
 4.1

Energy-Constrained Performance Optimizations
For Real-Time Operating Systems

Tarek A. AlEnawy and Hakan Aydin

Computer Science Department
George Mason University

Fairfax, VA 22030

{thassan1,aydin}@cs.gmu.edu

ABSTRACT
In energy-constrained settings, most real-time operating
systems take the approach of minimizing the energy
consumption while meeting all the task deadlines.
However, it is possible that the available energy budget is
not sufficient to meet all deadlines and some deadlines will
inevitably have to be missed. In this paper, we present a
framework through which the operating system can select
jobs for execution in order to achieve two alternative
performance objectives: 1) maximizing the number of
deadlines met , and 2) maximizing the total reward (utility)
of jobs that meet their deadlines during the operation. We
present an optimal algorithm that achieves the first
objective. We prove that achieving the latter objective is
NP-Hard and propose some fast heuristics for this problem.
We evaluate the performance of the heuristics through
simulation studies.

Keywords
Real-time scheduling, real-time operating systems, energy
management, power-aware scheduling, power-aware
systems.

1. INTRODUCTION

 With the proliferation of wireless, portable and
embedded devices, power-aware systems have moved to
the forefront of Computer and Electrical Engineering
research in recent years. A prominent energy management
technique for real-time/embedded systems is based on
Dynamic Voltage Scaling (DVS). With DVS, it is
possible to obtain significant savings in CPU energy
consumption by simultaneously reducing the supply
voltage and the clock frequency (CPU speed) at the
expense of increased latency. Thus, in recent years, the
real-time DVS (RT-DVS) research has been dominated by
numerous papers that address the problem of meeting task
deadlines while minimizing the CPU energy consumption
under various task/system models and off-line/on-line
scheduling techniques [1,2,3,6,9,10,11,12,14,15,16].

However, an almost invariable assumption of this line
of research is that the “hard” performance constraint for the
operating system is still to meet all the task deadlines, and
that minimizing the energy consumption subject to hard
real-time constraints is a highly desirable, yet “secondary”,
performance objective. In this paper, we look at the
problem from the other perspective: we consider systems
with “hard” energy constraints. That is, we assume that we
are given a limited/scarce energy budget (Ebudget) and a
targeted system run time (mission time) during which the
system must remain functional. Such a situation can arise
when the computing device depends on the battery power
supply during the operation, example scenarios include
embedded control applications as well as military, space,
and disaster recovery missions where a predictable real-
time system behavior is necessary but battery re-charging
during the mission is not possible (or feasible) at all. In
fact, this is exactly one of the main arguments of [9], where
the authors focus on the case of Mars Rover system to
argue about the need to promote the ‘hard’ energy
constraint to a first-class design consideration.

Having the knowledge of the workload and the energy
limitations, the operating system is often the entity that is in
best position to plan for delivering maximum performance
within the available energy budget. Clearly, the operating
system can still make use of well-known power-aware real-
time scheduling techniques (such as DVS or predictive
shutdown) and compute the minimum energy (Ebound)
required to meet all the deadlines during the mission time.
However, in scarce-energy settings where Ebudget < Ebound ,
we have a serious problem: some deadlines will inevitably
have to be missed. As we show in section 3 through a
simple example, without any provisions, the system may
run out of energy in the middle of the operation with no
control whatsoever on the specific deadlines missed. In
contrast, in our approach the operating system selectively
labels task instances as ‘skipped’ or ‘selected’, prior to task
execution, in order to stay within the energy budget while
maximizing the performance. At run-time, only the task
instances (jobs) that have been previously selected by the
operating system are dispatched.

 4.2

In this research effort, we propose three performance
metrics to determine the task instances (jobs) to be
executed during the system operation, namely:
• maximize the number of met deadlines,
• maximize the number of met deadlines while providing a

minimum performance guarantee for each task, and
• maximize the reward (utility) of the system by giving

preference to more important/critical tasks.
Each of the metrics above may be more appropriate for

different systems and “mission” objectives. We underline
that our framework is applicable to systems with or without
DVS capability. In systems where the CPU does not have
the DVS capability, our framework provides a way to
maximize the system performance in terms of timing
constraints and criticality, while staying within the energy
budget. On the other hand, DVS capability by itself does
not guarantee that all the timing constraints will be met
while staying within a given fixed energy budget. As an
example, consider a task set with total utilization 0.9. A
well-known result from RT-DVS theory states that the
minimum CPU speed that minimizes the CPU energy
consumption and still meets all the deadlines is equal to
90% of maximum CPU speed [2] when the scheduling
policy is Earliest-Deadline-First (EDF). Now suppose that
this system has to remain functional for one hour, requiring
K units of energy with speed 0.9. If it is not possible to re-
charge the battery during the operation and if the battery in
use can deliver at most K/2 energy units, then clearly the
operating system has to adopt additional energy saving
strategies (besides using DVS) to yield the best
performance possible in these circumstances.

We note that a recent study [13] has also addressed
some aspects of real-time scheduling issues with a fixed
energy budget. However, the model in that paper is based
on tasks having identical periods, as opposed to our more
common and general case of possibly different periods. In
addition, we also explore the more common performance
metric of minimizing the number of missed deadlines in
addition to maximizing the system reward.

