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Abstract. Energy efficiency is increasingly critical for embedded sys-
tems and mobile devices, where their continuous operation is based on
battery life. In order to increase energy efficiency, chip manufacturers are
developing heterogeneous CMP chips.

We present analytical models based on an energy consumption met-
ric to analyze the different performance gains and energy consumption
of various architectural design choices for hybrid CPU-GPU chips. We
also analyzed the power consumption implications of different processing
modes and various chip configurations. The analysis shows clearly that
greater parallelism is the most important factor affecting energy saving.

Keywords: Analytical model, CPU-GPU architecture, Performance,
Power estimation, Energy.

1 Introduction

Energy efficiency is one of the most challenging problems confronting multi-core
architecture designers. Future multi-core processors will have to manage their
computing resources while maintaining their power consumption within a power
budget. This constraint is forcing the microprocessor designers to develop new
computer architectures that deliver better performance per watt rather than
simply yielding higher sustainable performance.

Recent research shows that integrated CPU-GPU processors have the poten-
tial to deliver more energy efficient computations, which is encouraging chip
manufacturers to reconsider the benefits of heterogeneous parallel computing.
The integration of CPU and DSP cores on a single chip has provided an at-
tractive solution for the mobile and embedded market segments, and a similar
direction for CPU-GPU computing appears to be an obvious move. It is known
that the integration of thin cores and fat cores on a single processor achieves
a better performance gain per watt. For example, a study of analytical mod-
els of various heterogeneous multi-core processor configurations found that the
integration of many simplified cores in a single complex core achieved greater
speedup and energy efficiency when compared with homogeneous simplified cores
[1]. Thus, it is generally agreed that a heterogeneous chip integrating different
core architectures, such as CPU and GPU, on a single die is the most promising
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technology [2–5]. Chip manufacturers such as Intel, NIVIDIA, and AMD have
already announced such architectures, i.e., Intel Sandy Bridge, AMD’s Fusion
APUs, and NVIDIA’s Project Denver.

Despite some criticisms [6, 7] Amdahl’s Law [8] is still relevant as we enter
a heterogeneous multi-core computing era. Amdahl’s Law is a simple analytical
model that helps developers to evaluate the actual speedup that can be achieved
using a parallel program. However, the future relevance of the law requires its
extension by the inclusion of constraints and architectural trends demanded by
modern multiprocessor chips. Here, we extend a study conducted by Woo and
Lee [1] and apply it to the case of hybrid CPU-GPU multi-core processors.

We investigate how energy efficiency and scalability are affected by the power
constraints imposed on modern CPU-GPU based heterogeneous processors. We
present analytical models that extend Amdahl’s Law by accounting for energy
limitations and we analyze the three processing modes available for heteroge-
neous computing, i.e., symmetric, asymmetric, and simultaneous asymmetric.

The rest of this paper is organized as follows. Section 2 presents an ana-
lytical model of a symmetric multi-core processor that reformulates Amdahl’s
Law to capture power constraints. In Section 3 we continue by applying energy
constraints to an analytical model of an asymmetric processor. In Section 4 we
study how performance and power consumption are affected by simultaneous
asymmetric processing. In Section 5 we compare the three analytical models.
Section 6 presents related works and Section 7 concludes the paper.

2 Symmetric Processors

In this section we reformulate Amdahl’s Law to capture the necessary changes
imposed by power constraints. We start with the traditional definition of a sym-
metric multi-core processor and continue by applying energy constraints to the
equations following the method of Woo and Lee [4].

2.1 Symmetric Speedup

Amdahl’s law posts an upper limit on the symmetric speedup (speedups) that can
be achieved by parallelization of a symmetric multi-core processor, as follows:

Speedups =
1

(1− f) + f
c

(1)

where c is the number of cores, and f is the fraction of a program’s execution
time that is parallelizable (0 ≤ f ≤ 1).

