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ABSTRACT 
In energy-constrained settings, most real-time operating 
systems take the approach of minimizing the energy 
consumption while meeting all the task deadlines.  
However, it is possible that the available energy budget is 
not sufficient to meet all deadlines and some deadlines will 
inevitably have to be missed.  In this paper, we present a 
framework through which the operating system can select 
jobs for execution in order to achieve two alternative 
performance objectives: 1) maximizing the number of 
deadlines met , and 2) maximizing the total reward (utility) 
of jobs that meet their deadlines during the operation.  We 
present an optimal algorithm that achieves the first 
objective.  We prove that achieving the latter objective is 
NP-Hard and propose some fast heuristics for this problem.  
We evaluate the performance of the heuristics through 
simulation studies. 
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1. INTRODUCTION 
 
      With the proliferation of wireless, portable and 
embedded devices, power-aware systems have moved to 
the forefront of Computer and Electrical Engineering 
research in recent years.  A prominent energy management 
technique for real-time/embedded systems is based on 
Dynamic Voltage Scaling (DVS).  With DVS, it is 
possible to obtain significant savings in CPU energy 
consumption by simultaneously reducing the supply 
voltage and the clock frequency (CPU speed) at the 
expense of increased latency.   Thus, in recent years, the 
real-time DVS (RT-DVS) research has been dominated by 
numerous papers that address the problem of meeting task 
deadlines while minimizing the CPU energy consumption 
under various task/system models and off-line/on-line 
scheduling techniques [1,2,3,6,9,10,11,12,14,15,16].  

However, an almost invariable assumption of this line 
of research is that the “hard” performance constraint for the 
operating system is still to meet all the task deadlines, and 
that minimizing the energy consumption subject to hard 
real-time constraints is a highly desirable, yet “secondary”, 
performance objective.  In this paper, we look at the 
problem from the other perspective: we consider systems 
with “hard” energy constraints.  That is, we assume that we 
are given a limited/scarce energy budget (Ebudget) and a 
targeted system run time (mission time) during which the 
system must remain functional.  Such a situation   can arise 
when the computing device depends on the battery power 
supply during the operation, example scenarios include 
embedded control applications as well as military, space, 
and disaster recovery missions where a predictable real-
time system behavior is necessary but battery re-charging 
during the mission is not possible (or feasible) at all.  In 
fact, this is exactly one of the main arguments of [9], where 
the authors focus on the case of Mars Rover system to 
argue about the need to promote the ‘hard’ energy 
constraint to a first-class design consideration.   

Having the knowledge of the workload and the energy 
limitations, the operating system is often the entity that is in 
best position to plan for delivering maximum performance 
within the available energy budget.  Clearly, the operating 
system can still make use of well-known power-aware real-
time scheduling techniques (such as DVS or predictive 
shutdown) and compute the minimum energy (Ebound) 
required to meet all the deadlines during the mission time.  
However, in scarce-energy settings where Ebudget < Ebound , 
we have a serious problem: some deadlines will inevitably 
have to be missed.  As we show in section 3 through a 
simple example, without any provisions, the system may 
run out of energy in the middle of the operation with no 
control whatsoever on the specific deadlines missed.  In 
contrast, in our approach the operating system selectively 
labels task instances as ‘skipped’ or ‘selected’, prior to task 
execution, in order to stay within the energy budget while 
maximizing the performance.  At run-time, only the task 
instances (jobs) that have been previously selected by the 
operating system are dispatched.   
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In this research effort, we propose three performance 
metrics to determine the task instances (jobs) to be 
executed during the system operation, namely: 
• maximize the number of met deadlines, 
• maximize the number of met deadlines while providing a 

minimum performance guarantee for each task, and 
• maximize the reward (utility) of the system by giving 

preference to more important/critical tasks.  
Each of the metrics above may be more appropriate for 

different systems and “mission” objectives.  We underline 
that our framework is applicable to systems with or without 
DVS capability.  In systems where the CPU does not have 
the DVS capability, our framework provides a way to 
maximize the system performance in terms of timing 
constraints and criticality, while staying within the energy 
budget.  On the other hand, DVS capability by itself does 
not guarantee that all the timing constraints will be met 
while staying within a given fixed energy budget.  As an 
example, consider a task set with total utilization 0.9.  A 
well-known result from RT-DVS theory states that the 
minimum CPU speed that minimizes the CPU energy 
consumption and still meets all the deadlines is equal to 
90% of maximum CPU speed [2] when the scheduling 
policy is Earliest-Deadline-First (EDF).  Now suppose that 
this system has to remain functional for one hour, requiring 
K units of energy with speed 0.9.  If it is not possible to re-
charge the battery during the operation and if the battery in 
use can deliver at most  K/2 energy units, then clearly the 
operating system  has  to adopt additional energy saving 
strategies (besides using DVS)  to yield the best 
performance possible in these circumstances.  

