

Å

ρn+
1
2vn+

1
2 ⊗ vn+

1
2

ã

− div

Å

ρn+
1
2 vn+

1
2

ã

vn+
1
2

+ ρn+
1
2∇τn+

1
2 − 1

2
ρn+

1
2∇
Ç

∣

∣

∣

∣

vn+
1
2

∣

∣

∣

∣

2
å

− µΔvn+
1
2 ,

0 = τn+
1
2 − W (ρn+1)−W (ρn)

ρn+1 − ρn
+ γ div

Å

qn+
1
2

ã

− 1

4

Ä

∣

∣vn+1
∣

∣

2
+ |vn|2

ä

,

0 = qn+1 −∇ρn+1.

(4.1)

This scheme satisfies the following energy dissipation property for all 0 ≤ n ≤ N :
∫

Ω

W (ρn) +
1

2
ρn |vn|2 + γ

2
|qn|2 dx =

∫

Ω

W (ρ0) +
1

2
ρ0

∣

∣v0
∣

∣

2
+

γ

2

∣

∣q0
∣

∣

2
dx

− µ
n−1
∑

j=0

kj

∫

Ω

∣

∣

∣

∣

Dvj+
1
2

∣

∣

∣

∣

2

dx.

(4.2)

Proof. We proceed by multiplying (4.1)1 by τn+
1
2 and (4.1)2 by vn+

1
2 , we integrate

over the domain Ω and take the sum. We obtain

(4.3) 0 =

∫

Ω

I1 + I2 + I3 + I4 dx

with

I1 :=
ρn+1 − ρn

kn

Å

W (ρn+1)−W (ρn)

ρn+1 − ρn
− γ div

Å

qn+
1
2

ã

+
1

4

Ä

∣

∣vn+1
∣

∣

2
+ |vn|2

ä

ã

(4.4)

+ ρn+
1
2

Å

vn+
1
2

ã⊺ Å

vn+1 − vn

kn

ã

,

I2 := div

Å

ρn+
1
2vn+

1
2

ã

τn+
1
2 + ρn+

1
2

Å

vn+
1
2

ã⊺

∇τn+
1
2 ,

(4.5)

I3 :=

Å

vn+
1
2

ã⊺

div

Å

ρn+
1
2vn+

1
2 ⊗ vn+

1
2

ã

− div

Å

ρn+
1
2vn+

1
2

ã
∣

∣

∣

∣

vn+
1
2

∣

∣

∣

∣

2

(4.6)

− 1

2
ρn+

1
2

Å

v
n+

1
2

ã⊺

∇
Ç

∣

∣

∣

∣

v
n+

1
2

∣

∣

∣

∣

2
å

,

I4 := −µ

∫

Ω

Å

v
n+

1
2

ã⊺ Å

Δv
n+

1
2

ã

dx.

(4.7)
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One may readily check that

kn

∫

Ω

I1 dx =

∫

Ω

W (ρn+1) +
1

2
ρn+1

∣

∣vn+1
∣

∣

2
+

γ

2

∣

∣qn+1
∣

∣

2
dx

−
∫

Ω

W (ρn) +
1

2
ρn |vn|2 + γ

2
|qn|2 dx

− γ

∫

∂Ω

(ρn+1 − ρn)(qn+1 + qn)
⊺

n ds

=

∫

Ω

W (ρn+1) +
1

2
ρn+1

∣

∣vn+1
∣

∣

2
+

γ

2

∣

∣qn+1
∣

∣

2
dx

−
∫

Ω

W (ρn) +
1

2
ρn |vn|2 + γ

2
|qn|2 dx.

(4.8)

Moreover,

(4.9)

∫

Ω

I2 dx = div

Å

ρn+
1
2vn+

1
2 τn+

1
2

ã

dx =

∫

∂Ω

ρn+
1
2 τn+

1
2

Å

vn+
1
2

ã⊺

n ds = 0.

Furthermore, we see that I3 satisfies

I3 =
d

∑

i,j=1

∂xi

Ç

ρn+
1
2 v

n+
1
2

i v
n+

1
2

j

å

v
n+

1
2

j − ∂xi

Ç

ρn+
1
2 v

n+
1
2

i

åÇ

v
n+

1
2

j

å2

− 1

2
ρn+

1
2 v

n+
1
2

i ∂xi

(

Ç

v
n+

1
2

j

å2
)

= 0.

