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Energy-Constrained Distortion Reduction
Optimization for Wavelet-Based Coded Image

Transmission in Wireless Sensor Networks
Wei Wang, Student Member, IEEE, Dongming Peng, Member, IEEE, Honggang Wang, Student Member, IEEE,

Hamid Sharif, Member, IEEE, and Hsiao-Hwa Chen, Senior Member, IEEE

Abstract—Image transmissions in Wireless Multimedia Sensor
Networks (WMSNs) are often energy constrained. They also have
requirement on distortion minimization, which may be achieved
through Unequal Error Protection (UEP) based communication
approaches. In related literature with regard to wireless mul-
timedia transmissions, significantly different importance levels
between image-pixel-position information and image-pixel-value
information have not been fully exploited by existing UEP
schemes. In this paper, we propose an innovative image-pixel-po-
sition information based resource allocation scheme to optimize
image transmission quality with strict energy budget constraint
for image applications in WMSNs, and it works by exploring
these uniquely different importance levels among image data
streams. Network resources are optimally allocated cross PHY,
MAC and APP layers regarding inter-segment dependency, and
energy efficiency is assured while the image transmission quality is
optimized. Simulation results have demonstrated the effectiveness
of the proposed approach in achieving the optimal image quality
and energy efficiency. The performance gain in terms of distor-
tion reduction is especially prominent with strict energy budget
constraints and lower image compression ratios.

Index Terms—Intra image diversity, cross layer optimization,
unequal error protection, wireless sensor networks.

I. INTRODUCTION

T
HE availability of inexpensive hardware, such as Micaz

plus Cyclops CMOS cameras and Stargate plus Logitech

video cameras capable of capturing and transmitting multimedia

content, has fostered the development of Wireless Multimedia

Sensor Networks (WMSNs) [1]. Unlike traditional multimedia

transmission in general wireless environments, communication

energy efficiency is critical in WMSNs. However, multimedia

data is usually bulk sized and contains diverse dependencies in

bit streams, resulting in a significant challenge to design effi-

cient transmission schemes over low cost WMSNs. In this paper,
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we specifically consider how to transmit wavelet-based com-

pressed images with the best effort quality in WMSN under en-

ergy budget constraints, and propose a new position oriented

resource allocation paradigm.

In general, the information of a natural digital image is

conveyed by shapes and objects containing image pixels

with various values, and wavelet based image compression

schemes [2]–[4] can extract shape and position information

of the regions as well as lighting magnitude information in

regions. The wavelet coefficients with small magnitude values

are often desirably compressed by significance propagation,

dominant encoding, and run length based cleanup coding

passes. As illustrated in Fig. 1, small-magnitude coefficients

result in a large number of “0” bits in a bit-plane that can

be efficiently compressed. The compressed small coefficients

have avalanche error propagation effect since the errors in the

number of consecutive “0” bits directly impact the positions

of the large magnitude coefficients, leading to irrecoverable

misalignment and decoding difficulty. These coefficients in

small values stand for the image-pixel-position information.

The output of magnitude refinement is related to the large value

wavelet coefficients and corresponds to the image-pixel-value

(i.e., brightness) information. As pointed out later in this

paper, those large magnitude values themselves are relatively

unimportant, but their locations are crucial for decoding and

perception. These locations are determined by the process of

compressing small-magnitude coefficients. The communication

loss or errors in position information (p-data) will have sig-

nificantly higher impact on the overall quality of the received

image than the loss or errors in value information (v-data). The

contribution of the research in this paper can be summarized in

two aspects. First, we propose a new position based resource

allocation paradigm with an effective position-value partition

algorithm which is compatible to standard wavelet encoders.

Second, the complex optimization problem is simplified and

solved efficiently based on the position-value diversity.

The rest of the paper is organized as follows. Section II

discusses the related research background. In Section III, the

proposed position and value partition algorithm is presented

and the cross layer optimization problem is formulated. In

Section IV, the energy consumption, packet delivery quality

and resource allocation strategies are modeled and mapped for

each single image segment. In Section V, the cross layer opti-

mization problem is simplified and solved based on the model

proposed in Section IV. Simulation results are demonstrated in

1520-9210/$25.00 © 2008 IEEE
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Fig. 1. This figure illustrates the unequal importance of position and value information. The diagram is the illustration of wavelet coefficients, bit-plane coding
and the physical concept of the position-value information. Lower part images show the visual quality with erased p-data segments and v-data segment: The upper
row shows the images with erased p-data segment in bit-plane 1–6 respectively, and the lower row shows the images with erased v-data segment in bit-plane 1–6,
respectively.

