
 Open access Proceedings Article DOI:10.1109/EUSIPCO.2016.7760327

Energy consumption analysis of software polar decoders on low power processors
— Source link

Adrien Cassagne, Olivier Aumage, Camille Leroux, Denis Barthou ...+1 more authors

Institutions: L'Abri

Published on: 29 Aug 2016 - European Signal Processing Conference

Topics: Soft-decision decoder, Energy consumption, Software-defined radio, Throughput (business) and Throughput

Related papers:

 ASIC Implementation of Energy-Optimized Successive Cancellation Polar Decoders for Internet of Things

 A unified polar decoder platform for low-power and low-cost devices.

Reconfigurable VLSI-Architecture of Multi-radix Maximum-A-Posteriori Decoder for New Generation of Wireless
Devices

 Mixed-Signal Implementation of Low-Density Parity-Check Decoder

 Design of an energy-efficient turbo decoder for 3/sup RD/ generation wireless applications

Share this paper:

View more about this paper here: https://typeset.io/papers/energy-consumption-analysis-of-software-polar-decoders-on-
241anvy46w

https://typeset.io/
https://www.doi.org/10.1109/EUSIPCO.2016.7760327
https://typeset.io/papers/energy-consumption-analysis-of-software-polar-decoders-on-241anvy46w
https://typeset.io/authors/adrien-cassagne-4kygbofcra
https://typeset.io/authors/olivier-aumage-57bkc3khvg
https://typeset.io/authors/camille-leroux-57jw85o7w4
https://typeset.io/authors/denis-barthou-4r10imatln
https://typeset.io/institutions/l-abri-eujhvd37
https://typeset.io/conferences/european-signal-processing-conference-u5h419xl
https://typeset.io/topics/soft-decision-decoder-yxc3u3bq
https://typeset.io/topics/energy-consumption-wr0706bl
https://typeset.io/topics/software-defined-radio-2bwfuja0
https://typeset.io/topics/throughput-business-1jozfba5
https://typeset.io/topics/throughput-1du22mto
https://typeset.io/papers/asic-implementation-of-energy-optimized-successive-1yud6h9e4a
https://typeset.io/papers/a-unified-polar-decoder-platform-for-low-power-and-low-cost-2qprxenl54
https://typeset.io/papers/reconfigurable-vlsi-architecture-of-multi-radix-maximum-a-2dtuawaoug
https://typeset.io/papers/mixed-signal-implementation-of-low-density-parity-check-2sni3rtkle
https://typeset.io/papers/design-of-an-energy-efficient-turbo-decoder-for-3-sup-rd-2inea24ogw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/energy-consumption-analysis-of-software-polar-decoders-on-241anvy46w
https://twitter.com/intent/tweet?text=Energy%20consumption%20analysis%20of%20software%20polar%20decoders%20on%20low%20power%20processors&url=https://typeset.io/papers/energy-consumption-analysis-of-software-polar-decoders-on-241anvy46w
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/energy-consumption-analysis-of-software-polar-decoders-on-241anvy46w
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/energy-consumption-analysis-of-software-polar-decoders-on-241anvy46w
https://typeset.io/papers/energy-consumption-analysis-of-software-polar-decoders-on-241anvy46w

HAL Id: hal-01363975
https://hal.archives-ouvertes.fr/hal-01363975

Submitted on 15 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy Consumption Analysis of Software Polar
Decoders on Low Power Processors

Adrien Cassagne, Olivier Aumage, Camille Leroux, Denis Barthou, Bertrand
Le Gal

To cite this version:
Adrien Cassagne, Olivier Aumage, Camille Leroux, Denis Barthou, Bertrand Le Gal. Energy Con-
sumption Analysis of Software Polar Decoders on Low Power Processors. The 24nd European Signal
Processing Conference (EUSIPCO 2016), Aug 2016, Budapest, Hungary. hal-01363975

https://hal.archives-ouvertes.fr/hal-01363975
https://hal.archives-ouvertes.fr

Energy Consumption Analysis of Software

Polar Decoders on Low Power Processors

Adrien Cassagne∗†, Olivier Aumage†, Camille Leroux∗, Denis Barthou† and Bertrand Le Gal∗