The rest of this paper is organized as follows. In
section 2 we present the system model and our
assumptions. In section 3 we define the problem formally
and explain our performance metrics for energy-
constrained settings. Section 4 discusses the proposed
solutions. In section 5, we present our simulation results.
In section 6 we conclude the paper.

2. SYSTEM MODEL
2.1 Task model

We consider a set of n periodic tasks T={T1, T2,…, Tn
} that are to be scheduled on a single-processor system.
Each task Ti is characterized by its worst-case execution
time Ci, relative deadline Di, and period Pi which is
assumed to be equal to Di . The utilization Ui of task Ti is

defined as Ci /Pi. We denote the jth instance of task Ti by Tij
, which is also referred to as the job Tij . The hyperperiod P
of the task set is defined as the least-common multiple of
all task periods. All the tasks are assumed to be
independent and simultaneously ready at time t=0. Our
framework assumes preemptive scheduling. Finally, we
assume that the preemption overhead is negligibly small
and, if needed, it can be incorporated into Ci .

2.2 Power and energy consumption model

Throughout the paper we distinguish between two
operational modes: normal (execution) mode and low-
power (stand-by) mode. We say that the system is in
normal (execution) mode when the system is executing a
job. Otherwise, the system switches to low-power (stand-
by) mode when the CPU is idle. The power consumptions
of the normal mode and low-power modes are assumed to
be ge and glow watts (joules per second), respectively1. In
an interval [t1,t2], the total energy consumption of the CPU
is the sum of the execution mode energy Ee and the low-
power mode energy Elow:

lowloweelowe tgtgEEttE +=+=),(21 (1)
where te is the total time during which the system runs in
the execution mode and tlow is the total time during which
the system runs in the low-power mode in the specified
interval.

In our settings, the system has a limited CPU energy
budget Ebudget, and moreover, it has to remain operational in
the interval [0,X]; that is, the total CPU energy
consumption should not exceed a pre-determined threshold
Ebudget for X time units. X is also called the mission time
throughout the paper. In other words, the system is subject
to a hard energy constraint, which is a measure of
available energy resources. The minimum energy amount
necessary to complete all the task instances in a timely
manner (i.e. before their deadlines) is denoted by Ebound.
Throughout the paper we will assume that the task set is
schedulable, that is all deadlines would be met according to
a policy of designer’s choice (e.g. EDF or RMS), if the
available energy were greater than or equal to Ebound (i.e., if
Ebudget ≥ Ebound). We are making this assumption because
our goal is not to study real-time schedulability problem in
the absence of any energy constraints, an intensively
studied problem [8]. Instead, our focus will be on the
systems with hard energy constraints where the
available energy is not sufficient to execute all the
workload; that is, we consider systems where Ebudget <
Ebound .

1 The energy overhead due to switching between the two modes

can be incorporated into glow, if necessary. Similarly, the time
overhead due to switching can be incorporated into Ci.

 4.3

Applicability to systems with multiple speed levels: In
DVS-enabled systems with multiple frequency and power
levels, it is realistic to set ge to the power consumption
level of the lowest CPU speed that would be able to meet
all the deadlines with the given scheduling policy. Ebound
would be then equal to the energy consumption
corresponding to this speed/power level during the entire
mission, and our objective is again to provide a task
selection framework for systems with scarce energy budget
(where Ebudget < Ebound).

3. MAXIMIZING SYSTEM REWARD IN
ENERGY-CONSTRAINED SETTINGS

As explained in Introduction, for some applications it
may be vital that the system remain functional and does not
run out of energy during the mission time interval [0,X].
Moreover, if the available energy is scarce, blindly trying
to execute all the jobs may result in a rather poor
performance when we consider timing constraints, as the
following example illustrates.

Energy exhausted!

T3

T2

T1

800 1600 2400
Figure 1: Naïve schedule generated by EDF

Mission completed

T3

T2

T1

800 1600 2400
Figure 2: Improved schedule

Example 1
Consider a task set that consists of three tasks T1 , T2 , and
T3 with the following parameters: U1 = U2 = 0.25, P1= P2
= 200, C1 = C2 = 50; U3 = 0.5, P3 = 800, C3 = 400. Let
Ebudget = 1425, X = 2400, ge = 1, glow = 0.025. Based on
these parameters Ebound can be computed as 2400. The task
set is schedulable using Earliest-Deadline-First (EDF) since

the total utilization does not exceed 1.00 [7], if we do not
take into account the hard energy constraint. Figure 1
shows the schedule produced by EDF (solid arrows denote
the deadlines met, whereas the dashed arrows indicate the
missed deadlines). Observe that since the hard energy
constraint is not taken into account, the system runs out of
energy at t=1425, just before T32 completes. Due to
inefficient energy management the system energy budget is
exhausted just before 60% of the mission time X has
elapsed, about 23% of Ebudget is wasted by executing T32
which never completes, and only 15 deadlines (about 56 %
of the total) are met. Figure 2 shows an “improved”
schedule (for the same problem) that intelligently uses the
available energy to yield better performance. In this case,
the system remains operational throughout the entire
mission time and we are able to meet 21 deadlines (about
78% of the total, with 40% improvement compared to the
naive schedule of Figure 1) without exceeding Ebudget. Note
also that all the jobs completed in the naive schedule are
still completed in the improved schedule.