Section VI. Finally, the conclusions are drawn in Section VII.

The key notations used in the equations are summarized in

Table I for reference convenience.

II. RELATED WORKS

Previous researches have been reported in the literature re-

garding cross layer resource allocation for wireless multimedia

transmission, typically either via Automatic Retransmission re-

Quest (ARQ) based temporal Unequal Error Protection (UEP) or

ForwardErrorCorrection(FEC)basedspatialUEP.However, the

differentiation between position information and value informa-

tion in the image bit stream has not been fully investigated.

In [5] Van der Schaar formalized a cross layer problem

for delay sensitive and loss tolerant multimedia delivery over

wireless networks. With explicit consideration of multimedia

content and traffic characteristics, transmission strategies were

jointly optimized across PHY, MAC and APP layers. In [6],

Li proposed a retry limit adaptation scheme to achieve UEP

for layer-coded video streaming over 802.11 based Wireless

Local Area Networks (WLANs), where the video layers were

protected over the wireless link with different ARQ retry limits.

They further presented a classification and machine learning

based system in [7] to predict the optimal MAC retry limits for

various video packets. In [8], a cross layer problem was ana-

lyzed for distortion minimization given delay constraints, and

the solution was derived through jointly adapting application

layer packetization and priority based scheduling into MAC

layer retransmission strategy. Other similar works can be found

in [9]–[11]. Hamzaoui in [12] provided a good survey for Joint

Source Channel Coding (JSCC)-FEC based UEP schemes to

optimize reconstructed image quality with delay deadline con-

straint over wireless channels. In [13] Wu proposed a scalable

JSCC scheme to achieve optimized overall distortion reduction

for multiple reconstructed images. In that approach, the layered

distortion expectation was modeled and a quality scalable

image coder was used to optimally allocate bit budget among

all sources. In [14] a JSCC scheme tailored for JPEG2000 was

presented to minimize the end to end distortion within a total

transmission rate constraint over memory-less channels. The

UEP was provided via combining PHY FEC and JPEG2000

error detection and localization functionality. Multiple Descrip-

tion Coding (MDC) with FEC based UEP works fine with low

delay real-time packet loss recovery techniques such as those

shown in [15]–[17] for delay sensitive multimedia delivery

applications. But the path diversity based error protections in

those approaches need to continuously monitor path quality on

each hop and report this to source coding nodes [18], and the

overhead of which makes it impossible to be utilized in low

cost and energy constrained WMSNs. In [18] Wu proposed

an FEC based UEP approach for energy efficient image trans-

mission in WMSN, and studied the energy-quality tradeoff. In

that approach, the wireless channel was modeled using a two
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TABLE I
SUMMARY OF THE KEY NOTATIONS USED IN THE EQUATIONS

Fig. 2. Energy-quality performance of delivering packet with 36 bytes and
channel state factor ��� dB, using QPSK modulation.

state Markov model, and Reed-Solomon coding was used for

FEC. However, all aforementioned works took layered UEP

approach without considering the important differences among

intra-image position and value information.

To sum up, existing UEP schemes are mostly targeted for

(1) delay constrained distortion reduction optimization without

consideration of energy resources in WMSN, and (2) layer ori-

ented optimization without considering position-value diversity

in the image bit stream. Unfortunately, the approaches for delay

constrained distortion minimization can not be directly applied

to WMSN due to the high priority of energy efficiency, and the

quality gain of the layer based UEP schemes is very limited.

The preliminary work of this paper has been presented in [19],

in which we showed the potential of achieving energy efficiency

and image quality simultaneously by considering image posi-

tion-value diversity. In this paper we propose a new position

oriented resource allocation scheme for image transmission ap-

plications over WMSNs, to provide the best effort image quality

with strict energy budget constraint, which differs fundamen-

tally from the traditional layered UEP approaches.

III. CROSS LAYER PROBLEM FORMULATION

A. Bit Stream Separation

Position information denoting the bit stream structures is

more sensitive to bit errors and packet loss than value infor-

mation especially in an error prone wireless channel, because

the decoding of value information depends on the successful

decoding of position information. Wavelet based compression

algorithms organize the structural information and value infor-

mation in different coding passes, and position information and

value information can be desirably separated via coding pass

partition. Algorithm 1 shows how to identify position and value

information from standard wavelet codec such as those given

in [2], [34].

Coding pass partition for significant positions and

insignificant values

1: Initialize p-data segment buffers to store position

information, and v-data segment buffers to store

value information. Perform wavelet transform on the

original image. The wavelet coefficients are stored in

Matrix , with rows and columns.

