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angles when it describes the correlation between particles belonging, respectively, to the

same jet and to two almost back-to-back jets. We present a new approach to resumming

large logarithmically enhanced corrections in both limits that exploits the relation between

the energy correlations and four-point correlation functions of conserved currents. At
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when four operators are light-like separated in a sequential manner. At small angle, in

a conformal theory, we obtain the EEC from resummation of the conformal partial wave

expansion of the correlation function at short-distance separation between the calorimeters.

In both cases, we obtain a concise representation of the EEC in terms of the conformal data
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1 Introduction

Event shapes are important QCD observables describing the properties of the energy flow in

hadronic final states of e+e− annihilation. Their measurement at PEP, KEK, PETRA, SLD

and LEP has improved our understanding of jets and allowed for a precise determination

of the strong coupling constant.

The energy-energy correlation (EEC) is one of the best studied event shapes. It mea-

sures a differential angular distribution of particles that flow through two calorimeters

separated by the angle 0 < χ < π and is defined as an energy-weighted cross section corre-

sponding to the process e+e− → V → a + b + everything (with V being a virtual photon

γ∗ or a Z0 boson) [1, 2]

EEC(χ) =
∑
a,b

∫
dσV→ a+b+X

EaEb
Q2

δ(cos θab − cosχ) , (1.1)

where Ea and Eb are the energies of the detected particles, Q is the total centre-

of-mass energy and the differential cross-section is normalized in such a way that∑
a,b

∫
dσV→ a+b+X = 1. The measurements of the EEC yield a smooth positive defi-

nite function of the angle 0 < χ < π that is picked around the end points [3]. This
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property has a transparent explanation in perturbative QCD. At high energy, the final

states are dominated by two-jet events in which most of the energy is carried by particles

moving along two different directions defining the jet axis. In this case, the sum in (1.1)

receives a dominant contribution from energetic particles belonging either to the same jet

(for χ→ 0), or to the two different back-to-back jets (for χ→ π).

Being an infrared safe observable, the EEC can be computed perturbatively in powers

of the coupling constant. Neglecting hadronization corrections, we can take the sum in (1.1)

to run over the final states consisting of an arbitrary number of massless quarks and gluons.

To find the corrections to (1.1) we have to compute the differential cross-section and, then,

integrate it over the available phase space with the energy weight factor. The calculation

becomes rather cumbersome beyond the leading order in the coupling due both to the

intricate cancellation of infrared and collinear divergences at the intermediate steps and

the necessity for summation over all final states.

The leading-order (LO) correction to the EEC has been found four decades ago [1, 2],

the next-to-leading (NLO) correction was computed analytically only recently [4, 5].1 It

provides a reliable QCD prediction for correlation angle 0 < χ < π away from the end-

points. In the end-point region, perturbative corrections to the EEC are enhanced by

powers of large logarithms. They originate from the emission of particles with momentum

that is soft compared to the hard scale Q and/or collinear to one of the energetic particles.

Such corrections have to be resummed to all orders. For χ → 0 and χ → π, this can be

done by employing the jet calculus [7–10] and the Sudakov resummation [11–15], respec-

tively. Both approaches rely on a careful separation of the contribution from particles with

different momenta (hard, soft and collinear). The resulting expression for the EEC is given

by a convolution of hard, jet and soft functions satisfying renormalization group evolution

equations. This allows us to express the EEC in the end-point region in terms of a few

functions of the coupling constant (see eqs. (1.4) and (1.5) below).

Another approach to computing the EEC was proposed in [16, 17]. It relies on the

description of the final states of e+e− annihilation in terms of the ‘energy flow operator’

E(~n) [18–22]. This operator measures the energy flux per unit solid angle in a given

direction ~n and it is built from the stress-energy tensor Tµν(x) in a certain limit. It allows

us to express the EEC in terms of the Wightman (non-time-ordered) four-point correlation

function, schematically

EEC(χ) ∼
∫
d4x eix·q gµν〈0|Jµ(0)E(~n1)E(~n2)Jν(x)|0〉 , (1.2)

where q = (Q,~0) is the total centre-of-mass momentum and the unit vectors ~n1 and ~n2 are

separated by angle χ. In this representation, the U(1) current Jµ creates the final state

out of vacuum2 and the flow operators E(~ni) describe the calorimeters.