As this example illustrates, if the energy budget of the
system cannot sustain the operation during the entire
mission, then the aim must be to provide maximum
predictability/utility for applications imposing timing
constraints. We consider two cases of maximizing system
performance in energy-constrained settings as follows.

3.1 Maximizing the number of deadlines met
during mission time

One natural performance objective might be to
maximize the total number of deadlines met, within the
limited energy budget, while sustaining the system
operation during [0,X]. This is particularly suitable for
applications where occasional deadline misses may be
acceptable, such as real-time communications, tracking and
multimedia [6,8]. We denote this objective by O1. We
examine two variations of this objective.
• No minimum task–level requirements:
In the absence of any additional constraints, we can simply
try to maximize the total number of deadlines met across all
tasks during mission time [0,X].
• Minimum task deadline meet ratio:
The operating system may attempt to ensure that a
minimum percentage of each task’s deadlines are met
during mission time [0,X], thus providing a minimum
performance guarantee for each task. This can be done by
requiring that each task Ti meets its minimum deadline
meet ratio Mi such that ni / Ni ≥ Mi, where ni is the number
of instances of task Ti that completed before their deadlines
during [0,X] and Ni =  X / Pi  is the number of all the
instances of the same task whose deadlines lie within the
same interval. Note that the aim is still maximizing the

 4.4

number of deadlines met; only we are adding the minimum
performance constraints. In fact, the “improved” schedule
of Figure 2 maximized the total number of deadlines met
for the task set discussed in Example 1, subject to the
constraint Mi = 30% for each task.

3.2 Maximizing the total reward (utility) of
the system

Objective O1 given in section 3.1 does not distinguish
between the importance of different tasks. However,
some tasks may be deemed more important than others in
the presence of limited energy budget. For example, real-
time communication tasks may be more important than
display update tasks. To this aim, we can associate a
weight (reward) wi with each task Ti. If an instance Tij is
completed before its deadline, then the total system reward
is increased by wi units (Note that all the jobs of Ti have the
same reward). Otherwise, if an instance is skipped
altogether or misses its deadline then the total reward
remains the same. Thus, we have the objective O2:
selectively execute jobs so as to maximize the total
system reward.

The two variations discussed in O1, either
guaranteeing a minimum deadline meet ratio for each task
or the absence thereof, can still be applied to this case.
Also observe that, Objective O1 is a special case of
Objective O2 where all the tasks have the same weight wi
= w.

3.3 Our approach

In energy-constrained settings where Ebudget < Ebound ,
the task instances to be executed must be carefully selected
in order to make best use of available energy. Clearly,
objectives O1 and O2 will provide the guidelines
depending on the performance metric under consideration.
To achieve this aim, the operating system can undertake a
job selection phase in which each task instance (job) is
labeled as skipped or selected. Clearly the operating
system must consider the parameters of the task set, as well
as available energy and operation duration information
when making decisions in light of the performance metric
of choice. Our solutions are general in the sense that they
work with any scheduling policy α (e.g. RMS or EDF),
providing maximum flexibility for the operating system2.

Let Π be the set of all task instances (jobs) that must
complete by (i.e. with deadlines on or before) the mission
time X. We associate with each job Tij a label Sij where Sij

2 Recall that we assume the feasibility of the schedule is

guaranteed if all the jobs run in normal-mode and scheduled by
Algorithm α when there are no constraints on energy budget.

= 0 indicates that the job is skipped and Sij = 1 indicates
that it is selected for execution. At run-time, only jobs
whose labels are set to “selected” are dispatched. Let
Π′ = { Tij  Sij = 1 } denote the set of selected instances.
Thus the problem becomes, choose Π′ ⊆ Π to achieve the
performance objective (O1 or O2) while making sure
that the energy budget is not exceeded. Note that the
energy consumed by the selected task instances plus the
energy consumed in the stand-by mode should not exceed
Ebudget . That is:

budgetlow
T

i
T

ie EgCXCg
ijij

≤









−+ ∑∑

Π∈Π∈ ''

 (2)

Or equivalently,

budget
T

ilowelow ECggXg
ij

≤−+ ∑
Π∈ '

)((3)

Note that the quantity (ge - glow)Ci is the excess energy
consumed by each instance of task Ti in normal mode
beyond the idle energy. Once selected, the set Π′ can be
scheduled by the algorithm α and the feasibility of selected
instances is guaranteed since the superset Π is assumed to
be initially schedulable under Algorithm α when the
energy budget is not taken into account.