2: Identify the initial magnitude quantization threshold

for iterative bit-plane coding loops. The initial

threshold is determined by ,

where and [2]–[4].

Determine the maximum number of bit-planes

according to user defined compression ratio or

rate-distortion requirement.

3: For bit-plane iteration to , do the following

steps (4–6):

4: Perform coding pass of significant position

information. Scan the wavelet coefficients in

according to Morton scanning order. Given the

reference quantization threshold used in the current

bit-plane, a coefficient can be determined explicitly

as either a large-magnitude coefficient (magnitude

is larger than ) or a small-magnitude coefficient

(magnitude is smaller than ). As described in

Section I and the depiction in Fig. 1, the clustering

models of the small-magnitude coefficients determine

the locations of the large-magnitude coefficients.
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Fig. 3. Performance of genetic based evolution algorithm: (a) without grouping
p-data segments and v-data segments; (b) with grouping p-data segments and
v-data segments.

Fig. 4. Energy consumption of different transmission data rates for different
segment lengths and desirable BER values, the channel state factor is ��� dB.

If a coefficient is determined as a large-magnitude

coefficient, it is then coded as positive or negative

significant symbol (according to its sign bit) to mark

its location. Magnitude refinement coding pass will

be further applied to it as described in Step 5. If

a coefficient is determined as a small-magnitude

coefficient (i.e., a bit “0” in the current bit-plane),

it is coded as tree structure symbols. Specifically, it

is encoded as a tree root symbol if all its wavelet

coefficient matrix descendants in the same special

direction are small-magnitude coefficients with regards

to . If one or more descendants are determined as

large-magnitude coefficients regarding , then this

coefficient is encoded as an isolated zero symbol.

The positive or negative significant symbols, isolated

zeros and tree roots are stored as the p-data segment in

for the current bit-plane.

5: Perform coding pass of magnitude refinement for

large-magnitude coefficients. All the coefficients

marked as positive or negative symbols are further

processed in this step to fine-tune the magnitude

approximation. The most significant bit (MSB) in

the current iteration denotes the magnitude of each

positive or negative significant symbol and is stored as

the v-data segment in the current bit-plane.

Till now the p-data segment and v-data segment for

current bit-plane is formed.

6: Decrease the threshold by half , go back

to Step 3 for the next bit-plane. p-data segments and

v-data segments in the following bit-planes are formed

in the same way iteratively and progressively.

7: Output the image bit stream stored in and

bit-plane by bit-plane in an embedded manner.

After compression, the bit stream is composed of embedded

interleaving p-data and v-data segments in a decreasing impor-

tance order. Because bit stream structures are stored in p-data

segments, incorrect symbols in p-data segments cause next-bit-

plane bits misinterpreted, while incorrect bits in v-data segments

do not. Fig. 1 also shows the reconstructed images with dif-

ferent p-data segments and v-data segments erased in different

bit-planes. It is clear that significant noise is incurred perceptu-

ally when p-data segment is missing even in a high-level refine-

ment bit-plane. On the contrary, even though v-data segment in

low bit-plane is erased, the reconstructed image can still convey

most information in the original image. This is because of the

dependency between p-data and v-data segments. The correct

decoding of p-data segment depends on the correct decoding

of previous p-data segments only, but the correct decoding of

v-data segment depends on previous bit-planes of both v-data

and p-data segments.

Although we take tree based compression algorithms such as

those given in [2], [34] as examples in this paper, the proposed

position oriented UEP scheme is general and it is independent of

the specific wavelet compression algorithms. The reason of se-

lecting the tree based algorithms as the baseline is that position

and value information can be easily separated during the parti-

tion process as described in Algorithm 1. The proposed scheme

can be easily extended to other wavelet based image compres-

sion algorithms such as EBCOT [4] based JPEG2000, because

essential position-value diversity is the spatial inheritance of

digital image itself and the clusters of small-magnitude wavelet

coefficients (i.e., the location information of the large-magni-

tude coefficients) can be efficiently represented as the clean-up

passes, context formation models and arithmetic codes. As long

as the image compression algorithms can extract position infor-

mation and value information in the output streams, they can be

easily and seamlessly applied to the proposed position oriented

UEP framework.

