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Abstract: The aim of the paper is to propose a new approach to forecast the energy consumption
for the next day using the unique data obtained from a digital twin model of a building. In the
research, we tested which of the chosen forecasting methods and which set of input data gave the
best results. We tested naive methods, linear regression, LSTM and the Prophet method. We found
that the Prophet model using information about the total energy consumption and real data about
the energy consumption of the top 10 energy-consuming devices gave the best forecast of energy
consumption for the following day. In this paper, we also presented a methodology of using decision
trees and a unique set of conditional attributes to understand the errors made by the forecast model.
This methodology was also proposed to reduce the number of monitored devices. The research that
is described in this article was carried out in the context of a project that deals with the development
of a digital twin model of a building.

Keywords: energy consumption forecasting; residential building energy consumption; digital-twin
model; time series forecasting

1. Introduction

The electric energy consumption profile in residential buildings in Poland has changed
more in recent years than during the previous several decades [1]. During the last two
years, the biggest changes were related to the epidemic period and the transition to remote
work that have taken place [2]. The electrification of heating in buildings (e.g., heat pumps,
air conditioning) has a significant impact on changing the shape of the electricity demand
profile [3]. Social behaviour (remote work, longer working day) also affects the daily
demand for electric energy [4]. Forecasting the demand for electricity is carried out at the
level of the power system [5], by the transmission system operator (TSO) and DSM/DSR
service aggregators, by energy sellers and distributors (to plan the sales volume), in local
government units [6] and in large industry (to plan the purchase volume) [7]. For individual
customers (residential buildings), the forecast of annual energy consumption is sufficient
in order to select the appropriate tariff. So far, forecasting the daily electric energy demand
has not been needed.

The increase in the installed capacity of micro photovoltaic sources in buildings
changes methods of settlement for the energy fed into the grid from these sources. This
change is most often less beneficial for prosumers, e.g., selling energy at the market price.
In Poland, the sale of surplus energy from micro photovoltaic sources begins in 2022 [8].
Therefore, it will be most cost-effective to use the energy directly in the building or store
it in batteries. Consequently, there is a need for daily energy consumption forecasting
in buildings. Forecasting the daily demand for electricity may also be used for energy
consumption reduction methods and planning the use of energy storage. In addition, it is
possible to estimate the energy consumption of devices that have the largest share in energy
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consumption and indicate it to the user. This information is of great importance in planning
the daily energy consumption by individual devices (based on intelligent recommendation
system) in the context of balancing energy with a photovoltaic. Predicting the energy
usage in order to use it directly in the building, along with solutions empowering the
smaller prosumers in the context of selling their products, e.g., as presented in [9], can give
the prosumers the most out of their product, and it can encourage others to install micro
photovoltaic sources.

1.1. Research Background

The research presented in this article was carried out as part of a larger scientific
project. The project’s main task was to develop a model of the building in the digital
twin convention [10]. As part of the conducted project, we installed an electric energy
consumption monitoring system for the entire building and for almost all electrical devices
in the selected buildings. The schema of the digital-twin model is presented in Figure 1.
The energy usage data from different devices were monitored and stored in the databases.

Figure 1. Schema of the digital-twin model of a building.

The most important feature of the digital-twin model is the ability to analyse data
on an ongoing basis and update daily electricity consumption based on the data. This is
particularly important in the case of a model aimed at reducing electricity consumption,
matching a photovoltaic source to energy demand or the use of electricity storage. In such
cases, the model can be used to control the operation of devices in the building (e.g., by
making suggestions to the user). Because of this, one of the most important modules of
the digital-twin model is the electric energy demand prediction. This is a particularly
important element because in modern buildings, according to currently enforced energy
consumption standards, the most advantageous energy medium is electricity, used both
to power household appliances and heating. Using the measured energy consumption
(current and archival), we conducted prediction studies of electricity demand in the building
for the next 24 h.

The developed solution is dedicated to individual customers—households and small
service facilities. As a result, it was necessary to develop a cheap system—the cost of
installation and operation of which would not exceed the possible economic effect. In this
case, the cost is mainly related to the purchase of measurement and control infrastructure.
Therefore, the proposed solution functions on a limited amount of data—from electricity
meters, weather forecasts and the calendar. It is also worth noting that measuring energy
consumption for almost every device in a residential building is pointless, because we
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estimate that approx. 20% of the devices in a building consume approx. 80% of electricity.
These are usually the same devices, regardless of the building (e.g., heat pump, electric
cooker, washing machine, refrigerator, etc.). Therefore, the measurement should be carried
out only for the most energy-intensive devices. The second issue is energy consumption
by measuring systems. Each measuring point consumes approx. 0.5–1 W, which for
100 devices increases the annual energy consumption to about 400 kWh.

1.2. Aim of the Paper

The article focuses on the module of the digital-twin model, which is responsible for
the electric energy demand prediction. The aim of the paper is to propose our approach for
forecasting energy consumption in residential buildings for the next 24 h and investigate
the usefulness of monitoring the energy consumption of selected household appliances in
order to improve the quality of forecasts.

This problem of forecasting the energy demand has been analysed in the literature
before, but our project has some unique properties, the analysis of which may be useful
in broadening our knowledge on a given topic. Before describing our research, we will
present the current state of knowledge.

1.3. Related Work

Energy usage can be represented as a time series. The classical method for forecasting
this type of data is an ARIMA model. The paper [11] presents the literature survey of using
ARIMA models for the problem of forecasting energy demand. ARIMA was also used for
the problem in papers [12,13]. The paper [14] presents more advanced methods: regression
analysis, decision trees and neural networks. The authors prove that the decision tree
and neural network models may be viable alternatives to the stepwise regression model.
Linear regression and multiple linear regression models were used by many authors for
forecasting energy consumption, e.g., in [15–17].