(4.10)

Finally, for I4 we find that
∫

Ω

I4 = µ

∫

Ω

∣

∣

∣

∣

Dvn+
1
2

∣

∣

∣

∣

2

dx− µ

∫

∂Ω

Å

vn+
1
2

ã⊺ Å

Dvn+
1
2

ã

n ds

= µ

∫

Ω

∣

∣

∣

∣

Dvn+
1
2

∣

∣

∣

∣

2

dx.

(4.11)

Inserting (4.8)–(4.10) into (4.3) yields

0 =

∫

Ω

W (ρn+1) +
1

2
ρn+1

∣

∣vn+1
∣

∣

2
+

γ

2

∣

∣qn+1
∣

∣

2
dx

−
∫

Ω

W (ρn) +
1

2
ρn |vn|2 + γ

2
|qn|2 dx+ µkn

∫

Ω

∣

∣

∣

∣

Dvn+
1
2

∣

∣

∣

∣

2

dx,

(4.12)

concluding the proof. �

5. Development of consistent numerical methods:
the fully discrete case

In this section we combine our spatial and temporal discretisations to provide
a fully discrete numerical method for the Euler–Korteweg and Navier–Stokes–
Korteweg systems.

Let PV : H1(T ) → V,P◦

V
: H1

0(T )d →
◦

V
d
and Pn

V
: H1

n
(T ) →

n

V be the L2

projection operators into V,
◦

V
d
and

n

V respectively. We combine the arguments given
in §3 and §4 to obtain a fully discrete scheme which, given

(5.1) ρ0h := PV ρ
0, v0

h := P◦

V
v0, τ0h := PV τ

0 and q0
h := Pn

V
q0,
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requires us to find a sequence of functions ρn+1
h , τn+1

h ∈ V,vn+1
h ∈

◦

V
d
and qn+1

h ∈
n

V

such that

0 =

∫

Ω

Ç

ρn+1
h − ρnh

kn
+ div

(

ρ
n+ 1

2

h v
n+ 1

2

h

)

å

Ψdx

+

∫

E

F1

(

ρ
n+ 1

2

h ,v
n+ 1

2

h , τ
n+ 1

2

h , q
n+ 1

2

h ,Ψ
)

ds ∀Ψ ∈ V,

0 =

∫

Ω

ÇÇ

ρ
n+ 1

2

h

vn+1
h − vn

h

kn

å

+ div
(

ρ
n+ 1

2

h v
n+ 1

2

h ⊗ v
n+ 1

2

h

)

å⊺

X dx

+

∫

Ω

Å

− div
(

ρ
n+ 1

2

h v
n+ 1

2

h

)

v
n+ 1

2

h + ρ
n+ 1

2

h ∇τ
n+ 1

2

h − 1

2
ρ
n+ 1

2

h ∇
∣

∣

∣v
n+ 1

2

h

∣

∣

∣

2
ã⊺

X dx

+

∫

E

F2

(

ρ
n+ 1

2

h ,v
n+ 1

2

h , τ
n+ 1

2

h , q
n+ 1

2

h ,X
)

ds+ µBh(v
n+ 1

2

h ,X) ∀X ∈
◦

V
d,

0 =

∫

Ω

Ç

τ
n+ 1

2

h − W (ρn+1
h )−W (ρnh)

ρn+1
h − ρnh

+ γ div
(

q
n+ 1

2

h

)

− 1

4

Ä

∣

∣vn+1
h

∣

∣

2
+ |vn

h|2
ä

å

Ξdx

+

∫

E

F3

(

ρ
n+ 1

2

h ,v
n+ 1

2

h , τ
n+ 1

2

h , q
n+ 1

2

h ,Ξ
)

ds ∀ Ξ ∈ V,

0 =

∫

Ω

(

qn+1
h −∇ρn+1

h

)⊺

Z dx+

∫

E

F4

(

ρn+1
h ,vn+1

h , τn+1
h , qn+1

h ,Z
)

ds ∀ Z ∈
n

V.

(5.2)

5.1. Theorem (fully discrete energy consistency). Under the assumptions on the
fluxes (3.7), (3.9) given in Theorem 3.6, the solution of the scheme (5.2) conserves
mass, i.e.,

∫

Ω

ρnh dx =

∫

Ω

ρ0h dx for 0 ≤ n ≤ N

and satisfies the energy dissipation equality

(5.3)

∫

Ω

W (ρn+1
h ) +

1

2
ρn+1
h

∣

∣vn+1
h

∣

∣

2
+

γ

2

∣

∣qn+1
h

∣

∣

2
dx

−
∫

Ω

W (ρnh) +
1

2
ρnh |vn

h|2 +
γ

2
|qn

h|2 dx = −µknBh(v
n+

1
2

h ,v
n+

1
2

h ).