B. Problem Formulation

Our cross layer resource allocation problem for image trans-

mission in sensor networks can be formulated as an energy-
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constrained quality maximization problem. Let be the total

number of bit-planes in the embedded bit stream, and

denote the distortion reduction (i.e., the amount by which

the distortion of the received and reconstructed image will de-

crease with the successful decoding of the source bits contained

in the segment) for the -th p-data segment and the -th v-data

segment respectively. The distortion reduction of each segment

can be measured by calculating the decoded image quality im-

provement in a way similar to [7], [9], [35], or estimated ac-

cording to the wavelet coefficient square error units similar to

[4], [36], [37]. Detailed discussion about generic distortion re-

duction acquisition and the application in cross layer optimiza-

tion can be referred from these recent studies. and

denote the corresponding loss ratio of the -th p-data and v-data

segment respectively. Let denote the mathematical expecta-

tion. is the expectation of total distortion reduction, which

can be expressed as follows:

(1)

The distortion reduction expectation of p-data segments in (1)

is expressed in a way similar to [13]. The layered dependency in

that study is similar to the p-data segment dependency here, and

denotes the end of embedded bit stream. In (1), the

expected distortion reductions of p-data segments are expressed

as the summation of the weight with the corre-

sponding probability for successful decoding

of each p-data segment. Distortion reduction expectation of all

v-data segments is a little bit different. Each v-data segment de-

pends on all p-data segments in previous and current bit-planes,

as well as all v-data segments in previous bit-planes. Thus the

distortion reduction expectation of v-data segments part can be

expressed as the summation of the weight and the

probability of each v-data

segment successful decoding event. Equation (1) gives the close

form expression of the expected distortion reduction, which is

the objective function of the proposed optimization algorithm.

Here we can roughly see that without p-data segments, v-data

segments can hardly make any contribution to image reconstruc-

tion.

Now we derive the energy constraint function. Let

denote the energy consumption expectation of delivering the

whole image bit stream. Also let and denote the

average energy consumption of delivering the p-data segment

and v-data segment in the -th bit-plane respectively. The total

energy consumption of delivering the whole image bit stream

can be expressed in the following equation:

(2)

Let and denote the resource allocation strategies (in-

cluding desirable BER , ARQ retry limit , and transmission

data rate , i.e., ) of the p-data segment and

v-data segment in the -th bit-plane respectively. The desirable

BER has been widely used as an optimization parameter such as

[30], [31], which can be physically translated into the optimal

transmission power in a given channel condition. The resource

allocation strategy of each segment can fine tune the average

loss ratio and the average energy consumption of that seg-

ment. Let denote the energy budget for the whole image

transmission. The optimization problem can be formulated as

follows:

(3)

subject to

(4)

In the following two sections we present details of how to solve

the cross layer optimization problem.

It is worth noting that the energy budget for transmitting a

single image is determined by the upper layer (i.e., network

layer) scheduling. A practical WMSN framework involves en-

ergy constrained quality optimization on each link as well as

the optimal energy distribution through the whole network. The

major concerns on each link are energy efficiency and media

quality, while those concerns are network lifetime and load bal-

ancing in network layer. The network lifetime relies heavily on

the energy efficiency on each individual link, as well as the en-

ergy distribution on each routing path. In this paper we focus on

how to achieve optimal image quality given an energy budget on

each link, and this energy budget is assumed to be provided by

network layer network lifetime maximization algorithms such

as [32], [33].

IV. ENERGY-QUALITY-RESOURCE ALLOCATION MAPPING

FOR A SINGLE SEGMENT

In this section we establish the layer 2 energy-quality per-

formance mapping: for each single

segment with length . In the multirate WMSN platforms

[20]–[22], average energy consumption and average loss ratio

of transferring each segment is related to the desirable BER re-

quirement , ARQ retry limit , and the scalable transmission

data rate . The following parameters are known as protocol

specific parameters. and are the overhead packet

lengths including RTS, CTS and ACK; denotes the power

required for transmitting overhead packets, denotes the

receive power; denotes the transmission data rate of the

overhead packets; denotes the virtual packet length of the

timeout event which can be easily calculated from the time

out value of receiving a packet . Although

contention based protocols with RTS-CTS handshake is used as

an example here, the energy-quality-resource allocation model

is general and easy to be extended to other protocols in WMSN

without RTS-CTS.
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Fig. 5. Optimal transmission data rate in various channel conditions. Energy consumption is measured for a TinyOS packet delivered with desirable BER 1e-5.

Fig. 6. Average loss ratio of different p-data segments and v-data segments,
with compression ratio 1:0.3 and energy budget 0.08 mJ applied to both ap-
proaches.

A. Multirate Power Versatility

The desirable BER value can be mapped to an optimal trans-

mission power value given the modulation scheme, constel-

lation size , frequency bandwidth , noise power density ,

and channel state information factor according to [23]–[25].