The representation (1.2) holds in a generic four-dimensional Yang-Mills theory includ-

ing QCD. In order to apply (1.2), we need the expression for the four-point correlation

1The next-to-next-to-leading correction to the EEC is known numerically [6].
2In general, the Lorentz indices of the currents in (1.2) should be contracted with the polarization vector

of the incoming virtual photon. After averaging over the angular correlations between the final state and

the incoming beams in (1.1), the sum over the polarizations gives gµν .
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functions of the form 〈0|Jµ1(1)Tµ2ν2(2)Tµ3ν3(3)Jµ4(4)|0〉 where the stress-energy tensors

come from the definition of the energy flow operators.3 In general, these correlation func-

tions have a complicated form.

The situation simplifies if the underlying gauge theory enjoys conformal symmetry. In

this case, the correlation function depends on two cross-ratios and it can be described using

the Mellin representation formalism [23]. The energy-energy correlation (1.1) admits a very

compact representation in terms of the corresponding Mellin ampltiude M(j1, j2) [16, 17]

EEC(z) =
1

2(1− z)3

∫
dj1dj2
(2πi)2

M(j1, j2)Γ(1− j1 − j2)

Γ(j1 + j2)[Γ(1− j1)Γ(1− j2)]2

(
z

1− z

)−2−j1−j2
, (1.3)

where z = sin2(χ/2) depends on the correlation angle and the integration runs parallel to

the imaginary axis. The relation (1.3) holds for 0 < z < 1. To extend it to the end points,

we have to add to the right-hand side of (1.3) the Born level contribution [δ(z)+δ(1−z)]/4.

Here the two terms correspond to a = b and a 6= b in the sum (1.1).

At weak coupling, the representation (1.3) allows us to compute the EEC order-by-

order in the coupling constant by replacing the Mellin ampltiude M(j1, j2) by its pertur-

bative expansion. The power of this approach was illustrated by obtaining for the first

time an analytical NLO result [24] and, very recently, NNLO [25] result for the EEC in

maximally supersymmetric Yang-Mills theory (N = 4 SYM).

In theories with broken conformal symmetry, the relation (1.3) holds up to corrections

proportional to the beta function. The comparison of the NLO results for the EEC in

N = 4 SYM [24] and in QCD [4] shows that the two expressions have a very similar

structure — they involve the same type of (polylogarithmic) functions. This suggests that

N = 4 SYM can be used to identify an appropriate basis of functions for the EEC in QCD

beyond the leading order. Moreover, it was conjectured in [24] that, in the back-to-back

region, for χ → π, the EEC in N = 4 SYM describes the maximally transcendental part

of the analogous QCD expression.

In this paper, we apply (1.3) to study the properties of the EEC in the end-point

regions, for χ → 0 and χ → π. We expect that, in both limits, the relation (1.3) should

generate large logarithmically enhanced corrections. The resulting asymptotic expressions

for the EEC should match the analogous expressions obtained using the QCD resummation

technique mentioned above. Thanks to (super) conformal symmetry, they take a particular

simple form in N = 4 SYM.

For small angle χ→ 0, the jet calculus approach leads to4

EEC(χ) =
h(a)

4
z−1+γ̂3(a)/2 , (1.4)

where z = sin2(χ/2)→ 0 and the hard function h(a) = a+O(a2) depends on the coupling

constant a = g2N/(4π2). It was argued in [22] that γ̂3(a) coincides with the anomalous

dimension of the SU(4) singlet twist-two operator with Lorentz spin 3.

3In what follows we refer to Jµ and Tµν as source and calorimeter operators, respectively.
4Note that the jet calculus only describes the leading logarithmic corrections of the form an+1(ln z)n/z.

We show below that the relation (1.4) takes into account all logarithmically enhanced corrections.
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For large angle χ→ π, in the back-to-back region, the Sudakov resummation yields

EEC(χ) =
H(a)

8y

∫ ∞
0

db bJ0(b) exp

[
−1

2
Γcusp(a) ln2(b2/(yb20))− Γ(a) ln(b2/(yb20))

]
, (1.5)

where y = 1− z = cos2(χ/2) vanishes as χ→ π, J0(b) is a Bessel function and b0 = 2 e−γE

is a kinematical factor depending on the Euler constant. The relation (1.5) depends on

three functions of the coupling constant. The functions Γcusp(a) and Γ(a) govern the

large spin asymptotics of the twist-two anomalous dimension (see (2.11) below), they are

known in planar N = 4 SYM for any coupling from integrability [26–29]. The hard function

H(a) = 1+O(a) does not have a simple interpretation, it is usually determined by matching

the resummed expression (1.5) to the result of a fixed order calculation.