We note that a recent study [13] has also addressed 
some aspects of real-time scheduling issues with a fixed 
energy budget.  However, the model in that paper is based 
on tasks having identical periods, as opposed to our more 
common and general case of possibly different periods.  In 
addition, we also explore the more common performance 
metric of minimizing the number of missed deadlines in 
addition to maximizing the system reward.  

The rest of this paper is organized as follows.  In 
section 2 we present the system model and our 
assumptions.  In section 3 we define the problem formally 
and explain our performance metrics for energy-
constrained settings.  Section 4 discusses the proposed 
solutions.  In section 5, we present our simulation results.  
In section 6 we conclude the paper.  
 

2. SYSTEM MODEL 
2.1 Task model 

We consider a set of n periodic tasks T={T1, T2,…, Tn 
} that are to be scheduled on a single-processor system.  
Each task Ti is characterized by its worst-case execution 
time Ci, relative deadline Di, and period Pi which is 
assumed to be equal to Di .  The utilization Ui of task Ti is 

defined as Ci /Pi.  We denote the jth instance of task Ti by Tij 
, which is also referred to as the job Tij .  The hyperperiod P 
of the task set is defined as the least-common multiple of 
all task periods.  All the tasks are assumed to be 
independent and simultaneously ready at time t=0.  Our 
framework assumes preemptive scheduling.  Finally, we 
assume that the preemption overhead is negligibly small 
and, if needed, it can be incorporated into Ci .  

    
2.2 Power and energy consumption model 
 

Throughout the paper we distinguish between two 
operational modes: normal (execution) mode and low-
power (stand-by) mode.  We say that the system is in 
normal (execution) mode when the system is executing a 
job.  Otherwise, the system switches to low-power (stand-
by) mode when the CPU is idle.  The power consumptions 
of the normal mode and low-power modes are assumed to 
be ge and glow watts (joules per second), respectively1.  In 
an interval [t1,t2], the total energy consumption of the CPU 
is the sum of the execution mode energy Ee and the low-
power mode energy Elow: 

lowloweelowe tgtgEEttE +=+=),( 21   (1) 
where te is the total time during which the system runs in 
the execution mode and tlow is the total time during which 
the system runs in the low-power mode in the specified 
interval.   

In our settings, the system has a limited CPU energy 
budget Ebudget, and moreover, it has to remain operational in 
the interval [0,X]; that is, the total CPU energy 
consumption should not exceed a pre-determined threshold 
Ebudget for X time units.  X is also called the mission time 
throughout the paper.  In other words, the system is subject 
to a hard energy constraint, which is a measure of 
available energy resources.  The minimum energy amount 
necessary to complete all the task instances in a timely 
manner (i.e. before their deadlines) is denoted by Ebound.  
Throughout the paper we will assume that the task set is 
schedulable, that is all deadlines would be met according to 
a policy of designer’s choice (e.g. EDF or RMS), if the 
available energy were greater than or equal to Ebound (i.e., if 
Ebudget ≥ Ebound).  We are making this assumption because 
our goal is not to study real-time schedulability problem in 
the absence of any energy constraints, an intensively 
studied problem [8].  Instead, our focus will be on the 
systems with hard energy constraints where the 
available energy is not sufficient to execute all the 
workload; that is, we consider systems where Ebudget < 
Ebound . 

                                                                 
1 The energy overhead due to switching between the two modes 

can be incorporated into glow, if necessary.  Similarly, the time 
overhead due to switching can be incorporated into Ci.   
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Applicability to systems with multiple speed levels: In 
DVS-enabled systems with multiple frequency and power 
levels, it is realistic to set ge to the power consumption 
level of the lowest CPU speed that would be able to meet 
all the deadlines with the given scheduling policy.  Ebound 
would be then equal to the energy consumption 
corresponding to this speed/power level during the entire 
mission, and our objective is again to provide a task 
selection framework for systems with scarce energy budget 
(where Ebudget  <  Ebound ). 
 

3. MAXIMIZING SYSTEM REWARD IN 
ENERGY-CONSTRAINED SETTINGS 
 

As explained in Introduction, for some applications it 
may be vital that the system remain functional and does not 
run out of energy during the mission time interval [0,X].  
Moreover, if the available energy is scarce, blindly trying 
to execute all the jobs may result in a rather poor 
performance when we consider timing constraints, as the 
following example illustrates. 

 

Energy exhausted!