Determine_job_
pool

Select_number_of_
instances_to_execute

Determine_job_
level_labels

Optimization
Module (OM)

Mission Time
(X)

Task
Parameters

Performance
Objective (O)

Energy
Budget

Additional Labeling
Criterion (D)

{Ni} {ni} {Sij}

Figure 3. The generic job selection framework for
energy-constrained real-time operating systems

The generic job selection framework that we propose

for energy-constrained real-time operating systems consists
of three main modules (Figure 3):
• Determine_job_pool(T, X, {Ni}):
For each task Ti , calculates the total number of instances Ni
whose deadlines are smaller than or equal to X. Note that
Ni is simply equal to  X / Pi  , since this quantity gives the
number of jobs belonging to Ti that must complete by X.
• Select_number_of_instances_to_execute(T, O, X, {Ni},
{ni}, Ebudget):
Uses an auxiliary optimization module OM, which can be
an optimal algorithm or a heuristic, to decide on the
number of instances ni to be executed for each task Ti

 4.5

during [0,X] to achieve the specific objective O under
consideration, without exceeding the energy budget. This
is the only module that needs to be modified if the
performance objective changes.
• Determine_job_labels({ni}, D, {Sij}):
Given the number of instances ni to be executed for each
task Ti , determine specific instances to be actually
scheduled using an additional labeling criterion D. In other
words, determine the label Sij (skipped or executed) for
each job. These labels will be used in conjunction with the
original scheduling algorithm α at run-time, to maximize
the system performance while staying within the system
energy budget.

The module Select_number_of_instances_to_execute
is highly dependent on the specific performance metric
(objective) under consideration; we will give the specific
pseudo-code for this module corresponding to different
metrics when discussing the solutions for optimization
problems.

Figure 4. ‘Balanced’ distribution of skipped instances

Note that determining the number of instances to be

executed during the mission time, namely ni, for each task
is only a part of the problem. We need to determine which
specific instances will be labeled as selected or skipped.
As an example, suppose that a given task Ti has 200
instances during the mission, but only 150 have been
selected for execution. Which 150 will be selected? The
first 150, the last 150, or any 150? The labeling criterion D
essentially provides the algorithm to be used for making
this decision. In the simplest case, one can adopt trivial
techniques such as selecting the first ni instances.
However, many applications including multimedia and
real-time communication tasks, would still deliver a
performance of acceptable quality if the deadline misses
are relatively few and distantly spaced [5,6]. Thus, in the
above example, one can select three task instances out of
each four consecutive instances for execution to obtain a
‘balanced’ distribution of 50 skipped instances during
mission time. Part of this schedule is shown in Figure 4
(solid arrows and dashed arrows denote the met and missed
deadlines, respectively).

We note that the approach of meeting mi deadlines of
each ki consecutive instances was previously adopted in
overloaded (but not energy-constrained) real-time
scheduling approaches [5,6]. We believe that this is a
noteworthy parallelism between overloaded and energy-
constrained systems.

4. SOLUTIONS TO ENERGY
CONSTRAINED PERFORMANCE
OPTIMIZATION PROBLEMS

In this section we discuss the solutions to maximize the
performance objectives stated earlier, O1 and O2.

4.1 Objective O1: maximizing the number of
deadlines met during the mission time

To maximize O1 while staying within Ebudget , then the
problem can be solved efficiently. Consider the policy that
first orders tasks according to execution time per instance
Ci and then chooses for execution the instances of tasks
with smallest execution times until Ebudget is exhausted. We
refer to this policy as Favor Shortest Job (FSJ)3.

Optimization Module for FSJ
Input: T, E_budget, X, ge, glow
Output: {ni}
1. Order tasks according to their execution time (T1

represents the task with the smallest execution time);
2. In_progress = true;
3. Available = E_budget – X.glow;
4. i = 1;
5. while (In_progress==true) and (i ≤ n)
6. begin
7. z = (ge - glow). Ci;
8. if z ≤ Available then
9. begin
10. Ni =  X / Pi ;
11. ni = min{ Ni ,  Available / z  };
12. Available = Available - ni.z;
13. end
14. else In_progress = false;
15. i = i + 1;
16. end

Figure 5. Pseudo-code for FSJ optimization module

Consider the select_number_of_instances_to_execute
module which uses the optimization module FSJ_OP
corresponding to FSJ (Figure 5). FSJ_OP starts off by
setting aside enough energy to sustain the system in low-
power mode in [0,X]. All the instances of a given task Ti
have the same execution time Ci , thus we can start with the
task T1 having the smallest execution time C1 . Then,

3 Note that this scheme is different from the well-known
scheduling algorithm Shortest Job First (SJF), because FSJ selects
task instances for execution in off-line fashion, and then these
instances are scheduled using the algorithm α chosen by the
operating system.

 4.6

FSJ_OP determines the maximum number of instances
n1 of task T1 that can be executed within the current
budget Ebudget . It then updates Ebudget by deducting the
excess energy consumed by the newly selected jobs. This
process is repeated for tasks with next smallest Ci until
either Ebudget is exhausted or all task instances are selected.