The relations (1.4) and (1.5) were derived by analysing QCD evolution of particles

in the final states of e+e− annihilation. At the same time, the relation (1.3) does not

have such an interpretation — it depends on the Mellin amplitude which defines the four-

point correlation function in Euclidean space [23]. Given the complexity of the correlation

functions and the (relative) simplicity of (1.4) and (1.5), the question arises how could the

representation (1.3) reproduce (1.4) and (1.5) in the limit z → 0 and z → 1, respectively,

or equivalently, which properties of the four-point correlation functions are probed in the

two limits.

In this paper, we answer this question by deriving (1.4) and (1.5) from (1.3). We show

that the relation (1.4) follows from the resummation of the OPE of the two calorimeter

operators. In a similar manner, the relation (1.5) follows from the asymptotic behavior

of the four-point correlation function in the limit when the source operators are light-like

separated from the calorimeter operators. As a byproduct of our analysis, we obtain closed

expressions for the hard functions h(a) and H(a) in terms of the conformal data of twist-

two operators. We verify that these expressions are in agreement with the NNLO result

for the EEC in N = 4 SYM.

The paper is organized as follows. In section 2, we analyze the relation (1.3) in the

back-to-back limit z → 1. We use the known result for the four-point correlation function

in the light-like limit to reproduce the relation (1.5). In section 3, we apply the OPE to

obtain a representation of the EEC at small angle as an infinite sum over the conformal

partial waves with even Lorentz spin. Evaluating this sum we arrive at (1.4). In section 4,

we apply the approach of [30] to derive sum rules for a regular part of the EEC and verify

them at three-loop order. Concluding remarks are presented in secton 5. Appendix A

contains some technical details.

2 Energy correlations in the back-to-back region

In this section, we analyze the relation (1.3) at large angle χ → π, or equivalently for

z → 1. We recall that the Mellin amplitude M(j1, j2) defines the four-point correlation

function of the form 〈Jµ1(x1)Tµ2ν2(x2)Tµ3ν3(x3)Jµ4(x4)〉 where the U(1) currents excite the

vacuum to produce the final states in V → a+ b+X and the stress-energy tensors describe
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the calorimeters. Due to its nontrivial Lorentz structure, this correlation function has a

rather complicated form in a generic four-dimensional conformal field theory.

Significant simplification occurs in N = 4 SYM. The conserved currents in this theory

belong to the same stress-energy supermultiplet whose lowest component is a scalar half-

BPS operator of dimension two belonging to the representation 20′ of the R symmetry

SU(4) group. It has the form OIJ = tr(φIφJ) − δIJ tr(φKφK)/6, where φI (with I =

1, . . . , 6) are real scalar fields. As a consequence, the four-point correlation function of

currents can be expressed in terms of the simplest correlation function of the form [31, 32]

〈O(x1)Õ(x2)Õ(x3)O(x4)〉 =
Φ(u, v)

x2
12x

2
13x

2
24x

2
34

, (2.1)

where O(x) and Õ(x) are linear combinations of OIJ(x) and x2
ij = (xi − xj)2. Here the

function Φ(u, v) depends on the cross-ratios

u =
x2

12x
2
34

x2
14x

2
23

, v =
x2

13x
2
24

x2
14x

2
23

, (2.2)

and admits an expansion in powers of the coupling constant a = g2N/(4π2). The Mellin

amplitude entering (1.3) is defined as

Φ(u, v) =

∫
dj1dj2
(2πi)2

uj1vj2M(j1, j2) . (2.3)

In general, M(j1, j2) is a meromorphic function of the complex spins j1 and j2. The

positions at the poles of M(j1, j2) and the corresponding residues encode the information

about the behaviour of the correlation function (2.1) in different OPE limits [23].

2.1 Moments of the energy-energy correlation

Let us show that for χ→ π the EEC is controlled by the behaviour of the Mellin amplitude

M(j1, j2) at small j1 and j2, or equivalently by asymptotics of Φ(u, v) for u→ 0 and v → 0.

For the correlation function (2.1) this corresponds to the limit when the four operators

become light-like separated in a sequential manner, x2
12, x

2
13, x

2
24, x

2
34 → 0.

As was mentioned in the Introduction, for χ → π, the energy-energy correlation re-

ceives the leading contribution from the two-jet events. In this case, the final state consists

of two nearly back-to-back jets accompanied by a soft radiation (see Fig, 1). Since the con-

tribution of soft particles with energy Ea to (1.1) is suppressed by the factor of Ea/Q� 1,

the sum in (1.1) effectively runs over pairs of particles belonging to two different jets. The

correlation angle χ fixes the angular separation between their spacial momenta.