∗IMS Lab, Bordeaux INP, France
†Inria / Labri, Univ. Bordeaux, INP, France

Abstract—This paper presents a new dynamic and fully generic
implementation of a Successive Cancellation (SC) decoder (multi-
precision support and intra-/inter-frame strategy support). This
fully generic SC decoder is used to perform comparisons of
the different configurations in terms of throughput, latency
and energy consumption. A special emphasis is given on the
energy consumption on low power embedded processors for
software defined radio (SDR) systems. A N=4096 code length,
rate 1/2 software SC decoder consumes only 14 nJ per bit on an
ARM Cortex-A57 core, while achieving 65 Mbps. Some design
guidelines are given in order to adapt the configuration to the
application context.

I. INTRODUCTION

Channel coding enables transmitting data over unreli-

able communication channels. While error correction cod-

ing/decoding is usually performed by dedicated hardware

circuits on communication devices, the evolution of gen-

eral purpose processors in terms of energy efficiency and

parallelism (vector processing, number of cores,...) drives

a growing interest for software ECC implementations (e.g.

LDPC decoders [1]–[3], Turbo decoders [4], [5]). The fam-

ily of the Polar codes has been introduced recently. They

asymptotically reach the capacity of various communication

channels [6]. They can be decoded using a successive cancel-

lation (SC) decoder, which has extensively been implemented

in hardware [7]–[13]. Several software decoders have also

been proposed [14]–[19], all employing Single Instruction

Multiple Data (SIMD) instructions to reach multi-Gb/s per-

formance. Two SIMD strategies deliver high performance:

the intra-frame parallelism strategy [14]–[16] delivers both

high throughput and low latency; the inter-frame parallelism

strategy [17], [18] improves the throughput performance by a

better use of the SIMD unit width at the expense of a higher

latency. AFF3CT1 [19], [20] (previously called P-EDGE) is the

first software SC decoder to include both parallelism strategies

as well as state-of-the-art throughput and latency.

The optimization space exploration for SC decoding of

Polar codes has so far primarily been conducted with raw

performance in mind. However, the energy consumption min-

imization should also be factored in. Moreover, heterogeneous

multi-core processors such as ARM’s big.LITTLE architec-

tures offer cores with widely different performance and energy

consumption profiles, further increasing the number of design

1AFF3CT is an Open-source software (MIT license) for fast forward error
correction simulations, see http://aff3ct.github.io

Layer

4

3

2

1

0

1 (LLR, ŝ)

2 (LLR, ŝ)

4 (LLR, ŝ)

8 (LLR, ŝ)

16 (LLR, ŝ)

Function f

Function g

Function h

Fig. 1. Full SC decoding tree (N = 16)

and run-time options. In this context, the contribution of this

paper is to propose a new dynamic SC decoder, integrated into

our AFF3CT software and to derive key guidelines and general

strategies in balancing performance and energy consumption

characteristics of software SC decoders.

The remainder of this paper is organized as follows. Sec-

tion II details relevant characteristics of the general Polar code

encoding/decoding process. Section III discusses related works

in the domain. Section IV describes our proposed dynamic

SC decoder and compares it to our previous specialized

approach based on code generation. Section V presents various

characteristics to explore in order to reach a performance

trade-off. Section VI presents experiments and comments on

performance results.

II. POLAR CODES ENCODING AND DECODING

Polar codes are linear block codes of size N = 2n,

n ∈ N. In [6], Arıkan defined their construction based on

the nth Kronecker power of a kernel matrix κ =

[

1 0
1 1

]

,

denoted κ⊗n. The systematic encoding process [21] consists

in building an N -bit vector V including K information bits

and N − K frozen bits, usually set to zero. The location of

the frozen bits depends on both the type of channel that is

considered and the noise power on the channel [6]. Then, a

first encoding phase is performed: U = V ∗κ⊗n and bits of U
in the frozen location are replaced by zeros. The codeword is

finally obtained with a second encoding phase: X = U ∗κ⊗n.