THEOREM 1. FSJ is optimal for the problem of maximizing
the number of deadlines met.
Proof: We will proceed by a proof by contradiction.
Assume that FSJ is not optimal. This implies that there is
an instance I of the problem of maximizing the number of
deadlines met, for which FSJ selects m jobs for execution,
while there exists another algorithm A that succeeds in
meeting M > m deadlines in I without exceeding Ebudget.
Let σFSJ  be the set of jobs selected by FSJ for execution
and σA be the set of jobs whose deadlines are met by
algorithm A. Without loss of generality, assume both σFSJ 
and σA are ordered according to the execution times of jobs
in non-decreasing fashion.
Let Elow be the energy amount required to sustain the
system in stand-by mode during the mission time X; that
is:

Elow = X . glow (4)
Also, let E(H) be the excess energy required to execute all
the jobs of a given set H, beyond Elow :

∑
∈

−=
Hi

ilowe CggHE)()((5)

Let us denote the first m jobs of σA (i.e. those having
the smallest m execution times) by σA,m. Note that the kth
job in σFSJ has an execution time that does not exceed that
of the kth job in σA,m , due to the very characteristic nature
of the set generated by Favor Shortest Jobs (FSJ). This
clearly translates to the energy requirements of the jobs in
the two sets when compared pairwise. In other words, the
energy required to execute σA,m cannot be smaller than that
required to execute σFSJ: E(σA,m) ≥ E(σFSJ). Note that the
(m+1)th job Jy in σA (such a job should exist if M > m)
must have a larger execution time, and hence larger energy
requirement, than the job Jx having (m+1)th smallest
execution time in the job set. Since FSJ stopped after m
smallest jobs, we must have:

 { }() budgetxFSJlow EJEEE >++)(σ (6)

On the other hand, the total energy required to execute the
jobs in σA is definitely at least as large as the energy
required to execute only the first m+1 jobs of σA, that is:

() () { }()ymAlowAlow JEEEEE ++≥+ ,σσ (7)

But the right-hand side of (7) cannot be smaller than the
left-hand side of (6) (see the discussion above). Thus, we
have:

})({)(})({)(, xFSJlowymAlow JEEEJEEE ++≥++ σσ (8)

Hence:

budgetAlow EEE >+)(σ (9)

This implies that the algorithm A has exceeded the energy
budget while meeting M > m deadlines; clearly a
contradiction.
Hence, FSJ must be optimal. �

Note that FSJ_OP needs to sort tasks by their
execution times Ci which can be achieved in time O(n log
n). Once sorted, FSJ_OP selects for execution task
instances with smaller execution times which can be
achieved in time O(n). The total complexity of FSJ_OP is
then O(n log n).

In the case where we have minimum deadline meet
ratio Mi for each task, we must first reserve enough energy
to meet the minimum requirements of each task. After this
reservation, we update our energy budget. If we have
excess energy beyond this point, then we can still use the
same technique to maximize the total number of deadlines
met as described above. The optimality of this approach
can be proved in a similar way as in Theorem 1 but is
omitted due to space limitations. Observe that for any
“hard” real-time task that must meet its deadline at every
instance, this ratio can be simply set to 100%.

4.2. Objective O2: maximizing the total
reward (utility) of the system

When we associate a weight (reward) wi with each task
instance, a natural objective may be maximizing the total
reward of the jobs which are executed (which meet their
deadlines). Let us refer to the problem of maximizing total
system reward over [0,X] as REWARD. Formally,
REWARD is defined as to determine Π′ ⊆ Π so as to:

maximize ∑
Π∈ 'ijT

iw (10)

subject to budgetlow
T

ilowe EXgCgg
ij

≤+− ∑
Π∈ '

)((11)

That is, our aim is to maximize the total reward of the
executed jobs subject to the condition that the system
energy consumption in normal-mode (needed to execute
the selected jobs) plus any additional idle energy needed
during the mission time does not exceed the system energy
budget. Blindly selecting task instances using FSJ, as in
O1, may yield a low reward value, as the following
example illustrates.

Example 2
Consider the schedule generated by FSJ when the
individual deadline meet ratios (30%) are taken into
account, given in Figure 2. Assume that T3 represents a
critical task for the system, and that we have the following
task weights: w1 = w2 = 1 and w3 = 20. In this case the
schedule of Figure 2 would yield a total reward of 40.

 4.7

However, by scheduling two instances of T3 and six
instances of each of T1 and T2 it is possible to obtain a total
reward of 52 (a 30% improvement over FSJ) without
exceeding Ebudget .

Unfortunately, the problem of maximizing the total
system reward with hard energy constraints turns out to be
intractable in the general case:

THEOREM 2. REWARD is NP-Hard.
Proof: We will prove the theorem by showing that it is at
least as hard as the KNAPSACK problem, which is NP-
Hard [4].