The two-jet cross section admits the following dual description in terms of the correla-

tion function (2.1) (see refs. [33, 34] for a description of scattering amplitudes in coordinate

space). The source operator O(x1) creates fast particles which propagate in the direction

of the two calorimeter operators Õ(x3) and Õ(x4) and, then, get absorbed by the sink

operator O(x4) (see figure 1). In the high-energy limit, the particles propagate close to

the light-cone and, therefore, the source/sink operators become light-like separated from

the calorimeter operators. Notice that the particles carry the color charge of the adjoint
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x1

x2

x3

x4

V

Figure 1. Unitary diagram describing a two-jet cross-section. The graphs to the left and to the right

of the unitary cut (dashed line) describe the scattering amplitude V → everything and its complex

conjugate counter-part. Solid and wavy lines denote collinear and soft particles, respectively. The

grey blog describes the interaction between soft particles. In the dual description, the ‘source

operators’ are located at the points x1 and x4 and the ‘calorimeter operators’ are at the points x2
and x3.

representation of the SU(N). As a consequence, they source a radiation that back reacts on

them. It consists of soft particles as well as collinear particles whose momenta are aligned

with the momenta of the parent particles. In the next subsection, we use this picture to

compute the energy correlations in the back-to-back region.

It proves convenient to introduce the moments of the energy-energy correlations

ẼEC(N) =

∫ 1

0
dz zN−1 EEC(z) (2.4)

=

∫
dj1dj2
(2πi)2

Γ(1− j1 − j2)Γ(N − 2− j1 − j2)

2 [Γ(1− j1)Γ(1− j2)]2Γ(N − 2)
M(j1, j2) , (2.5)

where z = sin2(χ/2) and in the second relation we replaced EEC(χ) with its expres-

sion (1.3). Notice that due to the factor of Γ(N −2) in the denominator, ẼEC(N) vanishes

for N = 1 and N = 2. We are going to exploit this property in section 4.

Because at large N the integral in (2.4) receives a dominant contribution from the

end-point region z ∼ 1, the EEC for χ → π can be found from the large N behaviour of

the moments. Replacing the ratio of Γ−function in (2.5) by their leading asymptotics at

large N we find for N � 1

ẼEC(N) =

∫
dj1dj2
(2πi)2

Γ(1− j1 − j2)

2 [Γ(1− j1)Γ(1− j2)]2
M(j1, j2)N−j1−j2 . (2.6)

At large N the leading contribution to the integral comes from j1,2 = O(1/ lnN). This

allows us to replace the ratio of Γ−functions on the right-hand side of (2.6) by its expansion

– 6 –
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at small ji

Γ(1− j1 − j2)

[Γ(1− j1)Γ(1− j2)]2
= e−γE(j1+j2)

[
1− ζ2

2
(j1 − j2)2 + . . .

]
(2.7)

and expand the moments (2.6) in powers of 1/ lnN .

The leading term of the expansion comes from the first term inside the brackets in (2.7)

ẼEC(N) =
1

2

∫
dj1dj2
(2πi)2

M(j1, j2)N̄−j1−j2 + . . . ,=
1

2
Φ(u, v)

∣∣∣
u=v=1/N̄

+ . . . (2.8)

where N̄ = N eγE and the dots denote subleading corrections suppressed by powers of

1/ lnN . Here in the second relation we applied (2.3) and identified the Mellin integral as

the function Φ(u, v) evaluated for the special values of the cross-ratios u = v = 1/N̄ with

N̄ � 1. It is straightforward to include the subleading corrections to ẼEC(N). They come

from the remaining terms inside the brackets of (2.7) given by homogenous polynomials

in j1 and j2. Notice that powers of j1 and j2 can be generated by applying logarithmic

derivatives with respect to u and v to both sides of (2.3). Therefore, in order to produce

subleading corrections to ẼEC(N), it suffices to replace j1 → u∂u and j2 → v∂v in (2.7),

apply the resulting differential operator to the correlation function Φ(u, v) and replace the

cross-ratios with their values u = v = 1/N̄ . In the next subsection, we derive an expression

for ẼEC(N) that takes into account all subleading corrections.

We conclude that, in agreement with our expectations, the energy-energy correlation

in the back-to-back region is related to the asymptotics of the correlation function (2.1) in

the light-cone limit u = v = 1/N̄ with N̄ = N eγE →∞.