In this systematic form X includes K information bits and

N −K redundancy bits located on the frozen locations.

After being sent over the transmission channel, the noisy

version of the codeword X is received as a log likelihood ratio

(LLR) vector Y . The SC decoder successively estimates each

bit ui based on the vector Y and the previously estimated bits

([û0...ûi−1]). To estimate each bit ui, the decoder computes

the following LLR value:

λ
0

i = log
Pr(Y, û0:i−1|ui = 0)

Pr(Y, û0:i−1|ui = 1)
.

The estimated bit ûi is 0 if λ0
i > 0, 1 otherwise. Since

the decoder knows the location of the frozen bits, if ui is a

frozen bit, ûi = 0 regardless of λ0
i value. The SC decoding

process can be seen as the traversal of a binary tree as shown

in Figure 1. The tree includes logN +1 layers each including

2d nodes, where d is the depth of the layer in the tree. Each

node contains a set of 2n−d LLRs and partial sums ŝ. Nodes

are visited using a pre-order traversal. As shown in Figure 1,

three functions, f , g and h are used for node updates:

f(λa, λb) = sign(λa.λb).min(|λa|, |λb|)
g(λa, λb, s) = (1− 2s)λa + λb

h(sa, sb) = (sa ⊕ sb, sb)

The f function is applied when a left child node is

accessed: λleft
i = f(λup

i , λup

i+2d
), 0 ≤ i < 2d. The

g function is used when a right child node is accessed:

λright
i = g(λup

i , λup

i+2d
), 0 ≤ i < 2d. Then moving up

in the tree, the first half of partial sum is updated with

supi = h(slefti , srighti), 0 ≤ i < 2d/2 and the second half

is simply copied : supi = srighti . The decoding process stops

when the partial sum of the root node is updated. In a

systematic Polar encoding scheme, this partial sum is the

decoded codeword. In practice, by exploiting knowledge on

the frozen bits fixed location, whole sub-trees can be pruned

and replaced by specialized nodes [14], [22], replacing scalar

computations in the lowest levels of the tree by vector ones.

III. SOFTWARE SC DECODERS STATE-OF-THE-ART

In [14]–[16], SIMD units process several LLRs in parallel

within a single frame decoding. This approach, called intra-

frame vectorization is efficient in the upper layers of the tree

and in the specialized nodes, but more limited in the lowest

layers where the computation becomes more sequential.

In [17], [18], an alternative scheme called inter-frame

vectorization decodes several independent frames in parallel

in order to saturate the SIMD unit. This approach improves

the throughput of the SC decoder but requires to load several

frames before starting to decode, increasing both the decoding

latency and the decoder memory footprint.

The AFF3CT software for SC decoding [19] is a multi-

platform tool (x86-SSE, x86-AVX, ARM32-NEON, ARM64-

NEON) including all state-of-the-art advances in software

SC decoding of Polar codes: intra/inter-frame vectorization,

multiple data formats (8-bit fixed-point, 32-bit floating-point)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 1 1.5 2 2.5 3

Eb/N0 (dB)

N = 4096, Rate 1/2

BER dyn.

BER gen.

FER dyn.

FER gen.

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Eb/N0 (dB)

N = 32768, Rate 5/6

BER dyn.

BER gen.

FER dyn.

FER gen.

Fig. 2. Bit Error Rate (squares) and Frame Error Rate (circles) for the Fast-
SSC decoder. The solid shapes represent the dynamic decoder with adaptive
frozen bits when the hollow shapes represent the generated decoders. For
N = 4096 , the generated decoder is optimized for 3.2dB. For N = 32768,
the generated decoder is optimized for 4.0dB.

and all known tree pruning strategies. It resorts to code

generation strategies to build specialized decoders, trading

flexibility (code rate R, code length N) for extra performance.