KNAPSACK: Given a set of items S = {s1, s2,…, sn}
where each item si has an integer value vi and an integer
cost zi, an integer V representing the total value we aim at,
and an integer Z representing the total cost within which
we must stay, is there a subset S′ ⊆ S such that:

Vv
Ss

i
i

≥∑
∈ '

 and Zz
Ss

i
i

≤∑
∈ '

? (12)

We will consider a special (“easy”) instance of the
REWARD problem, called S-REWARD and prove that
KNAPSACK can be reduced to it. S-REWARD is defined
in the same way as REWARD, however all tasks are
restricted to have the same period P. Furthermore, mission
time X is set to P; i.e. P1 = P2 = … = Pn = P = X. Solving
REWARD in these limited settings is equivalent to solving
S-REWARD which is to select Π′ ⊆ Π so as to:

 maximize ∑
Π∈ 'ijT

iw (13)

subject to budgetlow
T

ilowe EXgCgg
ij

≤+− ∑
Π∈ '

)((14)

where Π′ is the set of jobs chosen for execution.
Given an instance of the KNAPSACK problem with value
limit V, cost limit Z, set of items S = {s1, s2,…, sn}, an
integer value vi and an integer cost zi for each item; we
construct the corresponding instance of S-REWARD
problem as follows: We have n tasks T1, T2,…, Tn in Π.
Further, for 1 ≤ i ≤ n, we set wi = vi, Ci = zi. We further set
ge = 1, glow = 0, and Ebudget = Z. The special instance of S-
REWARD thus becomes:

maximize ∑
Π∈ 'ijT

iw (15)

subject to ZC
ijT

i ≤∑
Π∈ '

 (16)

This transformation can be clearly performed in polynomial
time. Now, suppose that there is a polynomial-time
solution to S-REWARD. Given an instance of
KNAPSACK, apply the transformation given above, solve
the corresponding S-REWARD instance and compute the
quantity ∑

Π′∈ijT
iw .

Now, if Vw
ijT

i ≥∑
Π∈ '

, then clearly Vwv
iji T

i
Ss

i ≥= ∑∑
Π∈∈ ''

 and S′

is a solution to the KNAPSACK problem, since
ZzC

Ss
i

T
i

iij

≤= ∑∑
∈Π∈ ''

 is satisfied by construction. Otherwise,

if Vw
ijT

i <∑
Π∈ '

, then clearly there is no solution to the

KNAPSACK problem; since by construction, S-REWARD
selects the subset Π′ such that ∑∑

∈Π∈

=
'' Ss

i
T

i
iij

vw is maximized,

subject to ZzC
Ss

i
T

i
iij

≤= ∑∑
∈Π∈ ''

.

This shows that the problem S-REWARD, which is a
special case of REWARD, is at least as hard as the
KNAPSACK problem, and, hence, it is NP-Hard. Thus,
REWARD must be NP-Hard as well. �

5. EXPERIMENTAL RESULTS

Since the problem of maximizing system reward
subject to a fixed energy budget is NP-Hard, we explored
several fast heuristics. The sub-optimal heuristics we
explored are all fast (heuristic-based optimization module
has a time complexity of O(n log n)), but also greedy in
the sense that each heuristic gives preference to tasks that
have higher values of a specific (combination of) task
parameter(s) such as execution time, period, and weight.
The optimization module of each heuristic is essentially the
same as that of FSJ (Figure 5), the only difference is that,
in Step 1, tasks are first ordered according to the specific
task parameter (combination) instead of the execution time.
We limit our discussion to the five heuristics that
consistently yielded the best results, in addition to FSJ.
• LRD (Larger Reward Density): This heuristic is an

improved version of FSJ in the sense that it considers
both the reward and execution time (thus, the energy
cost) of tasks. Specifically, LRD favors jobs with larger
wi / Ci value (i.e. jobs with larger reward and shorter
execution time).

• LRSP (Larger Reward Smaller Period): favors tasks
with larger wi / Pi value, relying on the fact that choosing
tasks with large reward and large number of instances
during mission time may be more beneficial for the
system.

• LRDSP (Larger Reward Density Smaller Period):
This heuristic favors tasks with larger wi / PiCi values,
combining the ideas behind LRD and LRSP techniques.

• LRSU (Larger Reward Smaller Utilization): gives
preference to tasks with larger wi / Ui values, considering
that tasks that yield larger rewards while using a small
fraction of CPU time should improve the overall system
utility.

 4.8

• LR (Larger Reward): gives preference to tasks with
larger rewards wi. Note that this scheme is not an optimal
one, because it does not consider the execution time of
(hence, the energy required to execute) tasks.

• FSJ (Favor Shortest Jobs): This technique, whose
optimality is proven for the case where all task rewards
are equal in Section 4, favors jobs with smaller execution
times regardless of the reward accrued by their
execution.

We ran simulation experiments to evaluate the
performance of the heuristics discussed above. We
measured the total system reward R as a function of 4
parameters:
• Total system utilization: U = ∑ Ci / Pi .
• System energy budget: Ebudget as a percentage of the total

energy required to meet all deadlines Ebound. Note that as
this percentage decreases, the system becomes more
energy-constrained and it becomes more crucial to
judiciously manage the available energy to deliver the
best possible performance.

• Task weight ratio: WR = max{wi} / min{wi}. This ratio
represents the relative variance of task rewards; as WR
increases the weights of tasks in the system exhibit more
variance.