2.2 Correlation function in the light-cone limit

The properties of the correlation functions (2.1) in the light-cone limit x2
12, x

2
23, x

2
34, x

2
41 → 0

have been studied in refs. [35, 36]. In this subsection, we summarize the finding of these

papers and, then, apply them to compute (2.6) at large N .

In the light-like limit, the four operators in (2.1) approach the vertices of a light-like

rectangle. In the Born approximation, for zero coupling, the correlation function (2.1)

is given by the product of four singular scalar propagators connecting the points xi. It

describes the propagation of a free scalar particle along the edges of the light-like rectangle.

Turning on the interaction, we have to take into account the back reaction of the radiation

that the particle creates. This gives the following factorized expression for Φ(u, v) in the

limit u, v → 0

Φ(u, v) =
1

2
H S(u, v) J(u, v) , (2.9)

where each factor on the right-hand side describes the contribution of particles with par-

ticular momenta (hard, soft and collinear) and the factor of 1/2 is introduced for con-

venience. The hard function only depends on the coupling constant. It describes cre-

ation/annihilation of fast particles at points xi.

– 7 –
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The interaction of the fast particles with soft radiation gives rise to the soft function.

It can be expressed in terms of an (appropriately regularized) rectangular light-like Wilson

loop and is given by the Sudakov form factor

S(u, v) = exp

[
−1

2
Γcusp(a) ln(uc0) ln(vc0) +

1

2
Γ(a) ln(uc0) +

1

2
Γ(a) ln(vc0)

]
, (2.10)

where c0 = (b0/2)2 = e−2γE is a kinematical factor depending on the Euler’s constant.

Although this relation holds in a conformal field theory, it can be generalized to theories

with a nonvanishing beta-function [37–40].

The expression (2.10) depends on two functions of the coupling constant known as

the cusp and collinear anomalous dimensions. The same functions control the asymptotic

behaviour of the anomalous dimension of twist-two operators with large spin [41]

γS(a) = 2Γcusp(a)(lnS + γE) + Γ(a) +O(1/S) , (2.11)

and their OPE coefficients [36, 42]5

CS(a)/CS(0) = F 2(a) e−Γ(a)(lnS+γE)−γS(a)γE 2−γS(a)Γ2

(
1− 1

2
γS(a)

)
+O(1/S) , (2.12)

where F (a) is independent on the spin and CS(0) is the coefficient function at zero coupling

(see (3.18) below). We would like to stress that these relations hold for γS(a)/2 < 1. For

larger values of γS(a), the twist-two operators collide with the twist-four operators and the

relations (2.11) and (2.12) are modified [43].

The relation (2.9) can be derived by applying the OPE to the correlation function (2.1)

in the channels x2
12 → 0 and x2

13 → 0. In the light-cone limit, for u → 0 and v → 0, the

dominant contribution in both channels comes from twist-two operators with large spin

S. It can be found explicitly by taking into account (2.11) and (2.12). In this way, we

reproduce (2.9) and (2.10) and, in addition, obtain a prediction for the hard and collinear

functions in terms of the conformal data (the OPE coefficients CS and anomalous dimen-

sions γS) of the twist-two operators.

The resulting expression for Φ(u, v) takes a remarkably simple form [35, 36]

Φ(u, v) =
1

2
F 2(a)

∫ ∞
0

dy1

y1

∫ ∞
0

dy2

y2
S

(
u

y1
,
v

y2

)
f(y1)f(y2) , (2.13)

where S(u, v) is the soft function (2.10) and the hard function H = F 2(a) coincides with the

constant, S−independent part of the OPE coefficients (2.12). The relation (2.13) can be

interpreted as a double OPE expansion of the correlation function. Namely, the integral

over y1 comes from the sum over the twist-two operators with large spins S1 = y1/
√
u

propagating in the OPE channel x2
12 → 0. The function f(y1) describes the large spin limit

of the corresponding conformal block (see (3.5) below)

f(y) = 2yK0(2
√
y) , (2.14)

5For a twist-two operator OS these coefficients are schematically defined as CS ∼
〈OÕOS〉〈OSÕO〉/〈OSOS〉.
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where K0 is the modified Bessel function of the second kind. It satisfies the following re-

lation ∫ ∞
0

dy

y
y−jf(y) = [Γ(1− j)]2 . (2.15)

In the same manner, the integral over y2 in (2.13) comes from the sum over the twist-two

operators with large spins S2 = y2/
√
v in the OPE channel x2

23 → 0.