T3

T2

T1

800 1600 2400  
Figure 1: Naïve schedule generated by EDF 

 

Mission completed

T3

T2

T1

800 1600 2400  
Figure 2: Improved schedule 

 
Example 1 
Consider a task set that consists of three tasks T1 , T2 , and  
T3 with the following parameters: U1 = U2 = 0.25, P1= P2 
= 200, C1 = C2 = 50; U3 = 0.5, P3 = 800, C3 = 400.  Let 
Ebudget = 1425, X = 2400, ge = 1, glow = 0.025.  Based on 
these parameters Ebound can be computed as 2400.  The task 
set is schedulable using Earliest-Deadline-First (EDF) since 

the total utilization does not exceed 1.00 [7], if we do not 
take into account the hard energy constraint.  Figure 1 
shows the schedule produced by EDF (solid arrows denote 
the deadlines met, whereas the dashed arrows indicate the 
missed deadlines).  Observe that since the hard energy 
constraint is not taken into account, the system runs out of 
energy at t=1425, just before T32 completes.  Due to 
inefficient energy management the system energy budget is 
exhausted just before 60% of the mission time X has 
elapsed, about 23% of Ebudget is wasted by executing T32 
which never completes, and only 15 deadlines (about 56 % 
of the total) are met.  Figure 2 shows an “improved” 
schedule (for the same problem) that intelligently uses the 
available energy to yield better performance. In this case, 
the system remains operational throughout the entire 
mission time and we are able to meet 21 deadlines (about 
78% of the total, with 40% improvement compared to the 
naive schedule of Figure 1) without exceeding Ebudget.  Note 
also that all the jobs completed in the naive schedule are 
still completed in the improved schedule. 

As this example illustrates, if the energy budget of the 
system cannot sustain the operation during the entire 
mission, then the aim must be to provide maximum 
predictability/utility for applications imposing timing 
constraints.  We consider two cases of maximizing system 
performance in energy-constrained settings as follows. 

 
3.1 Maximizing the number of deadlines met 
during mission time 
 

One natural performance objective might be to 
maximize the total number of deadlines met, within the 
limited energy budget, while sustaining the system 
operation during [0,X].  This is particularly suitable for 
applications where occasional deadline misses may be 
acceptable, such as real-time communications, tracking and 
multimedia [6,8]. We denote this objective by O1.   We 
examine two variations of this objective.   
• No minimum task–level requirements: 
In the absence of any additional constraints, we can simply 
try to maximize the total number of deadlines met across all 
tasks during mission time [0,X].   
• Minimum task deadline meet ratio: 
The operating system may attempt to ensure that a 
minimum percentage of each task’s deadlines are met 
during mission time [0,X], thus providing a minimum 
performance guarantee for each task.  This can be done by 
requiring that each task Ti meets its minimum deadline 
meet ratio Mi such that ni / Ni ≥ Mi, where ni is the number 
of instances of task Ti that completed before their deadlines 
during [0,X] and Ni =  X / Pi  is the number of all the 
instances of the same task whose deadlines lie within the 
same interval. Note that the aim is still maximizing the 
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number of deadlines met; only we are adding the minimum 
performance constraints. In fact, the “improved” schedule 
of Figure 2 maximized the total number of deadlines met 
for the task set discussed in Example 1, subject to the 
constraint  Mi = 30% for each task. 
 
3.2 Maximizing the total reward (utility) of 
the system 
 

Objective O1 given in section 3.1 does not distinguish 
between the importance of different tasks.  However, 
some tasks may be deemed more important than others in 
the presence of limited energy budget.  For example, real-
time communication tasks may be more important than 
display update tasks.  To this aim, we can associate a 
weight (reward) wi with each task Ti.  If an instance Tij is 
completed before its deadline, then the total system reward 
is increased by wi units (Note that all the jobs of Ti have the 
same reward).  Otherwise, if an instance is skipped 
altogether or misses its deadline then the total reward 
remains the same.  Thus, we have the objective O2: 
selectively execute jobs so as to maximize the total 
system reward.   

The two variations discussed in O1, either 
guaranteeing a minimum deadline meet ratio for each task 
or the absence thereof, can still be applied to this case.  
Also observe that, Objective O1 is a special case of 
Objective O2 where all the tasks have the same weight wi 
= w. 

 
3.3 Our approach 
 

In energy-constrained settings where Ebudget < Ebound , 
the task instances to be executed must be carefully selected 
in order to make best use of available energy.  Clearly, 
objectives O1 and O2 will provide the guidelines 
depending on the performance metric under consideration.  
To achieve this aim, the operating system can undertake a 
job selection phase in which each task instance (job) is 
labeled as skipped or selected.  Clearly the operating 
system must consider the parameters of the task set, as well 
as available energy and operation duration information 
when making decisions in light of the performance metric 
of choice.  Our solutions are general in the sense that they 
work with any scheduling policy α (e.g. RMS or EDF), 
providing maximum flexibility for the operating system2. 

Let Π be the set of all task instances (jobs) that must 
complete by (i.e. with deadlines on or before) the mission 
time X.  We associate with each job Tij a label Sij where Sij 
                                                                 
2 Recall that we assume the feasibility of the schedule is 

guaranteed if all the jobs run in normal-mode and scheduled by 
Algorithm α when there are no constraints on energy budget. 