• Ratio of normal-mode power to stand-by mode power
 (gain ratio = ge / glow): By changing this ratio, it is
possible to model various system settings where the
energy savings obtained by switching to low-power
mode vary over different ranges. Clearly, the larger this
ratio, the more significant the energy savings in low-
power mode. Note that a given CPU may have multiple
modes corresponding to inactivity periods, such as sleep,
doze, and shutdown. Each of these levels may have
different power characteristics and different overheads
associated with switches to/from normal mode.
Analyzing the system performance for different possible
gain ratios may lead to better trade-offs.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10 20 30 40 50 60 70 80 90 100
Weight Ratio (WR)

Sy
st

em
 R

ew
ar

d
(R

)

LRD

LRSP

LRDSP

LRSU

LR

FSJ

Figure 6. System reward as a function of task weight

ratio for U=0.7, Ebudget=30%, and gain ratio =100

We generated 100,000 generic task sets and then for
each task set, we changed the above parameters over the

following ranges: U ranged from 0.1 to 1.0 in steps of 0.1,
Ebudget (as a percentage of Ebound) ranged from 10% to 100%
in steps of 10%, WR ranged from 10 to 100 in steps of 10,
and gain ratio ranged from 5 to 1000. Then we computed
average reward achieved by each heuristic for each system
configuration given by U, Ebudget, WR, and gain ratio. Each
task set had 30 tasks. Task periods were generated
according to a uniform probability distribution where Pmin
= 10,000 and Pmax = 648,000. The mission time X was 10
times the hyperperiod P. Similarly, task weights were
generated according to a uniform probability distribution
between 1 and WR. We used EDF policy to schedule the
‘selected’ jobs.

0

2000

4000

6000

8000

10000

12000

14000

10 20 30 40 50 60 70 80 90 100
Weight Ratio (WR)

Sy
ste

m
 R

ew
ar

d
(R

)

LRD

LRSP

LRDSP

LRSU

LR

FSJ

Figure 7. System reward as a function of task weight

ratio for U=0.7, Ebudget =60%, and gain ratio =100

0

2000

4000

6000

8000

10000

12000

14000

16000

10 20 30 40 50 60 70 80 90 100
Weight Ratio (WR)

Sy
st

em
 R

ew
ar

d
(R

) LRD

LRSP

LRDSP

LRSU

LR

FSJ

Figure 8. System reward as a function of task weight

ratio for U=0.7, Ebudget =90%, and gain ratio =100

Figure 6 through Figure 8 shows the system reward R
as a function of task weight ratio WR for U=0.7, gain ratio
=100 and for Ebudget set to 30%, 60%, and 90%
respectively. As it can be seen, LRD is the best performing
heuristic throughout the spectrum, followed by LRSP. R
increases roughly linearly with WR. When we keep U,
gain ratio, and Ebudget constant and vary WR, we are
effectively linearly rescaling wi for each task. As WR
increases wi increases linearly which increases the overall
system reward R. Moreover, as WR increases the range

 4.9

over which wi varies increases which also makes the
difference between the performances of heuristics more
significant. On the other hand, as Ebudget increases the
performance margin between the different heuristics
diminishes because more deadlines can be met and the
system reward becomes closer to its maximum possible
value.

0

1000

2000

3000

4000

5000

6000

7000

8000

10 20 30 40 50 60 70 80 90 100
Energy Budget (% of Energy Bound)

Sy
st

em
 R

ew
ar

d
(R

)

LRD

LRSP

LRDSP

LRSU

LR

FSJ

Figure 9. System reward as a function of Ebudget

for U=0.7, WR=50, and gain ratio =100

Figure 9 shows the system reward R as a function of
Ebudget for U=0.7, gain ratio=100 and WR=50 for each
heuristic. Again, LRD outperforms other heuristics. When
Ebudget is small, say 10%, the system is very energy-
constrained and only a very small number of jobs can be
executed. Under such conditions the difference in
performance between the different heuristics is small. As
Ebudget increases the system becomes less energy
constrained: more task instances can be executed which
increases the overall system reward and the difference
between the heuristics becomes more significant. As Ebudget
approaches 100%, the reward achieved by the different
heuristics converge and they become exactly equal when
Ebudget=100%, since in this case, the system has enough
energy to meet all the deadlines and R reaches its maximum
value.

2000

3000

4000

5000

6000

7000

8000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total Utilization (U)

S
ys

te
m

 R
ew

ar
d

(R
)

LRD

LRSP

LRDSP

LRSU

LR

FSJ

Figure 10. System reward as a function of total
utilization for Ebudget=Ebound(U=0.3), WR=50, and gain

ratio =100
Figure 10 shows R as a function of U for

Ebudget=Ebound(U=0.3), gain ratio=100, and WR=50 for
each heuristic. Unlike Figure 6 through Figure 9 where
Ebudget is recalculated as a percentage of Ebound which is also
a function of the total utilization U, in this set of
experiments Ebudget is set to a fixed value, namely the
energy required to meet all the deadlines when U=0.3 (i.e.
Ebound(U=0.3)). When U ≤ 0.3 the system has enough
energy budget to meet all deadlines (i.e. Ebudget ≥ Ebound) and
all the heuristics yield the same reward, which is simply the
maximum possible system reward. As U increases from
0.3 to 1.0, R starts to decrease until it reaches its minimum
value when U=1.0 and the differences in performance
between the different heuristics become more significant.
As U increases Ci increases linearly for each task while wi
remains constant. Hence, as U increases, more energy has
to be spent to execute the same number of jobs, (thus to get
the same R), compared to a smaller value of U.
Consequently, as U increases R decreases.