For example, the optimal transmission power can be ex-

pressed in terms of desirable BER for BPSK and QPSK mod-

ulation schemes [23], [24] as

(5)

And for M-QAM modulation scheme with , ac-

cording to [24], [25] the optimal transmission power can be ex-

pressed as follows:

(6)

We can evaluate the two equations by letting , and the

two equations have the same form as that of QPSK modulation

scheme. From these equations it is critical to see that the de-

crease of transmission data rate (the transmission data

rate of overhead packets is expressed as , assuming

basic BPSK modulation scheme is used for overhead packet

transmission) is disproportionate to the decrease of transmission

power. Transmitting data at a lower data rate with a more ro-

bust modulation scheme achieves much better power efficiency

compared with the higher data rate transmission. This multirate
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Fig. 7. PSNR versus energy consumption, compression ratio is 1:0.3.

Fig. 8. PSNR versus energy consumption, compression ratio is 1:0.15.

power versatility provides significant potential to improve en-

ergy efficiency via multirate transmission.

B. Multirate Energy-Quality Optimality

In order to express the average loss ratio and average en-

ergy consumption , here we define a fully ordered set

, where the elements and denote the events of

RTS, CTS, DATA, and ACK packet delivery failure. The set is

fully ordered because the delivery of CTS de-

pends on the successful delivery of RTS packet, and the delivery

of DATA depends on the successful delivery of CTS, and so on.

Let be the bit error rate of control overhead packets, can be

simply determined as ac-

cording to (5) given the protocol specified . Let denote

the packet error probability of the -th packet in . The packet

loss probability for overhead packets including RTS, CTS and

Fig. 9. PSNR versus energy consumption, compression ratio is 1:0.05.

ACK can be written as:

(7)

For example, the packet error probability of RTS packet failure

can be easily expressed as . Let be the de-

sirable BER for DATA packet with length . The DATA packet

delivery error probability becomes

(8)

The corresponding energy cost due to RTS packet delivery

failure is

(9)

In the similar way, the energy cost due to CTS packet failure is

expressed as

(10)

The DATA packets are transmitted using the scaled transmission

rate and optimally controlled power . The energy cost due

to DATA packet failure is

(11)

Similarly, the energy cost due to ACK packet failure becomes

(12)
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Fig. 10. PSNR versus energy consumption, compression ratio is 1:0.02.

On the other hand, the energy cost of sending a packet success-

fully is expressed as:

(13)

Based on the four way hand shake nature, the probability of

packet delivery failure without retry can be expressed as

. Let denote the ARQ retry limit, according to [6] the

average retransmission count can be expressed as a function

of and , or

(14)

Then we can easily approximate the average loss ratio , which

is actually a function of desirable BER and ARQ retry limit

, as

(15)

The average energy consumption , which is a function of de-

sirable BER , ARQ retry limit , and transmission data rate

, can be expressed in the following equation:

(16)

V. SIMPLIFICATION OF CROSS LAYER OPTIMIZATION PROBLEM

In (3) and (4), network parameters (i.e., desirable BER ,

ARQ retry limit , and transmission data rate ) are allocated

to each p-data or v-data segment to achieve optimal image

quality. This allocation must follow the energy budget require-

ment. However, the optimization for a large solution space is

time and resource consuming in WMSN for real time image

delivery applications. We practically design a specific evolution

algorithm to reduce the number of optimization parameters. The

optimization problem is simplified and solved in three steps.

First, the transmission data rate is optimized independently of

the evolution algorithm. Secondly, desirable BER is selected as

a significant parameter over ARQ retry limit. Finally, the p-data

segments and v-data segments are efficiently grouped which

significantly reduces optimization complexity.

A. Independent Transmission Data Rate Optimization

In this paper we apply optimal power control to the radio

module as described in Section IV Part A, which makes trans-

mission rate (or the modulation constellation size ) indepen-

dent of the packet loss ratio . This independency can be verified

from (15) and the related equations because either the transmis-

sion data rate or the modulation constellation size is not a

variable in calculating the average loss ratio . Thus is in-

dependent of the total expected distortion reduction expressed

in (1), and the transmission rate optimization can be performed

separately. Although transmission rate optimization needs de-

sirable BER , ARQ retry limit and segment length as

input parameters, optimal transmission rate is dominantly de-

termined by channel state factor according to our extensive

simulation studies. On the other hand, the available choices of

PHY layer modulation schemes are limited and enumerable [5].