= 0 indicates that the job is skipped and Sij = 1 indicates 
that it is selected for execution.  At run-time, only jobs 
whose labels are set to “selected” are dispatched.  Let  
Π′ = { Tij  Sij = 1 } denote the set of selected instances.  
Thus the problem becomes, choose Π′ ⊆ Π to achieve the 
performance objective (O1 or O2) while making sure 
that the energy budget is not exceeded.  Note that the 
energy consumed by the selected task instances plus the 
energy consumed in the stand-by mode should not exceed 
Ebudget .  That is: 

budgetlow
T

i
T

ie EgCXCg
ijij

≤









−+ ∑∑

Π∈Π∈ ''

 (2) 

Or equivalently,  

budget
T

ilowelow ECggXg
ij

≤−+ ∑
Π∈ '

)(   (3) 

Note that the quantity (ge - glow)Ci is the excess energy 
consumed by each instance of task Ti in normal mode 
beyond the idle energy.  Once selected, the set Π′ can be 
scheduled by the algorithm α and the feasibility of selected 
instances is guaranteed since the superset Π is assumed to 
be initially schedulable under Algorithm α when the 
energy budget is not taken into account. 
 

Determine_job_
pool

Select_number_of_
instances_to_execute

Determine_job_
level_labels

Optimization
Module (OM)

Mission Time
(X)

Task
Parameters

Performance
Objective (O)

Energy
Budget

Additional Labeling
Criterion (D)

{Ni} {ni} {Sij}

 
Figure 3. The generic job selection framework for 
energy-constrained real-time operating systems 

 
The generic job selection framework that we propose 

for energy-constrained real-time operating systems consists 
of three main modules (Figure 3): 
• Determine_job_pool(T, X, {Ni}):  
For each task Ti , calculates the total number of instances Ni 
whose deadlines are smaller than or equal to X.  Note that 
Ni is simply equal to  X / Pi  , since this quantity gives the 
number of jobs belonging to Ti that must complete by X. 
• Select_number_of_instances_to_execute(T, O, X, {Ni}, 
{ni}, Ebudget):  
Uses an auxiliary optimization module OM, which can be 
an optimal algorithm or a heuristic, to decide on the 
number of instances ni to be executed for each task Ti 
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during [0,X] to achieve the specific objective O under 
consideration, without exceeding the energy budget.  This 
is the only module that needs to be modified if the 
performance objective changes.  
• Determine_job_labels({ni}, D, {Sij}):  
Given the number of instances ni to be executed for each 
task Ti , determine specific instances to be actually 
scheduled using an additional labeling criterion D.  In other 
words, determine the label Sij (skipped or executed) for 
each job.  These labels will be used in conjunction with the 
original scheduling algorithm α at run-time, to maximize 
the system performance while staying within the system 
energy budget.  

The module Select_number_of_instances_to_execute 
is highly dependent on the specific performance metric 
(objective) under consideration; we will give the specific 
pseudo-code for this module corresponding to different 
metrics when discussing the solutions for optimization 
problems. 

 

 
Figure 4. ‘Balanced’ distribution of skipped instances  

 
Note that determining the number of instances to be 

executed during the mission time, namely ni, for each task 
is only a part of the problem.  We need to determine which 
specific instances will be labeled as selected or skipped.  
As an example, suppose that a given task Ti has 200 
instances during the mission, but only 150 have been 
selected for execution.  Which 150 will be selected?  The 
first 150, the last 150, or any 150?  The labeling criterion D 
essentially provides the algorithm to be used for making 
this decision.  In the simplest case, one can adopt trivial 
techniques such as selecting the first ni instances.  
However, many applications including multimedia and 
real-time communication tasks, would still deliver a 
performance of acceptable quality if the deadline misses 
are relatively few and distantly spaced [5,6].  Thus, in the 
above example, one can select three task instances out of 
each four consecutive instances for execution to obtain a 
‘balanced’ distribution of 50 skipped instances during 
mission time.  Part of this schedule is shown in Figure 4 
(solid arrows and dashed arrows denote the met and missed 
deadlines, respectively). 

We note that the approach of meeting mi deadlines of 
each ki consecutive instances was previously adopted in 
overloaded (but not energy-constrained) real-time 
scheduling approaches [5,6].  We believe that this is a 
noteworthy parallelism between overloaded and energy-
constrained systems. 

 

4. SOLUTIONS TO ENERGY 
CONSTRAINED PERFORMANCE 
OPTIMIZATION PROBLEMS 
 
In this section we discuss the solutions to maximize the 
performance objectives stated earlier, O1 and O2. 
 