The relations (2.13) and (2.10) describe the asymptotic behaviour of the four-point

correlation function in the light-cone limit u, v → 0. They depend on three functions of

the coupling constant, Γcusp(a), Γ(a) and F (a), which can be extracted from the conformal

data (2.11) and (2.12) of twist-two operators with large spin S. In N = 4 SYM, the first

two functions are known to all loops in the planar limit from integrability [26–29]6 whereas

the last one is currently known to three loops [36, 42] .

2.3 Comparison with the Sudakov resummation

We can now combine together (2.3), (2.6) and (2.13) and derive the Sudakov resummation

formula (1.5) for the energy-energy correlation in the back-to-back region.

To this end, it is convenient to Mellin transform the soft function (2.10)

S(u, v) =

∫
dj1dj2
(2πi)2

uj1vj2S̃(j1, j2) . (2.16)

Substituting this relation into (2.13) and taking into account (2.15) we get

Φ(u, v) =
H(a)

2

∫
dj1dj2
(2πi)2

uj1vj2S̃(j1, j2) [Γ(1− j1)Γ(1− j2)]2 . (2.17)

Comparing this relation with (2.3) we conclude that the Mellin amplitudes of

the Sudakov form factor and the correlation function are related as M(j1, j2) =

H(a)S̃(j1, j2) [Γ(1− j1)Γ(1− j2)]2/2. We then obtain from (2.16)

H(a)S(u, v) =

∫
dj1dj2
(2πi)2

2M(j1, j2)uj1vj2

[Γ(1− j1)Γ(1− j2)]2
. (2.18)

We would like to emphasize that this relation holds for u, v → 0.7

We are now ready to compute the moments of the energy-energy correlation (2.6)

from (2.18). To match the Mellin integral on the right-hand side of (2.6), it is sufficient to

put u = v = 1/N and apply the operator Γ(1 + N∂N )/4 to both sides of (2.18)

ẼEC(N) =
1

4
Γ(1 +N∂N )H(a)S(u, v)

∣∣∣
u=v=1/N

=
1

4
H(a)

∫ ∞
0

dx e−x S (1/(Nx)) . (2.19)

6Nonplanar corrections appear starting from four loops.
7It is interesting to note that the expression on the left-hand side of (2.18) differs from (2.9) by the jet

factor. At the same time, the Mellin integrals in (2.18) and (2.3) are very similar to each other and the

only difference between them is the product of Γ−functions in the denominator of (2.18).
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Here in the second relation we replaced the Γ−function by its integral representation and

took into account that the operator xN∂N generates dilatations N → xN . We also intro-

duced the notation for the soft function (2.10) with coinciding arguments

S(u) ≡ S(u, u) = exp

[
−1

2
Γcusp(a) ln2(uc0) + Γ(a) ln(uc0)

]
, (2.20)

where c0 = e−2γE . Substituting this relation into (2.19) we obtain an expression for

ẼEC(N) that takes into account all the logarithmically enhanced contibutions to the mo-

ments of the energy-energy correlation at large N .

Let us now invert the moments (2.19) and reproduce (1.5). We recall that at large

N the integral in (2.4) receives a dominant contribution from the end-point region z ∼ 1.

This allows us to replace zN = (1 − y)N ≈ exp(−yN) and extend the integration over y

to infinity

ẼEC(N) =

∫ ∞
0

dy e−yN EEC . (2.21)

We can bring (2.19) to this form by changing the integration variable in (2.19) as x =

b2/(4N) and applying the identity

1

N
e−b

2/(4N) =

∫ ∞
0

dy J0(by1/2) e−yN . (2.22)

This leads to

ẼEC(N) =
H(a)

8

∫ ∞
0

dy e−yN
∫ ∞

0
db bJ0(by1/2)S(4/b2) . (2.23)

Matching this relation into (2.21) and replacing S(4/b2) with (2.20), we arrive at an ex-

pression for the EEC that coincides with (1.5).

2.4 Checks

The energy-energy correlation has been computed in N = 4 SYM at the NLO order in [24]

and very recently at the NNLO order in [25]. Expanding (1.5) to order O(a3), we should

be able to reproduce all the logarithmically enhanced terms in the NNLO expression for

the EEC in the end-point region χ→ π.