All state of the art implementations aim at providing differ-

ent trade-offs between error correction performance through-

put and decoding latency. However, energy consumption is

also a crucial parameter in SDR systems, as highlighted

in [23]–[25]. In this study, we propose to investigate the

influence of several parameters on the energy consumption

of SC software Polar decoders on embedded processors to

demonstrate their effectiveness for future SDR systems.

IV. DYNAMIC VERSUS GENERATED APPROACH

We extend the AFF3CT software with a new version of

the Fast-SSC decoder, called dynamic decoder. This version

uses the same building blocks as the generated versions, but

the same code is able to accommodate with different frozen

bit layouts and different parameters (length, SNR). C++11

template specialization features are used to enable the compiler

to perform loop unrolling starting from a selected level in the

decoding tree. It is the first non-generated version (to the best

of our knowledge) to support both multi-precision (32-bit, 8-

bit) and multi-SIMD strategies (intra-frame or inter-frame).

By design, generated decoders are still faster than the dy-

namic decoder (up to 20%). However each generated decoder

is optimized for a single SNR. For very large frame sizes, the

dynamic decoder outperforms generated decoders because the

heavily unrolled generated decoders exceed Level 1 instruction

cache size capacity [19].

Fig. 2 shows the Bit Error Rate (BER) and the Frame

Error Rate (FER) of our dynamic and different generated

decoders for N = 4096 and for N = 32768. Since there

is almost no performance degradation between the 8-bit fixed-

point decoders and the 32-bit floating-point ones, only 8-bit

results are shown. We observe that the BER/FER performance

TABLE I
SPECIFICATIONS OF THE ODROID AND THE JUNO BOARDS.

ODROID-XU+E JUNO

SoC
Samsung Exynos 5410 ARM64 big.LITTLE

(Exynos 5 Octa) (dev. platform)

Arch. 32-bit, ARMv7 64-bit, ARMv8

Process 28nm unspecified (32/28 nm)

big

4xCortex-A15 MPCore 2xCortex-A57 MPCore
freq. [0.8-1.6GHz] freq. [0.45-1.1GHz]

L1I 32KB, L1D 32KB L1I 48KB, L1D 32KB
L2 2MB L2 2MB

LITTLE

4xCortex-A7 MPCore 4xCortex-A53 MPCore
freq. [250-600MHz] freq. [450-850MHz]

L1I 32KB, L1D 32KB L1I 32KB, L1D 32KB
L2 512KB L2 1MB

is better for the dynamic version than for the generated codes.

Indeed the generated versions are by definition optimized for

a fixed set of frozen bits, and optimal for 3.2dB for N = 4096
and 4.0dB for N = 32768. As a result the generated versions

are only competitive for a narrow SNR sweet spot. A decoder

for a wider range of SNR values requires to combine many

different generated versions.

V. EXPLORING PERFORMANCE TRADE-OFF

The objective and originality of this study is to explore

different software and hardware parameters for the execution

of a software SC decoder on modern ARM architectures. For

a software decoder such as AFF3CT, many parameters can

be explored, influencing performance and energy efficiency.

The target rate and frame size are applicative parameters. The

SIMDization strategies (intra-frame or inter-frame) and the

features of decoders (generated or dynamic) are software pa-

rameters. The target architecture, its frequency and its voltage

are hardware parameters. This study investigates the corre-

lations between these parameters, in order to better choose

the right implementation for a given applicative purpose. The

low-power general purpose ARM32 and ARM64 processor

test-beds based on big.LITTLE architecture are selected as

representative of modern multi-core and heterogeneous ar-

chitectures. The SC decoder is AFF3CT [19], enabling the

comparison of different vectorization schemes.

The flexibility of the AFF3CT software allows to alter many

parameters and turn many optimizations on or off, leading to

a large amount of potential combinations. For the purpose of

this study, computations are performed with 8-bit fixed-point

data types, with all tree pruning optimizations activated. The

main metric considered is the average amount of energy in

Joules to decode one bit of information, expressed as Eb =
(P × l)/(K ×nf) where P is the average power (Watts), l is

the latency (s), K the number of information bits and nf is

the number of frames decoded in parallel (in the inter-frame

implementation nf > 1).