4.1 Objective O1: maximizing the number of 
deadlines met during the mission time 
 
To maximize O1 while staying within Ebudget , then the 
problem can be solved efficiently.  Consider the policy that 
first orders tasks according to execution time per instance 
Ci and then chooses for execution the instances of tasks 
with smallest execution times until Ebudget is exhausted.  We 
refer to this policy as Favor Shortest Job (FSJ)3.   
 

Optimization Module  for FSJ 
Input: T, E_budget, X, ge, glow 
Output: {ni}  
1. Order tasks according to their execution time (T1 

represents the task with the smallest execution time); 
2. In_progress = true; 
3. Available = E_budget – X.glow; 
4. i = 1; 
5. while (In_progress==true) and (i ≤ n) 
6. begin 
7. z  = (ge - glow). Ci; 
8. if z ≤ Available then 
9. begin 
10. Ni =  X / Pi ; 
11. ni = min{ Ni ,  Available / z  }; 
12. Available = Available - ni.z; 
13. end  
14. else In_progress = false; 
15. i = i + 1; 
16. end  

Figure 5. Pseudo-code for FSJ optimization module 
 

Consider the select_number_of_instances_to_execute 
module which uses the optimization module FSJ_OP 
corresponding to FSJ (Figure 5).  FSJ_OP starts off by 
setting aside enough energy to sustain the system in low-
power mode in [0,X].   All the instances of a given task Ti 
have the same execution time Ci , thus we can start with the 
task T1  having the smallest execution time C1 .  Then, 
                                                                 
3 Note that this scheme is different from the well-known 
scheduling algorithm Shortest Job First (SJF), because FSJ selects 
task instances for execution in off-line fashion, and then these 
instances are scheduled using the algorithm α  chosen by the 
operating system.   
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FSJ_OP determines the maximum number of instances 
n1  of task T1  that can be executed within the current 
budget Ebudget .  It then updates Ebudget by deducting the 
excess energy consumed by the newly selected jobs.  This 
process is repeated for tasks with next smallest Ci until 
either Ebudget is exhausted or all task instances are  selected.   

 
THEOREM 1.  FSJ is optimal for the problem of maximizing 
the number of deadlines met. 
Proof: We will proceed by a proof by contradiction.  
Assume that FSJ is not optimal.  This implies that there is 
an instance I of the problem of maximizing the number of 
deadlines met, for which FSJ selects m jobs for execution, 
while there exists another algorithm A that succeeds in 
meeting M > m deadlines in I  without exceeding Ebudget.  
Let σFSJ  be the set of jobs selected by FSJ for execution 
and σA be the set of jobs whose deadlines are met by 
algorithm A.  Without loss of generality, assume both σFSJ  
and σA are ordered according to the execution times of jobs 
in non-decreasing fashion.   
Let Elow be the energy amount required to sustain the 
system in stand-by mode during the mission time X;  that 
is:  

Elow = X . glow  (4) 
Also, let E(H) be the excess energy required to execute all 
the jobs of a given set H, beyond Elow :  

∑
∈

−=
Hi

ilowe CggHE )()(   (5) 

Let us denote the first m jobs of σA (i.e. those having 
the smallest m execution times) by σA,m.  Note that the kth 
job in σFSJ has an execution time that does not exceed that 
of the kth job in σA,m ,  due to the very characteristic nature 
of the set generated by Favor Shortest Jobs (FSJ).  This 
clearly translates to the energy requirements of the jobs in 
the two sets when compared pairwise.  In other words, the 
energy required to execute σA,m cannot be smaller than that 
required to execute σFSJ: E(σA,m) ≥ E(σFSJ).  Note that the 
(m+1)th job Jy in σA (such a job should exist if M > m) 
must have a larger execution time, and hence larger energy 
requirement, than the job Jx having (m+1)th smallest 
execution time in the job set.  Since FSJ stopped after m 
smallest jobs, we must have: 

 { }( ) budgetxFSJlow EJEEE >++ )(σ  (6) 

On the other hand, the total energy required to execute the 
jobs in σA is definitely at least as large as the energy 
required to execute only the first m+1 jobs of σA, that is: 

( ) ( ) { }( )ymAlowAlow JEEEEE ++≥+ ,σσ    (7) 

But the right-hand side of (7) cannot be smaller than the 
left-hand side of (6) (see the discussion above).  Thus, we 
have: 

})({)(})({)( , xFSJlowymAlow JEEEJEEE ++≥++ σσ  (8) 

Hence: 

budgetAlow EEE >+ )(σ     (9) 

This implies that the algorithm A has exceeded the energy 
budget while meeting M > m deadlines; clearly a 
contradiction. 
Hence, FSJ must be optimal.   � 

Note that FSJ_OP needs to sort tasks by their 
execution times Ci which can be achieved in time O(n log 
n).  Once sorted, FSJ_OP selects for execution task 
instances with smaller execution times which can be 
achieved in time O(n).  The total complexity of FSJ_OP is 
then O(n log n).   