The explicit expressions for the anomalous dimensions are [26–29, 44]

Γcusp(a) = a− π2

12
a2 +

11π4

720
a3 −

(
ζ2

3

8
+

73π6

20160

)
a4 +O(a5) ,

Γ(a) = −3ζ3

2
a2 +

(
π2ζ3

12
+

5ζ5

2

)
a3 −

(
7π4ζ3

480
+

5π2ζ5

48
+

175ζ7

32

)
a4 +O(a5) , (2.24)

where a = g2N/(4π2) and the expansion coefficients depend on zeta values ζn with different

weights n. The expansion coefficients of Γcusp and Γ have uniform weights 2`−2 and 2`−1,

respectively, at order O(a`).
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As explained in section 2.2, the hard function H = F 2(a) can be extracted from the

OPE coefficients of twist-two operators CS in the large spin limit. The OPE coefficients

CS for arbitrary S have been computed to three loops in [42] and their asymptotics for

S � 1 was found in [36]. Using the results of these papers we get

H(a) = 1− π2

6
a+

π4

18
a2 −

(
17ζ2

3

12
+

197π6

10080

)
a3 +O(a4) , (2.25)

where the expansion coefficients have uniform weight 2` at order O(a`).

Substituting (2.24) and (2.25) into (1.5) and expanding the EEC in powers of the

coupling constant we get

EEC =
1

4y

{
aL+ a2

(
−L

3

2
− π2L

4
+
ζ3

2

)
+ a3

(
L5

8
+
π2L3

6
− 11ζ3L

2

4
+

61π4L

720
− π2ζ3

3
− 7ζ5

2

)
+ a4

[
− L7

48
− 5π2L5

96
+

95ζ3L
4

48
− 29π4L3

480
+

(
67π2ζ3

48
+

69ζ5

4

)
L2

−
(

97ζ2
3

8
+

367π6

12096

)
L+

187π4ζ3

1440
+

95π2ζ5

48
+

785ζ7

32

]
+O(a5)

}
, (2.26)

where L = ln(1/y) and y = cos2(χ/2) vanishes for χ → π. The first three terms of the

expansion (2.26) are in agreement with the results of refs. [24, 25], the last term yields a

prediction for the N3LO correction to the EEC in N = 4 SYM.

Assigning weight 1 to L = ln(1/y) we observe that the expansion coefficients in (2.26)

have uniform weight 2` − 1 at order O(a`). Notice that this property does not hold for

a generic angle χ, e.g. the NLO result for the energy-energy correlation is given by a

linear combination of polylogarithms of mixed weight. In the back-to-back region, the

contribution of functions of lower weight is suppressed and the uniform weight property

is restored.

As mentioned in the Introduction, in the back-to-back region, the EEC in N = 4 SYM

should describe the maximally transcendental part of the analogous QCD expression (upon

identification of the color factors CF → N) [24]. Assuming that this conjecture holds at

higher loops, we can apply (2.26) to predict the maximal weight part of the EEC in QCD.

3 Energy correlations at small angle

At small angle χ, the EEC measures the correlation between the fast particles within the

same jet. Invoking the dual description of the energy correlations in terms of the correlation

function (2.1), we expect that the calorimeter operators Õ(x2) and Õ(x3) should be located

at short distances.

We can arrive at the same conclusion by examining (1.3) for z = sin2(χ/2)→ 0

EEC(χ) =

∫
dj1dj2
(2πi)2

Γ(1− j1 − j2)

2Γ(j1 + j2)[Γ(1− j1)Γ(1− j2)]2
M(j1, j2)z−j1−j2−2 , (3.1)
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where we replaced z/(1−z) = z+O(z2) and neglected subleading corrections. Ignoring the

ratio of Γ−functions in (3.1) for the sake of the argument, we can apply (2.3) and express

the resulting Mellin integral in terms of the function Φ(u, v) evaluated at large values of

the cross-ratios u = v = 1/z as z → 0. As follows from (2.2), the limit of large u and v is

realized for x2
23 → 0.

3.1 Conformal partial wave expansion

Discussing the properties of the correlation functions (2.1) for x2
23 → 0, it is convenient to

redefine the cross-ratios (2.2)

u′ =
x2

23x
2
14

x2
13x

2
24

= 1/v , v′ =
x2

12x
2
34

x2
13x

2
24

= u/v , (3.2)

so that u′ → 0 and v′ → 1 in the limit x2 → x3. Then, the correlation function (2.1)

and (2.3) takes the form

〈O(x1)Õ(x2)Õ(x3)O(x4)〉 =
1

(x2
23x

2
41)2

∫
dj1dj2
(2πi)2

(v′)j1−1(u′)−j1−j2+2M(j1, j2) . (3.3)

For u′ → z and v′ → 1, the Mellin integral on the right-hand side differs from the analogous

integral in (3.1) by the product of Γ−functions. To elucidate their role, we expand the

correlation function on the left-hand side of (3.3) over the conformal partial waves in the

channel x2
23 → 0.