Thus available transmission rates are discrete and enumerable,

too. In this paper we only have five available discrete transmis-

sion data rates. The optimal transmission rate in terms of min-

imal normalized energy consumption (energy consumption per

information bit of pure data) including protocol overhead can be

acquired by a simple enumeration search among the five data

rates for a given value of . This simple enumeration can be

easily handled in a low cost radio module. Similar modulation

enumeration approaches are also found in latest researches such

as [5] and [31]. With the assumption that multiple modulation

schemes are provided by the radio module, the proposed trans-

mission data optimization can achieve significant energy effi-

ciency gain with little computational overhead. The resource al-

location strategy in (3) is simplified as . The rate

optimization is very easy to be integrated into MAC protocols,

leaving the duty cycle management and channel access func-

tionalities untouched, as shown in Algorithm 2.

Coupling rate optimization with MAC implementation

/*Initialize and hook the SendData event */

RegisterCallbackFunction(SendData, OnDataSend);

/*Wait until there is a chance to send data */

WaitforDataTransmissionOpportunity();

/*This function is called automatically when there is a data

transmission opportunity.*/

void MAC::OnDataSend()

/*Setup the configuration of this packet*/
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call GetInstantaneousChannelInformation();

call GetOptimizedTransmissionParameters();

call GetOptimizedTrasmissionRate ;

/*Choose proper modulation scheme:*/

call PhyRadioCtrl.SetTransmissionRate ;

GetOptimizedTransmissionPower ;

call PhyRadioCtrl.PowerSupply ;

/*m pTxBuf stores the data to be sent out*/

setupPkt(m pTxBuf, );

/*Hereby start real transmission*/

;

call PhyComm.txPkt(m pTxBuf);

B. Significant Parameter Selection

Desirable BER can be translated into optimal transmission

power in PHY layer, which is a continuous function desirable

for fine-tuning the layer 2 performance. Although higher

ARQ retry limit can reduce the average loss ratio signifi-

cantly, the retransmission overhead incurs considerable energy

penalty. Furthermore, ARQ retry limit is discrete, which is

undesirable to fine-tune the performance. The

performance of delivering a TinyOS [26] packet is shown in

Fig. 2. It is clear that the desirable BER is the significant pa-

rameter and the ARQ retry limit is an insignificant parameter

for controlling the performance. The curve is

approximate to the convex hull, meaning that the most

efficient resource allocation can be achieved through fine-tuning

itself. The resource allocation strategies in (3) is further sim-

plified as for each segment through significant param-

eter selection.

In a practical environment such as the TinyOS platform,

transmission power control is typically performed by writing an

8-bit register using NesC code, for example, PotC.setPot(uint8 t

nTxPower). The valid range of transmission power is [0,99] for

the Micaz platform. Then controlling the transmission power in

a practical environment becomes very simple: get the desirable

BER value from the output of Algorithm 3 as described later,

and translate the desirable BER into the optimal transmission

power according to (5) and (6), and then normalize in

the range of [0,99] according to the minimum and maximum

power supported by the radio module, and finally supply the

radio with the normalized power.

C. Grouping Position and Value Segments in Evolution

Algorithm

Although independent transmission data rate optimization

and significant parameter selection reduce the optimization

complexity considerably, it is still impractical to assign re-

source allocation strategy to each segment. Grouping all

the p-data segments into one group and v-data segments into

another group can efficiently reduce the complexity. Assigning

one desirable BER to each group naturally produces a hier-

archical layer based UEP across all the bit-planes, because the

segment size in image bit stream is almost naturally increasing

with bit-planes. Segments in higher bit-planes have higher

values while segments in lower bit-planes have lower values.

Then the UEP between p-data segments and v-data segments,

as well as the UEP between different bit-planes are jointly

simplified as a two-element resource allocation vector .

By this non-trivial approximation, the genetic based evolution

algorithm can be designed as Algorithm 3, and in the worst

case, the complexity is . The complexity without such

simplification or approximation is , because there are

bit-planes and 6 parameters ( for each p-data seg-

ment and v-segment) in each bit-plane needed to be optimized.

Fig. 3 shows the effectiveness of grouping p-data segments and

v-data segments. In Fig. 3(a), each segment is assigned with

a desirable BER for an 8 bit-plane bit stream, thus a total of

16 parameters need to be optimized. Although there is more

than 2 dB distortion reduction improvement in 20 generations,

the best fitness value after 20 generations is still very low. In

Fig. 3(b) the p-data segment group and v-data segment each

have a desirable BER assignment, and only 2 parameters need

to be optimized. This shows the effectiveness of position and

value segment grouping.

Genetic based evolution for maximum distortion reduction

with energy constraint.

1. Define the algorithm I/O:

Input: image distortion reduction and of each

p-data and v-data segment, length of each segment,

channel state factor and energy budget .

Output: optimal resource allocation vector .

2. Binary coding and decoding for each chromosome: each

possible solution is coded as a chromosome and

each element and in the chromosome is coded as

a gene.