In [18], the authors present a regression and statistical technique for predicting the
energy usage, which could be used for different types of buildings. Their forecasting
model works only on one dependent variable—daily electricity consumption—and a few
explanatory variables, focused mostly on the weather conditions. This model does not take
into account the energy consumption of the devices.

A very popular model for forecasting energy demand is the long-short term memory
(LSTM) deep learning model. Two different architectures of LSTM were tested in [19].
The authors showed that standard LSTM performed well in one-hour resolution data.
The paper [20] proposed using LSTM to predict energy demand. What is interesting,
the authors also present the explanation of the model based on the attributes from the
t-SNE. The disadvantage may be the fact that t-SNE may produce some non-interpretable
features, which can lead to difficulty in understanding the model. The LSTM method was
also used in [21], together with random forest (RF) and convolutional neural networks
(CNNs). In the literature, we can find a lot of combinations of the LSTM approach with
other neural network models, which are used for electric load forecasing. In [22], the
authors propose a hybrid CNN-LSTM model for short-term forecasting. In their approach,
the CNN layer is responsible for feature extraction, where LSTM is responsible for sequence
learning. Another hybrid model—Multi-Sequence LSTM with recurrent neural network
(RNN)—was proposed in [23]. The hybrid approach was also presented in [24] where
LSTM was combined with the stationary wavelet transform (SWT) technique.

A different neural network—Elman neural network—with K-medoids algorithm was
proposed in [25] as a forecasting prosumer model. The authors of [26] propose using a
deep learning model based on the multi-headed attention with the convolutional recurrent
neural network for forecasting the residential energy consumption. The proposed solution
takes into account not only the whole energy consumption time series, but also data
about the usage of groups of devices. The experiments were based on the dataset that
included an additional three sub-meters—for devices in the kitchen, in the laundry room
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and the last corresponding to an electric water-heater and air-conditioner. However,
the used dataset did not contain information about the energy usage of each appliance
separately, but only about the total energy consumption for each of the three groups.
Furthermore, it is important to highlight that the used dataset of the UCI household
electric power consumption concerned the measurements gathered between December
2006 and November 2010. Since then, energy consumption characteristics may have
changed significantly, especially after the COVID-19 pandemic, which caused us to change
our habits (remote work, longer working day). For this reason, these data may already
have become outdated.

Another approach to the specific problem is presented in [27]. The authors did not
use Machine Learning or Artificial Intelligence models but, using the experts’ analysis of
different factors and socio-demographic factors, they created a statistical model (Bayesian
model) to predict the energy consumption. In the paper [28], the authors present their agent-
based model to simulate the household electricity usage behaviour in several cold regions.
The model includes basic information about the residents, their energy-saving awareness,
their usage of appliances and the impact of energy-saving management. This model,
however, was created based on a questionnaire survey. The advantage of this approach
is the fact that the data were obtained from many people (362 valid questionnaires). It
would be difficult to monitor so many buildings using sensors, especially if we would like
to monitor all the devices used in the home, but, on the other hand, data from surveys is
not as accurate as data obtained from monitoring sensors. It is also important to point out,
that the authors created a general model, not one model for each location. In the paper [29],
the authors proposed their approach for modelling the electrical energy consumption
profile of residential buildings in Iran. The authors developed a bottom-up method. They
created different profiles that consider the number of residents. The models also include
the usage of the appliances. However, the proposed models do not operate on changing
time series data and do not include real energy usage of the devices. The contribution of the
paper focuses on creating profiles for different buildings and not a time series forecasting
model. From the cited papers that concern modelling the electrical energy consumption
profiles, we can see that including information about the energy usage of the appliances
is an important factor that should be taken into account. In [30], a review of modelling
home energy management systems (HEMS) was presented. The authors indicate that a
significant barrier to the deployment of HEMS can be the problem of modelling the energy
usage of each device. Because of this, many works in the literature simplified this problem,
and the proposed solutions use only groups of devices. This problem can be eliminated by
including incoming, up-to-date data about each of the devices.

A review of forecasting in energy storage applications can be found in [31]. The
authors indicate that using new AI algorithms can be considered one of the most promising
directions in the field. However, the paper highlights the importance of using explainable
AI. The paper [32], reviews the time series forecasting techniques for building energy
consumption. The nine forecasting techniques based on the machine learning are analysed.
The review did not include the Prophet algorithm that was analysed by us, because this
algorithm was proposed in the year of publishing the review. The Prophet model was used
in [33] for long-term peak load forecasting in powerplants. The paper indicates that the
Prophet model outperforms the well-established Holt–Winters model. The Prophet was
also proposed for electrical load forecasting for data of the Elia grid in the paper [34]. It
was also successfully used for short-term forecasting for the energy production from the
renewable energy sources by the authors of [35]. A similar study—forecasting photovoltaic
panel output using Prophet—was presented in [36]. As far as we know, in the literature
the Prophet algorithm was not used for the problem of forecasting energy demand in the
residential buildings.

Several studies describing the problem of energy demand forecasting are focused
on predictive forecasting in industry and not in homes or flats. The paper [11] presents
a survey of methods used for energy demand predictions in manufacturing industries.
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The authors present the set of generic forecasting methods, but also some specifically
tailored to the problem methods. As it was highlighted in [37], 81% of their reviewed
research was focused on the educational buildings or/and commercial buildings. Only
19% of them were focused on residential buildings. This shows that when it comes to
predicting energy consumption in residential homes, our knowledge is still limited, and the
focus should be on this research. Additionally, this same paper indicates that the energy
consumption predictions for residential building are needed because they represent 21% of
the total energy consumption in the US, which is greater than the share of commercial and
industrial buildings.

1.4. Contribution

The summary of the main contribution is as follows.

• We propose an approach for forecasting the energy consumption for the next day
that is based on data obtained from the digital-twin model of a building. Thanks to
this, we can use data describing the energy consumption of the devices used in the
building together with data describing the whole energy consumption of the location
and the weather data. As far as we know, this approach is unique in comparison with
other work.