Proof. The proof is merely combining the results of Theorem 3.6, Corollary 3.7 and
Theorem 4.1. �

6. Numerical experiments

In this section we conduct a series of numerical experiments aimed at testing
the robustness of the method. There are four experiments which investigate the
behaviour of the discrete energy for the Euler–Korteweg (§6.4) and the Navier–
Stokes–Korteweg systems (§6.5), benchmarking the algorithm against a travelling
wave solution of the Euler–Korteweg system (§6.6), observing that there are no
parasitic currents in long time simulations. Moreover, we conduct some simulations
for d = 2 (§6.7).
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In each of these experiments, except the second part of Test 1, we consider the
fully discrete scheme (5.2) with the numerical fluxes given in Corollary 3.8.

6.1. Implementation issues. The numerical experiments were conducted using
the DOLFIN interface for FEniCS [LW10]. The graphics were generated using
Gnuplot and ParaView .

In each of the numerical experiments we fix W to be the following quartic double
well potential

(6.1) W (ρ) =
1

4
(ρ− 1)2 (ρ− 2)2

with minima at ρ = 1 and ρ = 2.

6.2. Remark (the quotient of the double well). In the computational implementation

we did not use the difference quotient W (ρn+1)−W (ρn)
ρn+1−ρn appearing in (4.1) as it is ill-

defined for ρn+1 = ρn and badly conditioned when |ρn+1 − ρn| is small. Instead
we use a sufficiently high order approximation of this term. For (6.1) we use the
following Taylor expansion representation

(6.2)
W (ρn+1)−W (ρn)

ρn+1 − ρn
= W ′(ρn+

1
2 ) + 1

24W
′′′(ρn+

1
2 )

(

ρn+1 − ρn
)2

,

which is exact. We note that when W is not polynomial a sufficiently high-order
truncation of the Taylor expansion can be achieved such that the change in energy is
of high order with respect to the timestep. This allows the construction of a method
with arbitrarily small deviations of the energy with respect to the timestep.

6.3. Remark (numerical conservation). In each of the subsequent numerical exper-
iments we assemble the discrete system (5.2) as a non-linear system of equations.
The solution to the non-linear system was approximated by a Newton solver and
on each Newton step the linear system of equations was approximated using a
stabilised conjugate gradient solver with an incomplete LU preconditioner. Both
solvers were set to a tolerance of 10−10. Since the discretisations presented are
implicit methods, the notion of conservation is only true up to a certain tolerance.
In this case, the quantity will be conserved up to the tolerance of the solvers, 10−10.

6.4. Test 1: conservativity and dissipation for the Euler-Korteweg sys-

tem. In this case we take µ = 0. We are then studying the conservativity property
of the numerical method proposed for the Euler–Korteweg system in Corollary 3.8.
We take Ω = [0, 1] and consider an initial condition given by a step function

(6.3) ρ0(x) =

®

1.1 if x ≤ 0.5,

1.9 otherwise ,
v0 ≡ 0.

We take γ = 10−4, h = 10−4 and kn = k = 10−3 for each n. We consider the case
when V consists of piecewise linear discontinuous functions, i.e., p = 1. Figure 2
shows the energy and mass conservativity of the simulation. In addition, we study
the numerical scheme with the fluxes given in Example 3.10, chosen to dissipate a
small amount of energy due to the non-smoothness of the initial conditions. Figure 3
shows the energy dissipation and mass conservation.
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(a) Initial condition, t = 0 (b) t = 0.1

(c) t = 0.05 (d) t = 0.1

(e) t = 0.5 (f) Conservativity plot

Figure 2. 6.4. Test 1: Numerical experiment showing the conser-
vation of mass and energy for the numerical method proposed in
Corollary 3.8 for the Euler–Korteweg system (i.e., µ = 0). Due to
the energy conservativity the Euler–Korteweg simulation will never
achieve a steady state, the oscillations will continue to propagate.
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(A) t = 0.5 (B) Conservativity/consistency plot

Figure 3. 6.4. Test 1: Numerical experiment showing the conser-
vation of mass and dissipation of energy for the numerical method
with fluxes given in Example 3.10 for the Euler–Korteweg system
(i.e., µ = 0). Due to the non-smoothness of the initial conditions
we add a small amount of artificial viscocity, we take α = β = 10−5,
as such, the oscillations will no longer propagate. We only show
the solution plot at t = 0.5 here as they are very similar to those
of Figure 2.