Perform for each gene to make desirable

BER more effective. Initialize the size of population

and the maximal evolution iterations or generations .

Create the first generation randomly as

.

3. For iteration to , do the following steps

(4–6) for evolution.

4. Evaluate the fitness of each chromosome in the current

generation .

Let denote a small positive constant value to make

the energy budget threshold slightly higher than ,

which makes the fitness evaluation more effective.

Let denote the step function.

For do
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Calculate the total energy consumption expectation

and the expected distortion reduction ,

using the current .

The fitness of each chromosome can be evaluated

using .

End for.

5. In the current generation , sort the chromosome in

descending order according to the fitness values .

6. Crossover of elitism parents in the current population.

For do

Calculate the probability that one chromosome

crossover with others using

;

End for.

Randomly crossover chromosomes

with weight , to produce a new generation of

population

with the same population size . Go to Step 3 to

evaluate the loop condition.

7. Output the best chromosome in the current population

with the largest value, while the energy consumption is

within the budget constraint .

The computational complexity of the proposed approach be-

fore p-data and v-data segment grouping is directly related to

the number of image segments. The compressed bit stream is

composed of p-data segment and v-data segment decoding units,

and each segment is further fragmented into multiple packets

during transmission. The number of segments in the compressed

bit stream is related to the number of bit-plane layers, which

controls the compression ratio and image quality tradeoff. With

the proposed p-data and v-data segment grouping described in

this subsection, the computational complexity is further reduced

to a two parameter optimization problem. In a practical set-

ting of WMSN, such as Cyclops Micaz sensor networks, the

image resolution is low due to the hardware size and capability

(64 64 pixels in a monochrome picture, and each pixel is 8 bits

length) and the packet length is short for combating transmis-

sion errors in wireless channels (36 bytes for a standard TinyOS

packet). Thus with this practical setting, totally 144 packets

will be created without compression. With a typical compres-

sion 1:0.3 (raw image size: compressed bit stream length) ap-

plied to this raw image, totally 35 packets in 8 bit-planes are

created for transmission. These 35 packets in the 8 bit-planes

are grouped into 16 image segments by Algorithm 1 (8 p-data

segments and 8 v-data segments, each segment contains mul-

tiple packets). Thus the complexity before p-data and v-data

segment grouping is to find the optimal transmission strategies

for these 16 segments, where the number of segments is much

smaller than the number of packets. The proposed approach is

further simplified by grouping the p-data segments and v-data

segments into two types, and transmission strategies are opti-

mized for these two types. Thus, only two parameters need to

be optimized regardless of the image size and packet size, and

the proposed approach is light weighted in WMSN.

VI. SIMULATION

In this section, we evaluate the energy-quality gain of the

proposed position oriented resource allocation scheme. We em-

ploy T-MAC [27] as the baseline MAC protocol and with mul-

tirate enhancement [21] applied. For T-MAC data packet [28]

in TinyOS [26], the MAC header is 11 bytes and the pure pay-

load is 36 bytes. For the overhead packet such as ACK, the

length is 13 bytes; RTS and CTS packets are both 15 bytes [21].

The virtual packet length for timeout event in T-MAC is se-

lected the same as one RTS packet length. The preamble length

is 18 bytes [29] and the receive power is 0.001 mW. The default

channel state factor is db. The noise power density value

is J/Hz. Symbol rate is 1000 kHz, and BPSK, QPSK

and M-QAM modulation schemes with even constellation sizes

are used in simulation.

A. Independent Transmission Data Rate Optimization

The simulation results of transmission data rate optimization

show two positive effects. First, the optimal transmission data

rate is not sensitive to the desirable BER or the segment length

, but very sensitive to channel state factor . Furthermore, the

optimized transmission data rate can achieve significant energy

efficiency gain. The results in Figs. 4 and 5 validate the trans-

mission rate optimization design in the previous section which

takes rather than or as input parameter. In Fig. 4, al-

though or changes significantly, the optimal transmission

data rate leading to the lowest energy consumption is always

the one based on QPSK modulation scheme. This is because

the channel state factor remains the same, which is dominant

in determining the optimal transmission data rate. The desirable

BER and segment length are weak constraint parameters for op-

timizing transmission data rate.