• In our approach, we focus mostly on residential buildings. In the paper [37], it was
highlighted that this direction of research is very important because of the high energy
consumption share of this sector. The paper also points out that accurate energy
demand predictions in residential houses could be highly beneficial if the forecasts
were used to implement successful energy reducing strategies.

• In the research, we used different forecasting methods: naive and linear regression,
highly-used LSTM networks (used in [20,21]), but also the Prophet method [38] that,
to the best of our knowledge, was not described in the literature in the context of
forecasting energy demand in the buildings.

• The proposed models give satisfactory results, and for three models from four loca-
tions, we obtained the expected effectiveness of the forecasts (the goal was to obtain
less than 25% error).

• In the paper, we also propose our methodology for explaining the model in the
interpretable way. As it was mentioned in [37], a lot of data-driven prediction models
are black-box models, so they provide limited understanding of the situations, when
the model makes a mistake. In our research, we address this problem.

• We use our explanatory methodology in order to limit the number of monitored devices.

2. Materials and Methods

In the research, we considered data from seven different locations. In each of them,
the most energy-intensive devices were equipped with the energy consumption meters.
Furthermore, the energy consumption for the whole location was monitored. The energy
information was saved in the database every few seconds. The data were stored in the
InfluxDB database and visualised in the Grafana environment.

Due to the errors of information gathering meters, and after choosing only non-
commercial buildings, we used data from four different locations in our research. In our
experiments we will refer to them as A,B, C and D. The characteristic of the locations is
as follow:

• Location A—flat in a block of flats, 3 people (family 2 + 1).
• Location B—flat in a block of flats, 2 adults.
• Location C—modern detached house, approximately 120 m2 with electric heating,

3 people (family 2 + 1).
• Location D—detached house, approximately 140 m2, 4 people (family 2 + 2).
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The summary of a type of location and characteristic of observed daily energy con-
sumption can be found in Table 1. As can be seen, energy consumption is higher for houses
than for flats.

Table 1. Summary of location characteristics. The type of location, minimum, mean, median and
maximum values of observed daily energy consumption are presented for each location.

Location Type Min. Energy
[kWh]

Mean Energy
[kWh]

Median Energy
[kWh]

Max. Energy
[kWh]

A Flat 2.14 6.64 6.52 13.89
B Flat 1.34 3.66 3.30 10.44
C House 3.92 17.19 17.68 29.68
D House 6.68 14.65 14.63 34.62

All the buildings are located in the Silesian voivodeship. The gathered datasets
consider the period from 1 March 2021 to 28 October 2021. However, due to the lack of
some measurements, especially these from the first months of gathering data, and due to
some errors in data, the further considered period of data was individual for each location.

A digital-twin model was created for the specific locations, so for C and D it was
created for the whole building, and for locations A and B only for the specific flats (not the
whole building). However, in order to simplify the nomenclature, we will continue to use
the term “digital-twin of the building” regardless of whether it was created for the house
or for a flat. Moreover, the prediction of energy consumption was completed separately for
each location, i.e., for locations C and D the aim was to predict the energy demand for the
whole building, and for locations A and B the aim was to predict the energy demand for
the flat.

2.1. Data Preparation

In the first step of the data preparation process, we aggregated the energy-consumption
data into hourly intervals for each location. We aggregated data using Grafana, and the
data about energy consumption was saved in incremental format. Thanks to this, we could
impute missing data, because we had the value before the data gap and the incremented
value after the data gap. Based on this information, we could retrieve the information
about how much energy was used during the missing period. The missing data were
imputed using linear interpolation. We also saved the information about which hourly
consumptions were imputed and which are the real values from the database.

In Figure 2 we present the decomposed energy consumption time-series for each
location. We present the trend and weekly seasonality components of the time-series.
We can observe that the characteristic for each location, especially in terms of weekly
seasonality, is different for each location.

In the next step, we added the historical data about weather. We used the information
about the temperature that was measured in each hour and the percentage value of the
overcast. The historical weather data were the same for all locations because all of them
were located close to each other.

In our research, we wanted to predict energy consumption for the next day, so the
data had to be aggregated into the daily periods. We added up the energy consumption
for each day, calculated the percentage of imputed values for each day, and calculated
new attributes describing minimal, maximal and mean values of temperature and overcast
for each day. We removed from the data on days for which we had less than 24 hourly
observations (mostly the first and the last day from the whole dataset).

We used the information about the percentage of the imputed values to decide which
data should be used in training and testing the created predictive models. In order to
explain this, we make a small reference to the data format used by LSTM (long short-term
memory) models.
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In our research, we wanted to use LSTM models. These models are learning from
historical data. For each data point, a new vector of historical values (inputs) has to be
created. We decided that our historical horizon would be equal to two weeks, so the
model learns based on the last 14 values. In our research, we made an assumption that
the predictions should be made for the next day, and no later than at 6 p.m. should the
user get a forecast of their usage for the next day. Because of this, making prediction for a
specific day, the real value from the day before the considered day could not be used for
training and recalculating the model. This causes the input for the LSTM model to have
values from 15 to 2 days before the considered day. The output of the model was an energy
consumption for the specific day. For each day from the available data, we created the
row with all inputs (14 values) and output (1 value). We used the information about the
percentage of the imputed values in order to decide which of these rows could be used
by us in our further experiments. All the rows for which the output has the percentage
of the imputation higher than 50% were removed from the dataset (because a forecasting
model should not learn imputed values, but the real values observed in the location). Then,
for each row, we calculated the mean value of percentage imputed values for the inputs.
If the mean value was higher than 50%, the rows were also removed. We adopted a limit
of 50% because we assumed that if more than 50% of values—based on which the daily
energy usage was calculated—were imputed, then we did not have a realistic value for the
day. We wanted to reduce the situation where the model learns from too much artificially
entered data while also not deleting too much data.
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Figure 2. Decomposition of energy consumption time-series for each location. Trend and weekly
seasonality are presented.
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After data cleaning, we had the data points to be used in our experiments. In our
research, we used different types of models, but in order to compare results from different
approaches, we used the same dataset for each.