6.5. Test 2: monotone energy dissipation for the Navier–Stokes–Korteweg

system. In this case we take µ > 0 and study the dissipation property for the full
Navier–Stokes–Korteweg system given by (5.2). We take Ω = [0, 1] and consider
the initial conditions (6.3). We fix γ = 10−4, h = 10−4 and kn = k = 10−3. We
consider the case when p = 1.

We test the effect of the ratio of viscocity to capillarity, i.e., µ/γ, on the dynamics
of the simulation. To that end we run the simulation for µ = 10−7 (Figure 4),
µ = 10−6 (Figure 5) and µ = 10−5 (Figure 6).

6.6. Test 3: benchmarking. In this test we look to benchmark the numerical
algorithm against a steady state solution of the Euler–Korteweg system on the
domain Ω = [−1, 1].

For the double well given by (6.1) a steady state solution to the Euler–Korteweg
system is given by

ρ(x, t) =
3

2
− 1

2
tanh

Å

x

2
√
2γ

ã

, v(x, t) ≡ 0 ∀ t(6.4)

with appropriate initial data. Note that on the boundary ∇ρ is not zero but
of negligable value (for small values of γ). Tables 1–3 detail three experiments
aimed at testing the convergence properties for the scheme for γ = 10−4 (Table 1),
γ = 10−5 (Table 2) and γ = 10−6 (Table 3), using piecewise linear discontinuous
elements (p = 1). In Table 4 we study convergence of the method for piecewise
constant elements (p = 0) and in Table 5 we look at piecewise quadratic (p = 2).
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(a) Initial condition, t = 0 (b) t = 0.01

(c) t = 0.05 (d) t = 0.1

(e) t = 0.5 (f) Conservativity/consistency plot

Figure 4. 6.5. Test 2: Numerical experiment showing the conser-
vation of mass and dissipation of energy for the numerical method
proposed in Corollary 3.8 for the Navier–Stokes–Korteweg system.
In this test we take µ = 10−7. Notice that the energy dissipation
allows the Navier–Stokes–Korteweg simulation to achieve a steady
state. At t = 50 the maximal value of the velocity is of magnitude
10−5. Notice also that µ is chosen sufficiently small such that the
dynamics are comparible with that of Figure 2 albeit with smeared
out oscillations.
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(a) Initial condition, t = 0 (b) t = 0.01

(c) t = 0.05 (d) t = 0.1

(e) t = 0.5 (f) Conservativity/consistency plot

Figure 5. 6.5. Test 2: Numerical experiment showing the effect
of the ratio of viscocity to capillarity on the dynamics of the simu-
lation. The simulation is the same as in Figure 4 with the exception
that µ = 10−6. Notice the oscillations have become smeared out.
The maximal value of velocity is of magnitude 10−5 at t = 14.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2094 JAN GIESSELMANN, CHARALAMBOS MAKRIDAKIS, AND TRISTAN PRYER

Figure 6. 6.5. Test 2: Numerical experiment showing the ef-
fect of the ratio of viscocity to capillarity on the dynamics of the
simulation. The simulation is the same as in Figure 4 with the ex-
ception that µ = 10−5. Notice the oscillations have become heavily
reduced in very short time due to the massive dissipation in energy
initially. The maximal value of velocity is of magnitude 10−5 at
t = 2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ENERGY CONSISTENT DG METHODS FOR THE NSK SYSTEM 2095

Table 1. In this test we benchmark a stationary solution of the
Euler–Korteweg system using the discretisation (5.2) with piece-
wise linear elements (p = 1), choosing k = 1/N . This is done
by formulating (5.2) as a system of non-linear equations, the so-
lution to this is then approximated by a Newton method with
tolerance set at 10−10. At each Newton step the solution to the
linear system of equations is approximated using a stabilised con-
jugate gradient iterative solver with an successively overrelaxed
preconditioner, also set at a tolerance of 10−10. We look at the
L∞(0, T ; L2(Ω)) errors of the discrete variables ρh and vh, and use
eρ := ρ− ρh and ev := v − vh. In this test we choose γ = 10−4.