2.2 Symmetric Performance per Watt

To model power consumption in realistic scenarios, we introduce the variable kc
to represent the fraction of power a single CPU core consumes in its idle state
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(0 ≤ kc ≤ 1). In the case of a symmetric processor, one core is active during
the sequential computation and consumes a power of 1, while the remaining
(c−1) CPU-cores consume (c−1)kc. During the sequential computation period,
the processor consumes a power of 1 + (n − 1)kc. Thus, during the parallel
computation time period, c CPU-cores consume c power. It requires (1− f) and
f/c to execute the sequential and parallel codes respectively, so the formula for
the average power consumption Ws of a symmetric processor is as follows.

Ws =
(1− f) · {1 + (c− 1)kc}+ f

c · c
(1− f) + f

c

= (2)

1 + (c− 1)kc(1− f)

(1− f) + f
c

Next, we define the performance per watt (Perf/W) metric to represent the
amount of performance that can be obtained from 1 W of power. The Perf of
a single CPU-core execution is 1, so the Perf /Ws achievable for a symmetric
processor is formulated as follows.

Perf

Ws
=

Speedups
Ws

=
1

1 + (c− 1)kc(1− f)
(3)

2.3 Symmetric Performance Per Joule

The definition of Perf /W metric allows us to evaluate the performance achiev-
able by a derived unit of power (watt). Power is the rate at which energy is
converted, so we can define a Performance per Joule (Perf/J) metric where the
joule is the derived unit of energy, representing the amount of performance stored
in an electrical battery. The Perf /J of a single CPU-core execution is 1, so the
Perf /Js achievable by a symmetric processor is formulated as follows.

Perf

Js
= Speedups · Perf

Ws
=

1

(1− f) + f
c

· 1

1 + (c− 1)kc(1 − f)
(4)

Figure 1 plots the Perf /Js as a function of the number of CPU-cores in a sym-
metric multi-core processor. It is immediately obvious that there is a huge gap
between the Perf /Js obtainable when a high degree of parallelism is available
(f = 0.99) and that when the available parallelism is only 10% less (f = 0.9).
Thus, the major factor affecting the energy saving of mobile devices is the de-
velopment of extremely parallel applications. When an abundance of parallelism
is available (f = 0.99), the Perf /Js increases linearly with the increase in the
number of cores whereas with f < 0.9 the Perf /Js reaches it maximum at a
small number of cores before decreasing slowly.
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Fig. 1. Performance per joule as a function of the number of CPU-cores in a symmetric
multi-core processor when kc = 0.3 and various values of f

3 Asymmetric CPU-GPU Processors

We assume that a program’s execution time can be composed of a time period
where the program runs in parallel (f), a time period where the program runs
in parallel on the CPU cores (α), and a time period where the program runs in
parallel on the GPU cores (1 − α).

To model the power consumption of an asymmetric processor we introduce
another variable, kg, to represent the fraction of power a single GPU-core con-
sumes in its idle state (0 ≤ kg ≤ 1). We introduce two further variables, α and
β, to model the performance difference between a CPU-core and a GPU-core.
The first variable represents the fraction of a program’s execution time that is
parallelized on the CPU-cores (0 ≤ α ≤ 1), while the second variable represents
a GPU core’s performance normalized to that of a CPU-core (0 ≤ β). For exam-
ple, comparing the performance of a single core of Intel Core-i7-960 multi-core
processor against the performance of a single core of a NVIDIA GTX 280 GPU
processor yields values of β between 0.4 and 1.2. Moreover, recent studies such as
[9] show that the GPU processor (NVIDIA GTX 280) achieves only 2.5x speedup
in average compared to multi-core processor (Intel Core-i7-960).

We assume that one CPU-core in an active state consumes a power of 1 and
the power budget (PB) of a processor is 100. Thus, g = (PB−c)/wg is the number
of the GPU-cores embedded in the processor, where variable wg represents the
active GPU core’s power consumption relative to that of an active CPU-core
(0 ≤ wg ≤ 1).