0

1000

2000

3000

4000

5000

5 10 25 50 75 100 500 1000
Gain Ratio

Sy
st

em
 R

ew
ar

d
(R

)

LRD

LRSP

LRDSP

LRSU

LR

FSJ

Figure 11. System reward as a function of gain ratio

for U=0.7, Ebudget=30%, and WR=50

Figure 11 shows system reward R as a function of the
logarithm of the ratio of normal-mode power to standby-
mode power (namely, log(gain ratio)) for U=0.7,
Ebudget=30 and WR=50 for each heuristic. As gain ratio
increases the standby-mode power consumption glow
decreases and so does the idle energy. Consequently, there
is more energy available to be used for executing jobs in
the normal mode which increases the system reward.
Hence, R increases with gain ratio. Note that Figure 11
shows a cut-off gain ratio of 50 beyond which the system
reward remains practically constant. This is an important
result since it shows that decreasing the stand-by power
consumption beyond a certain threshold does not provide
significant advantage. This behavior can be explained by
noting that as gain ratio increases (as glow becomes very
small) the increase in the available energy for normal mode

 4.10

becomes practically too small to be used for executing any
additional jobs and the system reward saturates.
6. CONCLUSION

In this paper, we proposed a generic performance
optimization framework for energy-constrained real-time
operating systems. Our approach entails selecting jobs for
execution to maximize the number of met deadlines, or
alternatively maximize the reward (utility) of the system.
We presented an optimal algorithm FSJ that achieves the
first objective in time O(n log n), where n is the number of
tasks. We proved that achieving the second objective is
NP-Hard. We proposed some fast heuristics for this
problem and presented experimental results that showed
the relative performance of these heuristics. The best
performing heuristic is LRD which favors tasks with higher
wi/Ci ratio, which represents the reward return per unit
energy spent in executing a task.

REFERENCES

[1] H. Aydin, R. Melhem, D. Mosse and P.M. Alvarez.
Determining optimal processor speeds for periodic
real-time tasks with different power characteristics.
Proceedings of the 13th EuroMicro Conference on
Real-Time Systems (ECRTS’01), pages 225-232, 2001.

[2] H. Aydin, R. Melhem, D. Mosse and P.M. Alvarez.
Dynamic and aggressive scheduling techniques for
power-aware real-time systems. Proceedings of the
22nd Real-Time Systems Symposium (RTSS’01), pages
95-105, 2001.

[3] H. Aydin and Q. Yang. Energy-aware partitioning for
multiprocessor real-time systems. Proceedings of the
17th International Parallel and Distributed Processing
Symposium (IPDPS’03), Workshop on Parallel and
Distributed Real-Time Systems, 2003.

[4] M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. Freeman, 1979.

[5] M. Hamdaoui and P. Ramanathan. A dynamic priority
assignment technique for streams with (m,k)-firm
deadlines. IEEE Trans. Computers, 44(12): 1995.

[6] P. Kumar and M. Srivastava. Power-aware multimedia
systems using run-time prediction. International
Conference on Computer Design, pages 64-69, 2001.

[7] C.L. Liu, J.W. Layland. Scheduling algorithms for
multiprogramming in a hard-real time environment,
Journal of the ACM, 17(2). 1973.

[8] J. Liu. Real-Time Systems. Prentice Hall, NJ, 2000.
[9] J. Liu, P.H. Chou, N. Bagherzadeh, and F. Kurdahi.

Power-aware scheduling under timing constraints for
mission-critical embedded systems. Design
Automation Conference, pages 840-845, 2001.

[10] D. Mosse, H. Aydin, B. Childers, and R. Melhem.
Compiler-assisted dynamic power-aware scheduling
for real-time applications. Workshop on Compilers and
Operating Systems for Low-Power (COLP’00), 2001.

[11] P. Pillai and K.G. Shin. Real-time dynamic voltage
scaling for low power embedded operating systems.
Symposium on operating systems principles, pages 89-
102, 2001.

[12] G. Quan and X. Hu. Energy efficient fixed-priority
scheduling for real-time systems on variable voltage
processors. Design Automation Conference, pages
828-833, 2001.

[13] C. Rusu, R. Melhem and D. Mosse. Maximizing the
system value while satisfying time and energy
constraints. Real-Time Systems Symposium, pages 246
-255, 2002.

[14] Y. Shin and K. Choi. Power conscious fixed priority
scheduling for hard real-time systems. Design
Automation Conference, pages 134–139, 1999.

[15] Y. Shin, S. Lee and J. Kim. Intra-task voltage
scheduling for low-energy hard real-time applications.
IEEE Design and Test of Computers, 18(2): 20-30,
2001.

[16] F. Yao, A. Demers, and S. Shenker. A scheduling
model for reduced cpu energy. IEEE Annual
Foundations of Computer Science, pages 374–382,
1995.