For the data describing the total energy consumption in the location and the histor-
ical weather data, we added the information about the energy consumption for the top
10 most energy-consuming devices. These top devices were chosen based on the total
energy consumption calculated on the whole available dataset. Because of this, some of
these devices (e.g., air conditioning) had varied consumption during the months under
consideration, and some appliances had similar energy consumption throughout the whole
period. The top 10 most energy-consuming devices in each location were:

• In location A—computer, shower light, recess lighting, outdoor lighting, dinner room
lighting, washing machine, Wi-Fi socket, socket under desk, bedroom lamp, hood.

• Location B—fridge, socket for RTV, dishwasher, socket no. 1, socket no. 2, microwave,
socket no. 3, air conditioner, socket no. 4, socket no. 5.

• Location C—socket for hot water tank, heater in the bathroom, radiator heater, fridge,
socket for the desk, dishwasher, induction stove, fridge in the pantry, socket under TV,
socket in the office.

• Location D—fridge, TV-Audio, dishwasher, fridge no. 2, dryer, boiler, TV in kitchen,
kettle, socket near the desk, alarm power supply.

It is worth noting that the given descriptions are how the individual sockets are
described in the database. However, it is not possible to verify whether the household
members have plugged in different devices to particular sockets.

In the data, for some locations, there was also visibly interesting behaviours, such
as a sudden decrease in energy consumption for several devices at the same time. These
situations took place during the summer months (July, August), so we assume that it was
caused by the holiday and the departure of the residents of the building.

To sum up, for each location we created a separate dataset. Each of them included
about 7 months of data describing total energy consumption in the location for each day.
Any missing data were imputed using linear interpolation. To the dataset we added the
historical weather data for each day (mean, minimum and maximum value of temperature
and overcast during the day). Then, we also added the data about energy consumption of
the top 10 energy-consuming devices. We also stored the information about which data
points could be used in training and testing created models. These dates were chosen based
on the information about the number of imputed values.

2.2. Experiments

In our research, we wanted to check the best available way to predict the total energy
consumption for the next day in the residential buildings. Our aim was to obtain the mean
error of the predictions lower than 25%. We wanted to specify which algorithm will give the
best results and also what set of the attributes will improve forecasts. In our experiments
we wanted to check how the quality of the models changes with incoming data so that
the models, if possible, were recalculated for every new data point. We also made the
assumption that the first models can be calculated if we have at least 14 data points to
train the model on. Because we decided to create data points where inputs have the last
historical data from 15 days before, for the LSTM model, in order to start training the model
we needed at least 29 days of data. The models were created separately for each location.

2.2.1. Baseline and Linear Regression Models

Our baseline was the naive model. It predicted the value observed in this location
exactly a week before. Therefore, if the model had to predict a value for the Saturday, it took
the energy consumption from the Saturday of the week before and used it as the prediction.

We also created four models that made predictions based on linear regression. The dif-
ference between them was on the number of data used to create linear regression. The used
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data periods were: 30 days, 14 days, 7 days and 4 days. These are the number of days back
to the forecast day based on which the linear regression was determined.

2.2.2. LSTM and Prophet

In the research, we considered two more advanced methods: LSTM network and
Prophet. They are typical methods used in the task of time series forecasting.

The LSTM network is a state-of-the-art sequential deep learning method. It is capable
of working well on linear and non-linear time series [39]. In our experiments, we used the
structure proposed by the Telemanom authors [40]. Our network had two LSTM layers:
both had 80 units, and after each of them we added the Dropout layer with dropout equal
to 0.3. The activation method was linear. When compiling, we used the adam optimizer
and mean squared error (MSE) as a loss metric. For fitting the model we used 35 epochs, a
batch size of 64 and split the data into train and validation data in the proportion 85% to
15%. The training of the model stopped when, during 10 epochs, the MSE metric was not
improving. The LSTM models were implemented using Python and Keras with Tensorflow.
For each model created from the deep networks, input values were standardized before
training the model. The standardization was based on the training dataset.

Prophet [38] is an open-sourced library created by Facebook in 2017. Its goal is to
analyse time series data and forecast its future values. The Prophet models take into account
trends, seasonality and holidays. Multiple seasonalities can be included. The Prophet
model can be represented as decomposed time series, and they can be described with the
following equation:

y(t) = g(t) + s(t) + h(t) + εt (1)

where g(t) represents trend function, s(t) represents seasonality (daily, weekly, yearly),
h(t) represents the holiday effect and εt is the error. An in-depth description of the Prophet
algorithm can be found in the paper [41].

The important feature is that the library is possible to use without expert knowledge
about time series forecasting. The first results can be obtained without setting any pa-
rameters. The user can provide only historical data of a time series in an adequate data
format, and they will obtain the forecast of future values. Thanks to this feature, it can be
very useful for users without a data science background. On the other hand, the Prophet
library is highly customizable, so the more experienced users can add much additional
information, that can be useful for the model. The library is available in Python and R.
In our experiments, we used the R library version.

In order to check the improvement of forecasts when using different sets of the
attributes, we have considered the following cases:

• Using information only about the total energy consumption.
• Using information about the total energy consumption and the weather.
• Using information about the total energy consumption and the energy consumption

of the top 10 energy-consuming devices.
• Using information about the total energy consumption, the weather and the energy

consumption of the top 10 energy-consuming devices.

The additional attributes (weather attributes and the consumption of the top 10 de-
vices) were added as new channels in LSTM models and as additional regressors in Prophet
models. In these cases, we were working with multichannel time series and multiple input
forecasting problem.