In the case where we have minimum deadline meet 
ratio Mi for each task, we must first reserve enough energy 
to meet the minimum requirements of each task.  After this 
reservation, we update our energy budget.  If we have 
excess energy beyond this point, then we can still use the 
same technique to maximize the total number of deadlines 
met as described above.  The optimality of this approach 
can be proved in a similar way as in Theorem 1 but is 
omitted due to space limitations.   Observe that for any 
“hard” real-time task that must meet its deadline at every 
instance, this ratio can be simply set to 100%.  

 
4.2. Objective O2: maximizing the total 
reward (utility) of the system 
 

When we associate a weight (reward) wi with each task 
instance, a natural objective may be maximizing the total 
reward of the jobs which are executed (which meet their 
deadlines).  Let us refer to the problem of maximizing total 
system reward over [0,X] as REWARD.  Formally, 
REWARD is defined as to determine Π′ ⊆ Π  so as to: 

maximize ∑
Π∈ 'ijT

iw  (10) 

subject to budgetlow
T

ilowe EXgCgg
ij

≤+− ∑
Π∈ '

)(  (11) 

That is, our aim is to maximize the total reward of the 
executed jobs subject to the condition that the system 
energy consumption in normal-mode (needed to execute 
the selected jobs) plus any additional idle energy needed 
during the mission time does not exceed the system energy 
budget.  Blindly selecting task instances using FSJ, as in 
O1, may yield a low reward value, as the following 
example illustrates.   
 
Example 2 
Consider the schedule generated by FSJ when the 
individual deadline meet ratios (30%) are taken into 
account, given in Figure 2.  Assume that T3 represents a 
critical task for the system, and that we have the following 
task weights: w1 = w2 = 1 and  w3 = 20.  In this case the 
schedule of Figure 2 would yield a total reward of 40.  
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However, by scheduling two instances of T3 and six 
instances of each of T1 and T2 it is possible to obtain a total 
reward of 52 (a 30% improvement over FSJ) without 
exceeding Ebudget  .  

Unfortunately, the problem of maximizing the total 
system reward with hard energy constraints turns out to be 
intractable in the general case: 

 

THEOREM 2.  REWARD is NP-Hard. 
Proof:  We will prove the theorem by showing that it is at 
least as hard as the KNAPSACK problem, which is NP-
Hard [4]. 

KNAPSACK: Given a set of items S = {s1, s2,…, sn} 
where each item si has an integer value vi and an integer 
cost zi, an integer V representing the total value we aim at, 
and an integer Z representing the total cost within which 
we must stay, is there a subset S′ ⊆ S such that:  

Vv
Ss

i
i

≥∑
∈ '

 and Zz
Ss

i
i

≤∑
∈ '

? (12) 

We will consider a special (“easy”) instance of the 
REWARD problem, called S-REWARD and prove that 
KNAPSACK can be reduced to it.   S-REWARD is defined 
in the same way as REWARD, however all tasks are 
restricted to have the same period P.  Furthermore, mission 
time X is set to P; i.e. P1 = P2 = … = Pn = P = X.  Solving 
REWARD in these limited settings is equivalent to solving 
S-REWARD which is to select Π′ ⊆ Π so as to: 

 maximize ∑
Π∈ 'ijT

iw  (13) 

subject to budgetlow
T

ilowe EXgCgg
ij

≤+− ∑
Π∈ '

)(     (14) 

where Π′ is the set of jobs chosen for execution. 
Given an instance of the KNAPSACK problem with value 
limit V, cost limit Z, set of items S = {s1, s2,…, sn}, an 
integer value vi and an integer cost zi for each item; we 
construct the corresponding instance of S-REWARD 
problem as follows: We have n tasks T1, T2,…, Tn in Π.  
Further, for 1 ≤ i ≤ n, we set wi = vi, Ci = zi.  We further set 
ge = 1, glow = 0, and Ebudget = Z.  The special instance of S-
REWARD thus becomes:  

maximize ∑
Π∈ 'ijT

iw  (15) 

subject to ZC
ijT

i ≤∑
Π∈ '

  (16) 

This transformation can be clearly performed in polynomial 
time.  Now, suppose that there is a polynomial-time 
solution to S-REWARD.  Given an instance of 
KNAPSACK, apply the transformation given above, solve 
the corresponding S-REWARD instance and compute the 
quantity ∑

Π′∈ijT
iw .  

Now, if Vw
ijT

i ≥∑
Π∈ '

, then clearly Vwv
iji T

i
Ss

i ≥= ∑∑
Π∈∈ ''

 and S′ 

is a solution to the KNAPSACK problem, since 
ZzC

Ss
i

T
i

iij

≤= ∑∑
∈Π∈ ''

 is satisfied by construction.  Otherwise, 

if Vw
ijT

i <∑
Π∈ '

, then clearly there is no solution to the 

KNAPSACK problem; since by construction, S-REWARD 
selects the subset Π′ such that ∑∑

∈Π∈

=
'' Ss

i
T

i
iij

vw is maximized, 

subject to ZzC
Ss

i
T

i
iij

≤= ∑∑
∈Π∈ ''

. 