Testbed. The experiments are conducted on two

ARM big.LITTLE platforms, an ODROID-XU+E board

using a 32-bit Samsung Exynos 5410 CPU and the reference

64-bit JUNO Development Platform from ARM running a

Linux operating system, detailed in Table I.

TABLE II
CHARACTERISTICS FOR EACH CLUSTER (Ti IS THE INFORMATION

THROUGHPUT), FOR DYN. DECODER. N = 4096, RATE R = 1/2. THE

RAM CONSUMPTION IS NOT INCLUDED IN Eb AND IN P .

Cluster Impl. Ti (Mb/s) l (µs) Eb (nJ) P (W)

A7-450MHz

seq. 3.1 655 37.8 0.117
intra 13.0 158 9.5 0.123
inter 21.8 1506 6.0 0.131

A53-450MHz

seq. 2.1 966 29.0 0.062
intra 10.1 203 7.0 0.070
inter 17.2 1902 5.1 0.088

A15-1.1GHz

seq. 7.5 274 122.0 0.913
intra 35.2 58 28.2 0.991
inter 62.8 522 17.4 1.093

A57-1.1GHz

seq. 9.2 222 78.9 0.730
intra 39.2 52 21.1 0.826
inter 65.1 503 14.2 0.923

i7-3.3GHz

seq. 36.3 56.5 235.4 8.532
intra 221.8 9.2 40.5 9.017
inter 632.2 51.8 15.8 9.997

The big and the LITTLE clusters of cores on the ODROID

board are on/off in a mutually exclusive way. The active

cluster is selected through the Linux cpufreq mechanism.

Both clusters can be activated together or separately on the

JUNO board. Both platforms report details on supply voltage,

current amperage, power consumption for each cluster. Only

the ODROID platform reports details for the RAM. Conse-

quently, most experiments have been primarily conducted on

the ODROID platform to benefit from the additional insight

provided by the RAM metrics.

VI. EXPERIMENTS AND MEASUREMENTS

Table II gives an overview of the decoder behavior on

different clusters and for various implementations. The code is

always single threaded and only the 8-bit fixed-point decoders

are considered, since 32-bit floating-point versions are 4 times

more energy consuming, on average. The sequential version

is mentioned for reference only, as the throughput Ti is much

higher on vectorized versions. Generally the inter-frame SIMD

strategy delivers better performance at the cost of a higher

latency l. Table II also compares the energy consumption of

LITTLE and big clusters. The A53 consumes less energy

than the A7 and the A57 consumes less energy than the

A15, respectively. This can be explained by architectural

improvements brought by the more recent ARM64 platform.

Despite the fact that the ARM64 is a development board,

the ARM64 outperforms the ARM32 architecture. Finally we

observe that the power consumption is higher for the inter-

frame version than for the intra-frame one because it fills the

SIMD units more intensively, and the SIMD units consume

more than the scalar pipeline.

For comparison, the results for the Intel Core i7-4850HQ,

using SSE4.1 instructions (same vector length as ARM NEON

vectors) are also included. Even if the i7 is competitive with

the ARM big cores in term of energy-per-bit (Eb), these

results show it is not well suited for the low power SDR

systems because of its high power requirements. Table III

shows a performance comparison (throughput, latency) with

TABLE III
COMPARISON OF 8-BIT FIXED-POINT DECODERS WITH INTRA-FRAME

VECTORIZATION. N = 32768 AND R = 5/6.

Decoder Platform Freq. SIMD Ti (Mb/s) l (µs)

[15] i7-2600 3.4Ghz SSE4.1 204 135

this work i7-4850HQ 3.3Ghz SSE4.1 580 47

this work A15 1.1Ghz NEON 70 391

this work A57 1.1Ghz NEON 73 374

the dynamic intra-frame decoder of [15]. On a x86 CPU, our

dynamic decoder is 2.8 times faster than the state-of-the-art

decoder. Even if we used a more recent CPU, we also used

the same set of instructions (SSE4.1) and the frequencies are

comparable.