As it was mentioned before, we wanted to check the quality of the models when new
data arrives that may have different characteristics from previous data. Because of this,
the LSTM models were recalculated every day, if possible. The quality in time of Prophet
models was evaluated based on the cross_validation method that is available in this
library. Cross validation for Prophet was also performed every day, if possible, and this
simulated a situation where, as new data arrives, the Prophet model is retrained.
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The Prophet forecasts also have information about a confidence interval of the predic-
tion. We decided that if the confidence interval is too wide (it is bigger than the predicted
value), then we assume that the model could not make a proper decision (we consider it as
a lack of the forecast).

We carried out the experiment using two programming languages. The experiments
for naive method, linear regression models and Prophet models were conducted using the
R language, and LSTM models were created using Python language and Keras library.

3. Results

In our experiments, we considered four locations. We will refer to them as A, B, C
and D. The goal of the task was to obtain the mean error of the predictions lower than
25%. The results of the MAPE (mean absolute percentage error) metric for each dataset and
each model are presented in Table 2. The results that achieve MAPE lower than the 25%
threshold are marked with bold font.

In Tables 2–4 we use abbreviations for the experiment names. The meaning of these
names are:

• val_week_before—Naive model. It predicted the value that was observed in the location
a week before.

• lr_30day—Linear regression calculated on 30 days of data.
• lr_2weeks—Linear regression calculated on 2 weeks of data.
• lr_1week—Linear regression calculated on 1 week of data.
• lr_4days—Linear regression calculated on 4 days of data.
• simple_prophet—Prophet model that used only information about the total energy

consumption.
• weather_prophet—Prophet model that used information about the total energy con-

sumption and the weather.
• devices_prophet—Prophet model that used information about the total energy consump-

tion and the energy consumption of the top 10 energy-consuming devices.
• devices_weather_prophet—Prophet model that used information about the total en-

ergy consumption, the weather and the energy consumption of the top 10 energy-
consuming devices.

• simple_telemony—LSTM model that used only information about the total energy consumption.
• weather_telemony—LSTM model that used information about the total energy con-

sumption and the weather.
• devices_telemony—LSTM model that used information about the total energy consump-

tion and the energy consumption of the top 10 energy-consuming devices.
• devices_weather_telemony—LSTM model that used information about the total en-

ergy consumption, the weather and the energy consumption of the top 10 energy-
consuming devices.

We also wanted to analyse which method gave the biggest number of days for which
the error was below the threshold of 25%. The results are presented in Table 3.

As mentioned before, we made the assumption that if the confidence interval of any
Prophet model is bigger than predicted value, then we consider it as a lack of the prediction.
In Table 4 we present the percent of days for which the models could not give the forecast.
This situation considers mostly Prophet models (because of our assumption). If there was a
lack of forecast for LSTM models, there was a missing value in the energy consumption
data of the devices and, because of this, the prediction could not be achieved.
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Table 2. The MAPE (mean absolute percentage error) of different model predictions made for 4 locations:
A, B, C and D. Results that achieve the MAPE < 25% assumption are marked in bold.

Experiment MAPE A MAPE B MAPE C MAPE D

val_week_before 43.4 47.66 51.58 31.93
lr_30days 33.58 38.93 40.1 29.6
lr_2weeks 40.86 40.85 41.78 29
lr_1week 43.91 52.25 35.71 32.32
lr_4days 47.58 62.01 32.27 35.75
simple_prophet 34.71 40.69 31.32 27.32
weather_prophet 34.51 40.80 38.93 27.23
devices_prophet 19.9 43.90 18.17 11.1
devices_weather_prophet 20.81 44.57 19.34 12.07
simple_telemony 52.02 49.02 60.54 40.24
weather_telemony 41.54 49.55 51.28 41.13
devices_telemony 39.69 37.44 70.31 41.53
devices_weather_telemony 56.15 39.14 50.19 37.23

Table 3. The percentage of days for which an error of less than 25% was obtained, determined for
each location and each experiment. The results that obtained the highest value for each location are
marked in bold.

Experiment % Days A % Days B % Days C % Days D

val_week_before 47.37 40.4 48.72 58.17
lr_30days 51.97 41.06 47.86 55.56
lr_2weeks 50.66 34.44 45.3 56.21
lr_1week 40.13 29.8 49.57 47.06
lr_4days 37.09 27.15 48.72 45.75
simple_prophet 55.73 42.98 60.71 61.44
weather_prophet 55.56 44 53.33 62.75
devices_prophet 71.71 38.18 77.98 91.5
devices_weather_prophet 68.21 38.89 76.85 88.24
simple_telemony 37.5 36.42 40.17 52.29
weather_telemony 44.08 39.74 35.9 39.22
devices_telemony 46.71 49.67 43.48 54.25
devices_weather_telemony 41.45 45.03 35.65 50.33

Table 4. The percent of forecasts that could not be obtained from the model.

Experiment % Missing
Days A

% Missing
Days B

% Missing
Days C

% Missing
Days D

val_week_before 0.00 0.00 0.00 0.00
lr_30days 0.00 0.00 0.00 0.00
lr_2weeks 0.00 0.00 0.00 0.00
lr_1week 0.00 0.00 0.00 0.00
lr_4days 0.00 0.00 0.00 0.00
simple_prophet 13.82 24.50 28.21 0.00
weather_prophet 17.11 33.77 23.08 0.00
devices_prophet 0.00 27.15 6.84 0.00
devices_weather_prophet 0.66 28.48 7.69 0.00
simple_telemony 0.00 0.00 0.00 0.00
weather_telemony 0.00 0.00 0.00 0.00
devices_telemony 0.00 0.00 1.71 0.00
devices_weather_telemony 0.00 0.00 1.71 0.00

From the experiment conducted (Table 2), we can see that for locations A, C and D,
at least one approach gave the result of MAPE lower than the 25% threshold. It means that
for three of four locations, the initial aim of obtaining errors below 25% has been achieved.
We can also see that for these three locations, the best results of MAPE were achieved for
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the experiment “devices_prophet”—the experiment where the Prophet method was used
with the information about the total energy consumption and the energy consumption
of the top 10 energy-consuming devices. What was surprising was that using additional
information about weather did not improve the results.