3.1 Asymmetric Speedup

Now, if the sequential code of the program is executed on a single CPU-core
the following equation represents the theoretical achievable asymmetric speedup
(speedupa).
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Speedupa =
1

(1− f) + αf
c + (1−α)f

g·β
(5)

3.2 Asymmetric Performance per Watt

To model the power consumption of an asymmetric processor we assume that
one core is active during the sequential computation and consumes a power of
1, while the remaining c− 1 idle CPU-cores consume (c− 1)kc power and g idle
GPU-cores consume g · wg · kg power. Thus, during the parallel computation
period of the CPU-cores, c active CPU-cores consume c power and g idle GPU-
cores consume g · wg · kg power. During the parallel computation period of the
GPU-cores, g active GPU-cores consume g · wg power and c idle CPU-cores
consume c · kc power. Let Ps, Pc and Pg denote the power consumption during
the sequential, CPU, and GPU processing phases, respectively.

Ps = (1− f){1 + (c− 1)kc + g · wg · kg}
Pc =

αf

c
{c+ g · wg · kg}

Pg =
(1 − α)f

g · β {g · wg + c · kc}

It requires (1 − f) to perform the sequential computation, and αf
c and (1−α)f

g·β
to perform the parallel computations on the CPU and GPU, respectively, so the
average power consumption Wa of an asymmetric processor is as follows.

Wa =
Ps + Pc + Pg

(1− f) + αf
c + (1−α)f

g·β
(6)

Consequently, Perf /Wa of a an asymmetric processor is expressed as

Perf

Wa
=

Speedupa
Wa

=
1

Ps + Pc + Pg
(7)

3.3 Asymmetric Performance per Joule

Based on our definition of performance per joule, the
Perf /Ja of a an asymmetric processor is expressed as follows.

Perf

Ja
= Speedupa · Perf

Wa
= (8)

1

(1− f) + αf
c + (1−α)f

g·β
· 1

Ps + Pc + Pg
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Fig. 2. Performance per joule as a function of the number of CPU-cores in an asym-
metric processor when α = 0.1, kc = 0.3, kg = 0.2, wg = 0.25, β = 0.5 and various
values of f

Figure 2 plots the Perf /Ja as a function of the number of CPU-cores in an
asymmetric processor. It can be observed again that high energy efficiency in a
heterogeneous system is obtainable only if hybrid parallel programming models
will be available for building extremely parallel programs. Such programs will
need the support of runtime systems to find the optimal chip configuration for
maximum battery continues operation. For example, in Figure 2 the optimal
configuration (for f = 0.99) is achieved for 28 CPU-cores and 312 GPU-cores.

4 CPU-GPU Simultaneous Processing

In the previous analysis we assumed that a program’s execution time is divided
into three phases as follows: a sequential phase where one core is active, a CPU
phase where the parallelized code is executed by the CPU-cores and a GPU
phase where the parallelized code is executed by the GPU-cores. However, the
aim of hybrid CPU-GPU computing is to divide the program while allowing the
CPU and the GPU to execute their codes simultaneously.

4.1 Simultaneous Asymmetric Speedup

We conduct our analysis assuming that the CPU’s execution time overlaps with
the GPU’s execution time. Such an overlap occurs when the CPU’s execution

time αf
c equals the GPU’s execution time (1−α)f

g·β . Let α′ denote the value of α
that applies to this equality:

α′ =
c

g · β + c
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Now, if the sequential code of the program is executed on a single CPU-core the
following equation represents the theoretical achievable simultaneous asymmetric
speedup (speedupsa).

Speedupsa =
1

(1 − f) + α′f
c

=
1

(1− f) + f
g·β+c

(9)

4.2 Simultaneous Asymmetric Perf/W

To model the power consumption of an asymmetric processor for the case of
simultaneous processing, we assume that one core is active during the sequential
computation and consumes a power of 1, while the remaining c−1 idle CPU-cores
consume (c−1)kc power and g idle GPU-cores consume g ·wg ·kg power. During
the parallel computation period, c active CPU-cores consume c power and g
GPU-cores consume g·wg power. It requires (1−f) to execute the sequential code,

and α′f
c to execute the parallel code on the CPU and GPU simultaneously, so

the formula for the average power consumption Wsa of an asymmetric processor
during simultaneous processing is as follows.