This shows that the problem S-REWARD, which is a 
special case of REWARD, is at least as hard as the 
KNAPSACK problem, and, hence, it is NP-Hard.  Thus, 
REWARD must be NP-Hard as well. � 
 

5. EXPERIMENTAL RESULTS 
 

Since the problem of maximizing system reward 
subject to a fixed energy budget is NP-Hard, we explored 
several fast heuristics.  The sub-optimal heuristics we 
explored are all fast (heuristic-based optimization module 
has a time complexity of O(n log n) ), but also greedy in 
the sense that each heuristic gives preference to tasks that 
have higher values of a specific  (combination of) task 
parameter(s) such as execution time, period, and weight.  
The optimization module of each heuristic is essentially the 
same as that of FSJ (Figure 5), the only difference is that, 
in Step 1, tasks are first ordered according to the specific 
task parameter (combination) instead of the execution time.   
We limit our discussion to the five heuristics that 
consistently yielded the best results, in addition to FSJ.   
• LRD (Larger Reward Density): This heuristic is an 

improved version of FSJ in the sense that it considers 
both the reward and execution time (thus, the energy 
cost) of tasks.  Specifically, LRD favors jobs with larger 
wi / Ci value (i.e. jobs with larger reward and shorter 
execution time). 

• LRSP (Larger Reward Smaller Period): favors tasks 
with larger wi / Pi value, relying on the fact that choosing 
tasks with large reward and large number of instances 
during mission time may be more beneficial for the 
system.  

• LRDSP (Larger Reward Density Smaller Period): 
This heuristic favors tasks with larger wi / PiCi values, 
combining the ideas behind LRD and LRSP techniques.  

• LRSU (Larger Reward Smaller Utilization): gives 
preference to tasks with larger wi / Ui values, considering 
that tasks that yield larger rewards while using a small 
fraction of CPU time should improve the overall system 
utility. 
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• LR (Larger Reward): gives preference to tasks with 
larger rewards wi. Note that this scheme is not an optimal 
one, because it does not consider the execution time of 
(hence, the energy required to execute) tasks.  

• FSJ (Favor Shortest Jobs): This technique, whose 
optimality is proven for the case where all task rewards 
are equal in Section 4, favors jobs with smaller execution 
times regardless of the reward accrued by their 
execution. 

We ran simulation experiments to evaluate the 
performance of the heuristics discussed above.  We 
measured the total system reward R as a function of 4 
parameters:   
• Total system utilization: U = ∑ Ci / Pi . 
• System energy budget: Ebudget as a percentage of the total 

energy required to meet all deadlines Ebound.  Note that as 
this percentage decreases, the system becomes more 
energy-constrained and it becomes more crucial to 
judiciously manage the available energy to deliver the 
best possible performance. 

• Task weight ratio: WR = max{wi} / min{wi}.  This ratio 
represents the relative variance of task rewards; as WR 
increases the weights of tasks in the system exhibit more 
variance. 

• Ratio of normal-mode power to stand-by mode power 
 (gain ratio = ge / glow):  By changing this ratio, it is 
possible to model various system settings where the 
energy savings obtained by switching to low-power 
mode vary over different ranges.  Clearly, the larger this 
ratio, the more significant the energy savings in low-
power mode.  Note that a given CPU may have multiple 
modes corresponding to inactivity periods, such as sleep, 
doze, and shutdown.  Each of these levels may have 
different power characteristics and different overheads 
associated with switches to/from normal mode.  
Analyzing the system performance for different possible 
gain ratios may lead to better trade-offs. 
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Figure 6. System reward as a function of task weight 

ratio for U=0.7, Ebudget=30%, and gain ratio =100 
 

We generated 100,000 generic task sets and then for 
each task set, we changed the above parameters over the 

following ranges: U ranged from 0.1 to 1.0 in steps of 0.1, 
Ebudget (as a percentage of Ebound) ranged from 10% to 100% 
in steps of 10%, WR ranged from 10 to 100 in steps of 10, 
and gain ratio ranged from 5 to 1000.  Then we computed 
average reward achieved by each heuristic for each system 
configuration given by U, Ebudget, WR, and gain ratio.  Each 
task set had 30 tasks.  Task periods were generated 
according to a uniform probability distribution where Pmin 
= 10,000 and Pmax = 648,000.  The mission time X was 10 
times the hyperperiod P.  Similarly, task weights were 
generated according to a uniform probability distribution 
between 1 and WR. We used EDF policy to schedule the 
‘selected’ jobs.  
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Figure 7. System reward as a function of task weight 