We did not achieve acceptable results for location B. The MAPE results for all methods
were relatively high. We assume that this is due to the very irregular usage of energy by
the households.

From Table 3 we can see that the models “devices_prophet” obtained the best results
concerning the percentage of days for which an error of less than 25% was observed. This
situation was not applicable only for location B.

Table 4 presents information about the percent of situations when the forecast could
not be obtained. This situation is applicable only for the Prophet models or the situation
when there was some lack of data in the information about the devices’ energy consump-
tion. Based on Table 4, we conclude that considering only the Prophet models, the best
results were obtained for the “device_prophet” models. Only for two locations, were there
situations of missing forecasts for this experiment version. It is important to notice that
location B’s results were not satisfying. For two of the four locations, the “device_prophet”
did not give any missing forecasts.

Based on the results presented in Tables 2–4 we state that the best approach from
the tested ones, for predicting energy usage for the next day, is the method that used the
Prophet model with the information about the total energy consumption and the energy
consumption of the top 10 energy-consuming devices.

3.1. Analysis of Made Mistakes

As mentioned before, the acceptable error was below 25%. We wanted to check in
which situations the best approach—devices_prophet—for each location made mistakes > 25%.
We wanted to check if we could find any pattern in when models make good or bad predic-
tions. This information could be treated as a knowledge discovery task that would help us
understand the model. On the other hand, it could also be used as an additional input to
the model, which could correct the predictions.

In order to do this, we designed a classification task to describe the situation in which
the model was able to give satisfactory predictions (with error below 25%) and when the
model was not able to do this. For each location and its devices_prophet model, we marked
the prediction as Correct when the error for the prediction was below 25%, and Incorrect
when the error for the prediction was equal or greater than 25% or the model did not give
any prediction. This was treated as two labels in our classification task. Then, we created
attributes that could describe how energy was consumed on a given day. We wanted to
analyse if the consumption for the whole location was unusual and if the consumption for
the specific device from the top 10 energy-consuming devices was uncommon. In order to
analyse these situations, for the whole energy-consumption and for each device, we created
the decision attribute that described the energy usage comparing with the consumption
from different days (from a whole dataset). We distinguished five different situations:

• Consumption was minor—the consumption was in the range (−∞, µx − σx), where
µx is the mean value of the time series x and σx is the standard deviation of the time
series x. Time series x is the time series describing 14 days before the day for which
the attribute value was determined.

• There was a decrease in consumption—the consumption was in the range
(µx − σx, µx − 1

2 σ̇x].
• The consumption was standard—the consumption was in the range

(µx − 1
2 σ̇x, µx +

1
2 σ̇x].

• There was an increase in consumption—the consumption was in the range
(µx +

1
2 σ̇x, µx + σx].

• The consumption was intense—the consumption was in the range
(µx + σx, ∞).
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Then we created another set of attributes. They described the change of a trend of the
time series. We distinguished five different situations of trend change:

• The trend was stable—the current consumption and the consumption for the day
before were described as “standard”.

• The trend was declining—the current consumption and the consumption for the day
before were described as “minor” or “decrease”.

• The trend was increasing—the current consumption and the consumption for the day
before were described as “increase” or “intense”.

• There was a change in the trend—the current consumption was described differently
than the consumption for the day before.

It is worth recalling that for each attribute describing the energy consumption of a
location, two variables were created—one descriptively describing the energy consumption
compared to the energy consumed in the last 14 days and a second variable describing a
trend in energy consumption. For the devices_prophet model, there were 11 attributes that
were time series: 1 feature described the total energy consumption and 10 features described
the energy consumption of 10 devices. It means that a dataset with 22 conditional attributes
was used to create a new decision model to determine when the model makes errors.

For the decision model, we used decision trees and their implementation in the rpart
library that is available in R language. We discuss the results for two locations: B and C.
We chose them because they represent different effectivenesses of devices_prophet models.
For the location B, the Prophet model gave the worse results among the locations considered
(MAPE was equal to 43.90%). For the location C, the Prophet model gave relatively good
results (MAPE was equal to 18.17%). The generated decision models are presented in
Figures 3 and 4. The decision tree for location B had a balanced accuracy equal to 0.80 and
the decision tree for location C had the balanced accuracy equal to 0.79. Balanced accuracy
was calculated on the whole dataset.

Figure 3. Decision tree explaining when the device_prophet models made mistakes for location B.
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Figure 4. Decision tree explaining when the device_prophet models made mistakes for location C.

The balanced accuracy of both trees shows that it is possible to find some patterns that
describe at which points the Prophet model was wrong and at which points it gave good
enough predictions. Some patterns can be difficult to interpret clearly, e.g., it can be difficult
for us to understand why the Prophet model for location C gave more bad predictions
when the dishwasher trend was stable than when there was a change in the trend. Note,
however, that the change in energy consumption and trend characteristics (new attributes)
were based on a comparison with the consumption period of the last 14 days. The tree
model was learning on the whole data, and it is worth remembering that the stable value
over this 14-day period was not necessarily stable in our understanding in the context of
the whole dataset.

We can also see that the decision model interpreting the Prophet predictions was much
more complex for location B than for location C. The Prophet model for location B did not
give satisfactory results, so it means that the model could not find very strong patterns in
energy consumption in this location. The tree decision model also shows that the model
made mistakes in many different situations, and was not so easy to find the patterns that
the model could learn. In Figure 5 we can see the energy consumption time series for
the whole location and for the devices that were mentioned in the decision tree model
(Figure 3). We can see that the trends are not very stable, and because of this, the Prophet
model probably could not make sufficiently satisfactory predictions.
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Figure 5. Time series for the whole energy consumption in location B and time series for the devices
and attributes used in the decision tree (3)—microwave, fridge, socket number 1, socket number 2.