Wsa =
Ps +

α′f
c {c+ g · wg}

(1 − f) + α′f
c

(10)

Consequently, Perf /Wsa of an asymmetric processor during simultaneous pro-
cessing is expressed as

Perf

Wsa
=

Speedupsa
Wsa

=
1

Ps +
α′f
c {c+ g · wg}

(11)

4.3 Simultaneous Asymmetric Perf/J

Based on our definition of performance per joule, the
Perf /Jsa of an asymmetric processor in the simultaneous processing mode is
expressed as follows.

Perf

Jsa
= Speedupsa · Perf

Wsa
= (12)

1

(1 − f) + α′f
c

· 1

Ps +
α′f
c {c+ g · wg}

Figure 3 shows the Perf /Jsa as a function of number of CPU-cores with an
asymmetric processor where the CPU and the GPU are in simultaneous pro-
cessing mode. As expected, a low degree of parallelism decreases significantly
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Fig. 3. Performance per joule as a function of the number of CPU-cores for an asym-
metric processor in simultaneous processing mode when α = 0.1, kc = 0.3, kg =
0.2, wg = 0.25, β = 0.5 and various values of f

the energy efficiency. On the other hand, when an abundance of parallelism is
available the energy efficiency is very high. In simultaneous processing mode,
the obtainable Perf /Jsa decreases slowly with the increase in the number of
CPU-cores. This phenomenon means that it is not always necessary to support
a dynamic reconfigurable processor and an associated runtime optimizer when
finding the best chip configuration, because all possible chip configurations yield
optimal or near-optimal configuration.

5 Synthesis

Figure 4 shows the three Perf /J graphs for the analytical models investigated,
i.e., symmetric (s), asymmetric (a) and simultaneous asymmetric (sa). This com-
parison shows that greater parallelism yields better energy efficiency and offers
more chip configurations choices, while encouraging the search or better scalable
software with energy saving. Simultaneous processing yields an excellent Perf /J
with peak performance using a chip configuration of a single CPU-core. It then
decreases as the number of CPU-cores increases untill the point where all cores in
the chip are CPU-cores, which is also the intersection point with the symmetric
Perf /J . In contrast, the asymmetric processor delivers poor Perf /J at extreme
points where the number of CPU-cores is small or large, which requires that the
dynamic configuration is identified and set for optimal chip organization.

6 Related Work

Hill and Marty [11] studied the implications of Amdahl’s law on multi-core hard-
ware resources and proposed the design of future chips based on the overall chip
performance rather than core efficiencies. The major assumption in that model
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Fig. 4. Comparison between symmetric Perf/J (s), asymmetric Perf/J (a), and simul-
taneous asymmetric Perf/J (sa) when α = 0.1, kc = 0.3, kg = 0.2, wg = 0.25, β = 0.5
and f = 0.99

was that a chip is composed of many basic cores and their resources can be com-
bined dynamically to create a more powerful core with higher sequential per-
formance. Using Amdahl’s law, they showed that asymmetric multi-core chips
designed with one fat core and many thin cores exhibited better performance
than symmetric multi-core chip designs. For example, with f = 0.975 (the frac-
tion of computation that can parallelize) and n = 256 (Base Core Equivalents),
the best asymmetric speedup was 125.0, whereas the best symmetric speedup
was 51.2. Individual core resources could be dynamically combined to increase
performance of the sequential component, so the performance was always im-
proved. In our example, the speedup was increased to 186.0.