However, the optimal transmission data rate is very sensitive

to , which is illustrated in Fig. 5. In relative harsh channel con-

ditions, such as Fig. 5(a)–(c), lower rate transmissions achieve

less normalized energy consumption; in relative good channel

conditions such as Fig. 5(d)–(f), higher rate transmissions are

favorable. Fig. 5 also shows the optimal transmission data rate

achieves significant energy efficiency gain compared with other

non-optimized transmission data rates in various channel con-

ditions. For example, given the channel state factor dB,

the worst case transmission rate incurs 5.7271e-5 mJ energy

consumption and the sub-optimal leads to 5.3999e-5 mJ en-

ergy consumption, while the optimal transmission rate achieves

5.3641e-5 mJ energy consumption. Let de-

note the energy efficiency improvement, where and

are the energy consumption achieved by using the optimized

transmission data rate and referenced transmission data rate re-

spectively. In this channel condition, the optimized transmission

date rate achieves 6.7% and 0.67% energy efficiency improve-

ment with regards to the worst case and the sub-optimal case.
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B. Position Oriented Resource Allocation With Energy Budget

Constraint

In this part of simulation, the performance of the proposed

position oriented resource allocation is shown and compared

with traditional layer based UEP approaches. The results show

by exploring the position and value diversity, the Peak Signal

Noise Ratio (PSNR) can be significantly improved within the

same energy budget. The image shown in Fig. 1 with 128 128

pixels and 8 bit per pixel is used as an example in the simulation.

The energy-quality performance is also studied based on image

bit streams with various compression ratios (Raw data length :

compressed data length). To be fair, both approaches apply the

transmission rate optimization independently, which has shown

considerable energy efficiency gain in the last sub-section.

By applying the position oriented resource allocation scheme,

p-data segments are effectively protected to enhance image

quality while v-data segments are less protected to improve

energy efficiency. Fig. 6 shows the average loss ratios of all

p-data segments and v-data segments with 1:0.3 compression

ratio and 0.08 mJ energy budget constraint. It is clear that, by

applying the proposed cross layer optimization, loss ratios of

p-data segments containing bit stream structure and position

information are reduced, and the loss ratios of v-data segments

containing magnitude value information are increased, com-

pared with traditional layer based UEP approaches. The energy

consumption penalty of more protection on important p-data

segments is fully compensated by the less protection on those

unimportant v-data segments. However, the distortion reduction

is enhanced considerably. Similar results are obtained for other

scenarios with different compression ratios and energy budget

constraints.

The proposed approach not only explores UEP among dif-

ferent bit-planes, but also explores UEP between p-data and

v-data segments in the same bit-plane. Figs. 7 to 10 illustrate the

proposed scheme can achieve significantly improved distortion

reduction and energy efficiency simultaneously, compared with

traditional layer based approaches. Drawing a horizontal line

in these figures, we can see that to achieve the same PSNR, the

proposed approach consumes less energy. With the same energy

consumption, the proposed approach can achieve higher distor-

tion reduction. The reason is that in traditional layered UEP, the

difference between p-data segments and v-data segments is not

considered. These results strongly support the position oriented

resource allocation, because the p-data segments of higher im-

portance deserve more network resources allocation than less

important v-data segments. The distortion penalty due to losing

some of these v-data segments are effectively compensated by

putting more effort on p-data segments.

Furthermore, the proposed position oriented resource allo-

cation scheme is especially favorable for strict energy budget

constraints (i.e., low energy consumption, or scarce network re-

sources) and lower compression ratios. For example in Fig. 7,

the distortion reductions are very close for both approaches with

0.08 mJ energy budget constraint; with 0.05 mJ energy budget

constraint, the proposed approach can achieve around 5 dB dis-

tortion reduction gain over traditional approaches. The reason

is that with strict energy budget constraints, the proposed ap-

proach can allocate the scarce resources on position informa-

tion other than magnitude value information. As illustrated in

Figs. 7 to 10, the distortion reduction gains for the strictest en-

ergy budget constraints decrease when the compression ratios

increase. This is because less magnitude value information and

more position information are produced for image bit streams

with higher compression ratios. Position oriented resource al-

location becomes more efficient with lower compression ratios

and less efficient with higher compression ratios.

VII. CONCLUSION

In this paper, we have proposed a position based cross layer

resource allocation approach to achieve optimal image trans-

mission quality while assuring energy efficiency in WMSNs.

Specifically, the unequal importance among image-pixel-po-

sition information and image-pixel-value information is

extensively studied, and the network resource allocation strate-

gies are optimized across PHY, MAC and APP layers regarding

p-data and v-data distortion reduction correlations. The im-

portant p-data segments containing structure and position

information are more reliably protected and transmitted to

improve image quality, and the relatively unimportant v-data

segments containing image pixel value information are less

protected during transmission to improve energy efficiency.

Simulation results show that this proposed approach has in-

creased the image transmission quality significantly with a

performance gain around 3–5 dB, while still assuring energy

efficiency especially with strict energy budget constraints and

low image compression ratios.
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