3.2. Limiting Number of Monitored Devices Based on Tree Decision Models

As shown in Section 3.1, the decision tree models with properly prepared attributes
could satisfactory be used in order to describe the situations in which the main prediction
model (in our case Prophet model) makes mistakes. The good quality of the models led us
to consider whether the decision models might be able to help us reduce the number of
devices monitored at the location.

It was already mentioned in the Introduction, that each measuring point consumes
approximately 0.5–1 W, which, for 100 devices, increases the annual energy consumption to
about 400 kWh. Furthermore, each measuring device costs money. Therefore, reducing the
number of monitored devices is beneficial in terms of electricity consumption (paid for by
the residents of the location) as well as the cost of purchasing new monitoring equipment
(which the installer may buy).

We can imagine the situation that some monitored devices, even if they have large
total energy consumption, may be irrelevant to the predictions because of their constant
value of energy consumption or random consumption that could not be predicted by the
Prophet model. We want to eliminate these kinds of devices from the monitored group.
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We checked how the device information obtained from the trees when the Prophet model
makes mistakes could be useful to limit monitored devices.

We conducted the following experiments. Each dataset (for each location A, B, C, D)
was divided into several train-test datasets. The pairs train-test were divided by the dates:
“31 May 2021”, “30 June 2021”, “31 July 2021”, “31 August 2021”.

Thus, for each location, the first dataset was divided so that all data points before
or equal “31 May 2021” were in the train dataset, and the rest were in the test dataset.
The second pair was in the train dataset with data points before “1 July 2021”, and the rest
was the test data, and so on. In this way, we obtained 16 test cases (four train-test splits for
four locations).

Having a single train-test set, we built a decision tree on a train dataset that described
the moments when the Prophet model made mistakes. The conditional attributes were
created as for the trees in Section 3.1, i.e., there were features describing the change in
energy consumption values as well as the trend, while the decision value was whether the
model made an error >25% or not. Then on the test part, we studied two cases:

• How will the Prophet model perform on the test part when we use only the time series
of the appliances whose features appeared in the decision tree and the time series
describing the total energy consumption of the location to build a new model?

• How will the Prophet model perform on the test part when we do not use the time
series of appliances whose features appeared in the decision tree?

Additionally, we investigated the predictions on the test set when all 10 appliances
were used in building the model.

For each experiment, we built a decision tree for each date in a train dataset and
ultimately used the last tree that had a Ballance Accuracy (BACC) ≥ 0.8 and the tree height
was greater than 1. That is, for example, if the split between train and test set was for the
date 31 August 2021 and the last tree that met the above conditions was built for the set for
dates earlier than 20 August 2021, we used the tree built 20 August 2021 and not the one
built 31 August 2021.

Therefore, for example, for location “A” we split the set at the beginning so that the last
date of the training set was 31 May 2021. The rest of the set was the test set. The idea here
is that on the data from March to 31 May 2021 we monitor the total energy consumption
for the whole location, and we monitor these 10 devices. After that time, we generate a
tree, and the installer removes monitoring for those devices that appeared in the tree, or we
leave for further monitoring only those devices that appeared in the tree (these are the two
versions of experiments). The third variant was when we did not change anything and
continued monitoring the 10 devices in the Prophet model. Then, for this location, we did
the same for the train-test split by date 30 June 2021, then 31 July 2021 and 31 August 2021.
Note that for each split, the test set was different.

The results of using the proposed decision trees in order to limit the number of moni-
tored devices are presented in Figure 6. For each location and each split date, the results
of MAPE are presented. Because the test sets for each train-test split are different, we
should not compare the MAPE values of the same version of the experiment for different
threshold dates. Instead, we can compare how the three versions of the experiments came
out, for each location and each train-test split date.

We can see that in most cases, the version of the experiment where we removed the
information about the devices that appeared in the tree from the Prophet model gave results
very close to when we monitored 10 devices. The results for location B can be ignored,
because for it, the Prophet model did not perform well from the start. In the graphs, we
have marked with a dashed line our error threshold, which is 25%. We can see that for
locations A, C and D, the errors are below this threshold.
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Figure 6. Value of mean absolute percentage error (MAPE) for locations (A–D) and each split date
for train-test datasets. The dashed line indicates the maximum error threshold—25%.

In Table 5 we present the number of devices that appeared in the decision trees for each
location and each split date. We observe that for each case, at least one device was included
in the tree, and it never happened that all devices appeared in the decision tree. The median
of unique devices in the tree was 4, the mean was 3.7 and the maximum value was 6.
Translating this to our problem of reducing the number of monitored devices using the
decision tree, we can say that we were always able to remove at least one device from the
observations, and it never happened that the tree indicated a recommendation to remove
monitoring of all devices. The maximum number of devices removed from monitoring
was six, and in most cases it did not exceed four devices. Such recommendations seem
reasonable and not too extreme.

Table 5. The number of unique devices that appeared in the decision trees for each location and each
split date.

Location A Location B Location C Location D

31 May 2021 4 1 2 3
30 June 2021 5 3 3 4
31 July 2021 4 3 4 4

31 August 2021 4 6 5 4

To summarize this part from a practical point of view: if an installer wanted to forecast
the energy consumption of a location, they would start by monitoring the energy consump-
tion of all N appliances in the location. Then, on the basis of this data, the Prophet model
would be built, which would start forecasting the energy consumption for the following
day. With the forecasts, we could assess on which days the Prophet model gave acceptable
forecasts (below the assumed error) and when it did not. With information from a longer
period of time, e.g., half a year, the installer could generate a decision tree that describes
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when the Prophet model makes unacceptable mistakes. Devices whose characteristics
would be found in the decision tree would be removed from further monitoring, resulting
in only M devices being monitored, where M ≤ N. If M < N, then the residents are saving
money (because they do not pay for the energy consumption of (N − M) sensors) and for
the installer, who can use (N − M) sensors in another location.