Woo and Lee [1] developed a many-core performance per energy analytical
model that revisited Amdahl’s Law. Using their model the authors investigated
the energy efficiency of three architecture configurations. The first architecture
studied contained multi-superscalar cores, the second architecture contained
many simplified and energy efficient cores, and the third architecture was an
asymmetric configuration of one superscalar core and many simplified energy ef-
ficient cores. The evaluation results showed that under restricted power budget
conditions the asymmetric configuration usually exhibited better performance
per watt. The energy consumption was reduced linearly as the performance was
improved with parallelization scales. Furthermore, improving the parallelization
efficiency by load balancing among processors increased the efficiency of power
consumption and increased the battery life.

Sun and Chen [11] studied the scalability of multi-core processors and reached
more optimistic conclusions compared with the analysis conducted by Hill and
Marty [11]. The authors suggested that the fixed-size assumption of Amdahl’s
law was unrealistic and that the fixed-time and memory-bounded models might
better reflect real world applications. They presented extensions of these models
for multi-core architectures and showed that there was no upper bound on the
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scalability of multi-core architectures. However, the authors suggested that the
major problem limiting multi-core scalability is the memory data access delay
and they called for more research to resolve this memory-wall problem.

Esmaeilzadeh et al. [12] performed a systematic and comprehensive study to
estimate the performance gains from the next five multi-core generations. Accu-
rate predictions require the integration of as many factors as possible. Thus, the
study included: power, frequency and area limits; device, core and multi-core
scaling; chip organization; chip topologies (symmetric, asymmetric, dynamic,
and fused); and benchmark profiles. They constructed models based on pes-
simistic and optimistic forecasts, and observations of previous works with data
from 150 processors. The conclusions were not encouraging. Over five technol-
ogy generations only a 7.9x average speedup was predicted with multi-core pro-
cessors, while over 50% of the chip resources will be turned off due to power
limitations. Neither multi-core CPUs nor many-core GPUs architectures were
considered to have the potential for delivering the required performance speedup
levels.

Cho and Melhem [13] studied the mutual affects of parallelization, program
performance, and energy consumption. Their analytic model was applied to a
machine that could turn off individual cores, while others do not make this
assumption. The main prediction was that greater parallelism (a greater ratio of
the parallel portion in the program) and more cores helped reduce energy use.
Moreover, it was shown that is possible to reduce the processor speeds and gain
further dynamic energy reductions before static energy becomes the dominant
factor determining the total amount of energy used.

Hong and Kim [14] developed an integrated power and performance modeling
system (IPP) for the GPU architecture. IPP is an empirical power model that
aims to predict performance-per-watt and the optimal number of active cores for
bandwidth-limited applications. IPP uses predicted execution times to predict
power consumption. In order to predict the execution time the authors used
a special-purpose GPU analytical timing model. Moreover, to obtain the power
model parameters, they designed a set of synthetic micro-benchmarks that stress
different architectural components in the GPU.

The evaluation of the proposed model was done by using NVIDIA GTX280
GPU. The authors show that by predicting the optimal number of active cores,
they can save up to 22.09% of runtime GPU energy consumption and on aver-
age 10.99% of that for five memory bandwidth-limited benchmarks. They also
calculated the power savings if a per-core power gating mechanism is employed,
and the result shows an average of 25.85% in energy reduction. IPP predicts the
power consumption and the execution time with an average of 8.94% error for
the evaluated benchmarks GPGPU kernels. It can be used by a thread scheduler
in order to manage the power system more efficiently or by the programmers to
optimize program configurations.



64 A. Marowka

7 Conclusions

We investigated three analytical models of symmetric, asymmetric, and simul-
taneous asymmetric processing. These models extended Amdahl’s Law for sym-
metric multi-core and heterogeneous many-core processors by taking in account
power constraints. The analysis of speedup and the performance per watt of
various chip configurations suggests that future CMPs should be a priori de-
signed to include one or a few fat cores alongside many efficient thin cores to
support energy efficient hardware platforms. On the software side, this study
shows without a doubt that increased parallelism should not be the exception,
because the standard parallel programming paradigm can create energy saving
applications that can be used to efficiently underpin future multi-core processor
architectures.
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