Figure 3 shows the energy-per-bit consumption depending

on the frame size N for the fixed rate R = 1/2. In general,

the energy consumption increases with the frame size. For

small frame sizes (N from 28 to 214), the inter-frame SIMD

outperforms the intra-frame SIMD. This is especially true

for N = 28 which has a low ratio of SIMD computations

over scalar computations in the intra-frame version. As the

frame size increases, the ratio of SIMD vs scalar computations

increases as well. At some point around N = 216 the intra-

frame implementation begins to outperform the inter-frame

one, because the data for the intra-frame decoder still fits in

the CPU cache, whereas the data of the inter-frame decoder

does not fit the cache anymore. In our case (8-bit fixed point

numbers and 128-bit vector registers) the inter-frame decoders

require 16 times more memory than the intra-frame decoders.

Then, for the frame size N = 220, both intra and inter-frame

decoders now exceed the cache capacity and the RAM power

consumption becomes more significant due to the increased

number of cache misses causing RAM transactions. In general

the code generation is effective on the intra-frame strategy

whereas it is negligible on the inter-frame version of the code.

Considering those previous observations, it is more energy

efficient to use inter-frame strategy for small frame sizes,

 0

 10

 20

 30

 40

 50

28 210 212 214 216 218 220

E
n

e
rg

y
-p

e
r-

b
it
 (

n
J
)

Codeword size (N)

Total (cluster + memory)

intra dyn.

intra gen.

inter dyn.

inter gen.
1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

12%

28 210 212 214 216 218 220

P
e

rc
e

n
ta

g
e

 o
f

e
n

e
rg

y
-p

e
r-

b
it
 (

n
J
)

Codeword size (N)

Memory only

Fig. 3. Variation of the energy-per-bit for different frame sizes and impl.:
intra-/inter-frame, dyn. code on/off, on A15 @ 1.1GHz. Fixed rate R = 1/2.

0

5

10

15

20

25

30

intra dyn.

inter dyn.

intra dyn.

inter dyn.

intra dyn.

inter dyn.

intra dyn.

inter dyn.

E
n
e
rg

y-
p
e
r-
b
it
 (
n
J)

ARM Cortex-A7

zHM054 zHM055zHM052 zHM053

0

5

10

15

20

25

30

intra dyn.

inter dyn.

intra dyn.

inter dyn.

intra dyn.

inter dyn.

intra dyn.

inter dyn.

ARM Cortex-A15

zHG0.1 zHG1.1zHM008 zHM009

Fig. 4. Variation of the energy-per-bit (Eb) depending on the cluster
frequency (dynamic code, intra-, inter-frame). A7 performance is on the left
and A15 on the right. N = 4096 and R = 1/2. Dark colors and light colors
stand for CPU cluster and RAM energy consumption, resp.

whereas it is better to apply intra-frame strategy for larger

frame sizes (comparable energy consumption with much lower

latency).

Figure 4 shows the impact of the frequency on the energy,

for a given value of frame size N = 4096 and code rate

R = 1/2. On both A7 and A15 clusters, the supply voltage

increases with the frequency from 0.946V to 1.170V. The

A7 LITTLE cluster shows that the energy consumed by

the system RAM is significant: At 250MHz it accounts for

half of the energy cost. Indeed, at low frequency, the long

execution time due to the low throughput causes a high

dynamic RAM refreshing bill. It is therefore more interesting

to use frequencies higher than 250MHz. For this problem size

and configuration, and from an energy-only point of view, the

best choice is to run the decoder at 350MHz. On the A15 big

cluster, the energy cost is mainly driven by the CPU frequency,

while the RAM energy bill is limited compared to the CPU.

Thus, the bottom line about energy vs frequency relationship

is: On the LITTLE cluster it is more interesting to clock the

CPU at high frequency (higher throughput and smaller latency

for a small additional energy cost); On the big cluster, where

the RAM consumption is less significant, it is better to clock

the CPU at a low frequency.