4. Discussion

Our research has shown that adding data on the energy consumption of the 10 most
energy-intensive devices improves the results of the energy demand forecast for the follow-
ing day. Energy consumption data for the appliances has a greater impact on prediction
performance than weather forecast data. In the literature, we can find a lot of research
dedicated to forecasting the daily energy demand in non-residential buildings. In the
paper [42], we can see that the MAPE results for compared algorithms were 3.11–5.45%,
with the lower error obtained for the support vector regression (SVR) model. The authors
of [43] present the results obtained for an Artificial Neural Network (ANN) with MAPE
3.5–9.00%. In paper [44], the authors present an ensemble of various neural networks for
prediction of heating energy consumption. In their research, they obtained MAPE errors of
5.25–5.43%. The MAPE results presented in [42–44] are lower than the results presented
in this paper; however, the mentioned articles considered the non-residential buildings.
Predicting the energy consumption in non-residential buildings is less complex than in
residential buildings because of the relatively lower variability of occupant behaviour [45].
Because of this, the errors presented in the article can be higher than in the works based on
data from commercial buildings. Forecasting the day-ahead energy usage in a residential
building was presented in [46] with MAPE 12.36% for the multiple linear regression. It
is important to point out that the results were obtained for 3 years of data, where our
results were obtained for less than 6 months of data. As mentioned in the review [37],
current research about data-driven building energy consumption was performed with
various: types of data (real, simulated), granularities, types of buildings and sets of features.
Because of this, it is difficult to compare the results with different papers. Additionally,
only 19% of the studies reviewed in [37] focused on residential buildings. In the analysed
papers, we also did not find work where real data about energy usage of the appliances in
residential buildings were used to forecast the overall energy in the location. Because of
this, we find our work novel and interesting for further development in the field.

In our research, we showed that the Prophet algorithm can be successfully used to
forecast the energy demand in residential buildings. As far as we know, this method has not
yet been presented in this field. Using an appropriate set of features, the Prophet model can
give better results than the LSTM method. In the literature, we did not find a comparison
of these two methods in the aspect of energy predictions.

We found some limitations of our research that we want to address. The study was
performed for a few locations and for a limited period of time (the dataset did not cover the
whole year). These limitations are a direct result of the fact that the research was carried
out as part of a project. The number of monitored residential buildings within the project
was limited due to the need to sensor multiple devices, which generated costs. This project
ended in October 2021 and therefore the data collected does not cover the whole year.
However, the limited dataset should not affect the reliability of the results, as the results
presented were derived from a model that was retrained daily. This means that the model
was re-learning as new data came in, so if the characteristics of the time series change,
the model should adapt to the changing data.

Another limitation of the proposed solution is the cost of creating the digital-twin
model of the building. This model assumes the observation of the energy consumption
of many appliances used in the house, which generates the cost of purchasing sensors.
However, our predictive model assumes the use of only information from the 10 most
energy intensive appliances. In addition, we proposed a method for minimizing the number
of monitored devices in the future.
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5. Conclusions

Our research looks at how daily electricity consumption can be forecast for the next
day, particularly in the context of a digital-twin model of a building.

First, our research has shown that monitoring energy consumption not only for an
entire location, but also for selected appliances, can significantly improve the ability to
predict future energy usage. Energy consumption data for the top 10 most energy-intensive
appliances has a greater impact on prediction performance than weather forecast data.

Secondly, we have shown that the Prophet model, using the right dataset, gives (in
most cases) the best results for predicting energy consumption for the next day. This
method gave better forecast values than the LSTM neural network model and simple
forecasting methods such as a naive model forecasting the value of the week before,
and linear regression. An additional plus of Prophet is that it can easily be used by
companies that do not have a large Data Science background. To the best of our knowledge,
Prophet has never yet been described in the literature as a method for forecasting electricity
demand, so the results data may be interesting in the context of further research work in
this area.

Third, we have shown how model errors can be interpreted. Such knowledge can
be used for future model corrections and to understand what activities of residents may
affect the model forecast. The decision models also show which features (use of which
devices) affect the forecast performance the most. This may indicate that these appliances
are sometimes used in unpredictable ways, causing the model to fail to learn the energy
consumption pattern of that appliance.

Last but not least, we used the proposed decision tree models describing the situations
in which Prophet model makes a mistake, in order to limit the number of monitored devices.
Devices whose features appeared in the tree would be removed. Removing these device
data from the Prophet model gave, in most cases, MAPE results similar to those obtained
when information about all devices was used in the Prophet model. By leaving only these
devices and removing the others, we have seen a significant drop in forecast performance.
We assume that such results are due to the fact that the devices that appear in the decision
trees have a large variance of energy consumption and therefore are not useful for the
Prophet model. The reduction of monitored appliances can be beneficial in reducing the
energy consumption of the monitoring sensors themselves. Removed sensors can also
be reused in other locations, generating savings. We assume that in order to validate the
approach in more detail, a minimum dataset of one year would be needed to observe the
characteristics of device use for the entire year. There were no data describing winter in
our dataset and this could change the results obtained. We believe that it would be best to
generate a tree for the whole year’s data.

To sum up: in our research, the proposed Prophet model, which uses information
about the total energy consumption and the energy consumption of the top 10 energy-
consuming devices, gave the best results for three out of four locations. For these three
locations, the MAPE was below 25%, which was the error threshold which we have found
to be acceptable. For this reason, we consider our research to have been successful at this
stage. Future research will focus on the problem of using decision models, which interprets
Prophet model errors, to improve forecast quality.
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