N ‖eρ‖L∞(L2)
EOC ‖ev‖L∞(L2)

EOC

32 6.258e-3 0.000 6.194e-4 0.000
64 3.028e-4 4.369 4.631e-5 3.742
128 4.565e-5 2.730 1.105e-5 2.067
256 1.155e-5 1.983 3.691e-6 1.582
512 2.945e-6 1.972 9.916e-7 1.896
1024 7.368e-7 2.000 2.528e-7 1.972
2048 1.842e-7 2.000 6.324e-8 1.999
4096 4.605e-8 2.000 1.580e-8 2.009

Table 2. The test is the same as in Table 1 with the exception
that we take γ = 10−5.

N ‖eρ‖L∞(L2)
EOC ‖ev‖L∞(L2)

EOC

32 7.017e-3 0.000 1.315e-3 0.000
64 2.469e-3 1.506 5.819e-4 1.176
128 4.411e-4 2.485 7.672e-5 2.923
256 2.885e-5 3.935 5.693e-6 3.752
512 6.5970-6 2.129 1.295e-6 2.136
1024 1.668e-6 1.984 3.228e-7 2.004
2048 4.161e-7 2.003 8.017e-8 2.010
4096 1.040e-7 2.001 2.001e-8 2.003

Table 3. The test is the same as in Table 1 with the exception
that we take γ = 10−6.

N ‖eρ‖L∞(L2)
EOC ‖ev‖L∞(L2)

EOC

32 1.883e-2 0.000 1.488e-3 0.000
64 9.071e-3 1.054 8.134e-4 0.871
128 3.807e-3 1.253 3.820e-4 1.090
256 1.005e-3 1.922 9.110e-5 2.051
512 6.486e-5 3.954 5.118e-6 4.171
1024 4.907e-6 3.724 6.809e-7 2.910
2048 1.016e-6 2.272 1.445e-7 2.236
4096 2.439e-7 2.059 3.446e-8 2.068
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Table 4. This test is the same as in Table 3 with the exception
that we take p = 0.

N ‖eρ‖L∞(L2)
EOC ‖ev‖L∞(L2)

EOC

32 4.167e-3 0.000 2.134e-4 0.000
64 2.083e-3 1.000 1.188e-4 0.845
128 1.039e-3 1.002 5.820e-5 1.029
256 6.464e-4 0.689 2.164e-5 1.427
512 5.610e-4 0.202 1.444e-5 0.584
1024 2.415e-4 1.199 9.165e-6 0.656
2048 1.116e-4 1.114 4.445e-6 1.044
4096 5.239e-5 1.091 2.246e-6 0.985

Table 5. This test is the same as in Table 3 with the exception
that we take p = 2 and we take k = 1/N2.

N ‖eρ‖L∞(L2)
EOC ‖ev‖L∞(L2)

EOC

32 4.045e-3 0.000 5.316e-4 0.000
64 1.548e-3 1.386 2.334e-4 1.188
128 3.238e-4 2.257 6.219e-5 1.908
256 1.198e-5 4.031 8.116e-6 2.938
512 2.711e-6 2.144 8.643e-7 3.231
1024 3.710e-7 2.869 1.117e-7 2.884
2048 4.611e-8 3.008 1.414e-8 2.981
4096 5.639e-9 3.031 1.716e-9 3.043

6.7. Test 4: simulations for d = 2 and parasitic currents. In this test we
consider the case d = 2. We take Ω = [0, 1]2 and look at the following initial
condition

(6.5) ρ0(x) =

®

2 if (x, y) ∈ [0.3, 0.7]2,

1 otherwise,
v0 ≡ 0,

and examine its evolution.
We expect due to the non-local part of the energy that interfacial layers of size

∼ √
γ form; see [Ste88,ORS90] for an energy argument. This process smoothes the

profile. Moreover, the length of the interface is reduced such that the quadratic
“droplet” becomes circular.

We take γ = µ = 0.0005, h ≈ 0.02 and kn = k = 0.001 for all n. In addition,
we take p = 0, that is, V consists of piecewise constant functions. Figure 7 shows
the behaviour of the energy and mass of the numerical solution together with the
solution plot of ρh at various times. The solution is overlayed with the velocity vh

as a glyph plot.
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(a) t = 0.001 (b) t = 0.1

(c) t = 0.25 (d) t = 0.5

(e) t = 1.4 (f) Conservativity/consistency plot

Figure 7. 6.7. Test 4: The solution, ρh to the Navier–Stokes–
Korteweg system with initial conditions (6.5) at various values of
t, overlayed with the velocity vh. Notice that there are no parasitic
currents appearing in the interfacial layer. The velocity tends to
zero over the entire domain as time increases. The energy-mass
plot of the simulation is also given.
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