In Figure 5 the energy-per-bit cost decreases when the

code rate increases. This is expected because there are many

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1/10
2/10

3/10
4/10

5/10
6/10

7/10
8/10

9/10

E
n
e
rg

y
-p

e
r-

b
it
 (

n
J
)

Rate (R = K / N)

A57 intra dyn.

A57 inter dyn.

A7 intra dyn.

A7 inter dyn.

A53 intra dyn.

A53 inter dyn.

Fig. 5. Variation of the energy-per-bit (Eb) for N = 32768 depending on
the rate R = K/N (various impl.: intra-, inter-frame, code gen. on). Running
on A7, A53 and A57 @ 450MHz.

Larger
SNR range

Lower memory
footprint

Lower latency
Lower energy

per bit

Higher
throughput

Fig. 6. Ranking of the different approaches along 5 metrics. In red, inter-
frame vectorization performance and in blue, intra-frame performance. Solid
color is for the dynamic versions, dotted is for the generated versions. Each
version is sorted along each of the 5 axes and the best version for one axe is
placed further from the center.

more information bits in the frame when R is high, making

the decoder more energy efficient. With high rates, the SC

decoding tree can be pruned more effectively, making the

decoding process even more energy efficient. Figure 5 also

compares the ARM A7, A53 and A57 clusters for the same

450MHz frequency (note: this frequency is not available on

the A15). The LITTLE A7 is more energy efficient than the

big A57, and the LITTLE A53 is itself more energy efficient

than the LITTLE A7 (EbA53
< EbA7

< EbA57
).

Figure 6 presents a qualitative summary of the charac-

teristics of the different code versions, for intra-/inter-frame

vectorization, generated or dynamic code. For instance, if the

size of the memory footprint is an essential criterion, the

dynamic intra-frame code exhibits the best performance.

To sum up, the dynamic implementations provides efficient

trade-off between throughput, latency and energy depending

on code length. It was demonstrated by previous bench-

marks. Both implementations provide low-energy and low-

power characteristics compared to previous works in the field

on x86 processors [14]–[19]. Whereas the throughput on a

single processor core is reduced compared to x86 implemen-

tations, ARM implementations must fulfil a large set of SDR

applications with limited throughputs and where the power

consumption matters. Finally, it is important to notice that

multi-core implementations of the proposed ARM decoders is

still possible on these ARM targets to improve the decoding

throughputs.

VII. CONCLUSION AND FUTURE WORK

This paper presented for the first time a study comparing

performance and energy consumption for software Successive

Cancellation Polar decoders on big.LITTLE ARM32 and

ARM64 processors. We proposed a new decoder implementa-

tion, and showed how decoding performance, throughput and

decoder implementation correlate for a range of applicative

parameters, software optimizations and hardware architectures.

ACKNOWLEDGEMENTS

This study has been carried out with financial support from the French
State, managed by the French National Research Agency (ANR) in the frame
of the ”Investments for the future” Programme IdEx Bordeaux - CPU (ANR-
10-IDEX-03-02).

REFERENCES

[1] G. Wang, M. Wu, B. Yin, and J. R. Cavallaro, “High throughput low
latency LDPC decoding on GPU for SDR systems,” in Proc. of the IEEE

GlobalSIP Conf., 2013.
[2] B. Le Gal and C. Jego, “High-throughput multi-core LDPC decoders

based on x86 processor,” IEEE TPDS, vol. 27, no. 5, pp. 1373–1386,
2016.

[3] B. L. Gal and C. Jego, “High-throughput LDPC decoder on low-power
embedded processors,” IEEE Comm. Letters, vol. 19, no. 11, pp. 1861–
1864, 2015.

[4] D. Yoge and N. Chandrachoodan, “GPU implementation of a pro-
grammable turbo decoder for software defined radio applications,” in
Proc. of the IEEE VLSI Design Conf., 2012.