ratio for U=0.7, Ebudget =60%, and gain ratio =100 
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Figure 8. System reward as a function of task weight 

ratio for U=0.7, Ebudget =90%, and gain ratio =100 
 

Figure 6 through Figure 8 shows the  system reward R 
as a function of task weight ratio WR for U=0.7, gain ratio 
=100 and for Ebudget set to 30%, 60%, and 90% 
respectively. As it can be seen, LRD is the best performing 
heuristic throughout the spectrum, followed by LRSP.  R 
increases roughly linearly with WR.  When we keep U, 
gain ratio, and Ebudget constant and vary WR, we are 
effectively linearly rescaling wi for each task.  As WR 
increases wi increases linearly which increases the overall 
system reward R.  Moreover, as WR increases the range 
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over which wi varies increases which also makes the 
difference between the performances of heuristics more 
significant.  On the other hand, as Ebudget increases the 
performance margin between the different heuristics 
diminishes because more deadlines can be met and the 
system reward becomes closer to its maximum possible 
value. 
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Figure 9. System reward as a function of Ebudget 

for U=0.7, WR=50, and gain ratio =100 
 

Figure 9 shows the system reward R as a function of 
Ebudget for U=0.7, gain ratio=100 and WR=50 for each 
heuristic.  Again, LRD outperforms other heuristics. When 
Ebudget is small, say 10%, the system is very energy-
constrained and only a very small number of jobs can be 
executed.  Under such conditions the difference in 
performance between the different heuristics is small.  As 
Ebudget increases the system becomes less energy 
constrained: more task instances can be executed which 
increases the overall system reward and the difference 
between the heuristics becomes more significant.  As Ebudget 
approaches 100%, the reward achieved by the different 
heuristics converge and they become exactly equal when 
Ebudget=100%, since in this case, the system has enough 
energy to meet all the deadlines and R reaches its maximum 
value.   
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Figure 10. System reward as a function of total 
utilization for Ebudget=Ebound(U=0.3), WR=50, and gain 

ratio =100 
Figure 10 shows R as a function of U for 

Ebudget=Ebound(U=0.3), gain ratio=100, and WR=50 for 
each heuristic.  Unlike Figure 6 through Figure 9 where 
Ebudget is recalculated as a percentage of Ebound which is also 
a function of the total utilization U, in this set of 
experiments Ebudget is set to a fixed value, namely the 
energy required to meet all the deadlines when U=0.3 (i.e. 
Ebound(U=0.3) ).  When U ≤ 0.3 the system has enough 
energy budget to meet all deadlines (i.e. Ebudget ≥ Ebound) and 
all the heuristics yield the same reward, which is simply the 
maximum possible system reward.  As U increases from 
0.3 to 1.0, R starts to decrease until it reaches its minimum 
value when U=1.0 and the differences in performance 
between the different heuristics become more significant.  
As U increases Ci increases linearly for each task while wi 
remains constant.  Hence, as U increases, more energy has 
to be spent to execute the same number of jobs, (thus to get 
the same R), compared to a smaller value of U.  
Consequently, as U increases R decreases. 
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Figure 11. System reward as a function of gain ratio 

for U=0.7, Ebudget=30%, and WR=50 
 

Figure 11 shows system reward R as a function of the 
logarithm of the ratio of normal-mode power to standby-
mode power (namely, log(gain ratio)) for U=0.7, 
Ebudget=30 and WR=50 for each heuristic.  As gain ratio 
increases the standby-mode power consumption glow 
decreases and so does the idle energy.  Consequently, there 
is more energy available to be used for executing jobs in 
the normal mode which increases the system reward.  
Hence, R increases with gain ratio.  Note that Figure 11 
shows a cut-off gain ratio of 50 beyond which the system 
reward remains practically constant.  This is an important 
result since it shows that decreasing the stand-by power 
consumption beyond a certain threshold does not provide 
significant advantage.  This behavior can be explained by 
noting that as gain ratio increases (as glow becomes very 
small) the increase in the available energy for normal mode 
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becomes practically too small to be used for executing any 
additional jobs and the system reward saturates. 
6. CONCLUSION 
 

In this paper, we proposed a generic performance 
optimization framework for energy-constrained real-time 
operating systems.  Our approach entails selecting jobs for 
execution to maximize the number of met deadlines, or 
alternatively maximize the reward (utility) of the system.  
We presented an optimal algorithm FSJ that achieves the 
first objective in time O(n log n), where n is the number of 
tasks.  We proved that achieving the second objective is 
NP-Hard.  We proposed some fast heuristics for this 
problem and presented experimental results that showed 
the relative performance of these heuristics.  The best 
performing heuristic is LRD which favors tasks with higher 
wi/Ci ratio, which represents the reward return per unit 
energy spent in executing a task.   
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