[5] M. Wu, G. Wang, B. Yin, C. Studer, and J. Cavallaro, “HSPA+/LTE-
A turbo decoder on GPU and multicore CPU,” in Proc. of the IEEE

ACSSC, 2013.
[6] E. Arikan, “Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,” IEEE

TIT, vol. 55, no. 7, pp. 3051–3073, 2009.
[7] A. Mishra, A. J. Raymond, L. G. Amaru, G. Sarkis, C. Leroux,

P. Meinerzhagen, A. Burg, and W. Gross, “A successive cancellation
decoder ASIC for a 1024-bit polar code in 180nm CMOS,” in Proc. of

the IEEE A-SSCC, 2012.
[8] C. Leroux, A. J. Raymond, G. Sarkis, I. Tal, A. Vardy, and W. J. Gross,

“Hardware implementation of successive-cancellation decoders for polar
codes,” Springer JSPS, vol. 69, no. 3, pp. 305–315, 2012.

[9] A. Raymond and W. Gross, “A scalable successive-cancellation decoder
for polar codes,” IEEE TSP, vol. 62, no. 20, pp. 5339–5347, 2014.

[10] B. Li, H. Shen, D. Tse, and W. Tong, “Low-latency polar codes via
hybrid decoding,” in Proc. of the IEEE ISTC Symp., 2014.

[11] B. Yuan and K. Parhi, “Low-latency successive-cancellation polar de-
coder architectures using 2-bit decoding,” IEEE TCS, vol. 61, no. 4, pp.
1241–1254, 2014.

[12] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar
decoders: Algorithm and implementation,” IEEE JSAC, vol. 32, no. 5,
pp. 946–957, 2014.

[13] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “A 237 Gbps unrolled
hardware polar decoder,” Electronics Letters, vol. 51, no. 10, pp. 762–
763, 2015.

[14] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. Gross, “Fast polar
decoders: Algorithm and implementation,” IEEE JSAC, vol. 32, no. 5,
pp. 946–957, 2014.

[15] P. Giard, G. Sarkis, C. Thibeault, and W. Gross, “Fast software polar
decoders,” in Proc. of the IEEE ICASSP, 2014.

[16] G. Sarkis, P. Giard, C. Thibeault, and W. Gross, “Autogenerating
software polar decoders,” in Proc. of the IEEE GlobalSIP Conf., 2014.

[17] B. Le Gal, C. Leroux, and C. Jego, “Software polar decoder on an
embedded processor,” in Proc. of the IEEE SiPS Work., 2014.

[18] ——, “Multi-Gb/s software decoding of polar codes,” IEEE TSP, vol. 63,
no. 2, pp. 349–359, 2015.

[19] A. Cassagne, B. Le Gal, C. Leroux, O. Aumage, and D. Barthou,
“An efficient, portable and generic library for successive cancellation
decoding of polar codes,” in Proc. of the Springer LCPC Work., 2015.

[20] AFF3CT, “AFF3CT: The first software release,” 2016. [Online].
Available: http://dx.doi.org/10.5281/zenodo.55668

[21] E. Arikan, “Systematic polar coding,” IEEE Comm. Letters, vol. 15,
no. 8, pp. 860–862, 2011.

[22] A. Alamdar-Yazdi and F. Kschischang, “A simplified successive-
cancellation decoder for polar codes,” IEEE Comm. Letters, vol. 15,
no. 12, pp. 1378–1380, 2011.

[23] A. M. Wyglinski, M. Nekovee, and T. Hou, Cognitive radio communi-

cations and networks: principles and practice. Academic Press, 2009.
[24] P. Dutta, Y.-S. Kuo, A. Ledeczi, T. Schmid, and P. Volgyesi, “Putting the

software radio on a low-calorie diet,” in Proc. of the ACM SIGCOMM

HotNets Work., 2010.
[25] S. Shaik and S. Angadi, “Architecture and component selection for SDR

applications,” IJETT, vol. 4, no. 4, pp. 691–694, 2013.