The OPE expansion of the correlation function (3.3) has been studied in refs. [45–47].

It was shown there that the leading contribution to Õ(x2)Õ(x3) for x2
23 → 0 comes from the

twist-six operator carrying the R−charge of the representation 105 of the SU(4) group.8

This operator belongs to the twist-two supermultiplet and, as a consequence, its conformal

data (the scaling dimension and the OPE coefficient) are related to those of the twist-two

operator, ∆105(S) = 6 +S + γS+2 and C105(S) = CS+2. Its contribution to the four-point

function is given by

〈O(x1)Õ(x2)Õ(x3)O(x4)〉 =
1

(x2
23x

2
41)2

∑
S/2∈Z+

CS+2(a)(u′)3+γS+2(a)/2gS(v′) + . . . , (3.4)

where the sum runs over even nonnegative spins S and the dots denote subleading terms

suppressed by powers of u′. Here γS and CS are the conformal data of the twist-two N = 4

supermultiplet and gS(v′) is the collinear conformal block

gS(v′) = (1− v′)S2F1

(
3 + S + 1

2γS+2(a), 3 + S + 1
2γS+2(a); 6 + 2S + γS+2(a)|1− v′

)
.

(3.5)

Comparing (3.3) and (3.4), we find that the Mellin amplitude satisfies∫
dj1dj2
(2πi)2

(v′)j1−1z−j1−j2−2M(j1, j2) =
∑

S/2∈Z+

CS+2(a)z−1+γS+2(a)/2gS(v′) +O(z0) , (3.6)

8Strictly speaking, the leading contribution to the OPE comes from a double-trace protected operator

Õ(x2)Õ(x2) of twist four. Its contribution to the four-point correlation function (3.4) does not depend on

the coupling constant and, as a consequence, it does not affect the EEC.
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where we replaced u′ = z. We can use this relation to evaluate the Mellin integral in (3.1).

For v′ = 1 the Mellin integrals on the left-hand side of (3.1) and (3.6) only differ by

the product of Γ−functions. Since the integrand in (3.6) has a power-like dependence on

v′ and z, this product can be generated by acting on (3.6) with the following operator

Γ(3 + z∂z)

2Γ(−2− z∂z)[Γ(−v′∂v′)Γ(4 + z∂z + v′∂v′)]2
. (3.7)

To apply this operator to the right-hand side of (3.6), it is convenient to replace the

conformal block (3.5) with its Mellin representation [48]

gS(v′) =
Γ(2S + τ)

[Γ (τ/2) Γ (S + τ/2)]2

∫
dj

2πi
(v′)j [Γ(−j)Γ(j + τ/2)]2 3F2

(
−S, S+τ−1,−j

τ/2, τ/2

∣∣∣1) ,
(3.8)

where τ = 6 + γS+2 is the twist of the exchanged operator. Here the integration contour

runs parallel to the imaginary axis and separates the poles of Γ(−j) and Γ(j + τ/2). In

what follows we choose j = −τ/4 + ix with −∞ < x <∞.

Substituting (3.8) into (3.6) we find that the action of the operator (3.7) on the right-

hand side of (3.6) amounts to introducing a factor of Γ(τ/2−1)/(2 [Γ(−j)Γ(j + τ/2)]2 Γ(2−
τ/2)) inside the Mellin integral in (3.8). In this way, we obtain from (3.1) and (3.6)

EEC = 2

∫ ∞
−∞

dx

2π

∑
S/2∈Z+

zτ/2−4AS,τPS,τ (x) , (3.9)

where τ = 6 + γS+2 and the notation was introduced for

AS,τ =
Γ(2S + τ)Γ(τ/2− 1)

4 [Γ(τ/2)Γ (S + τ/2)]2 Γ(2− τ/2)
CS+2(a) ,

PS,τ (x) = 3F2

(
−S, S + τ − 1, τ/4− ix

τ/2, τ/2

∣∣∣1) . (3.10)

For integer nonnegative S the function PS,τ (x) is a polynomial in x of degree S with

definite parity

PS,τ (−x) = (−1)SPS,τ (x) . (3.11)

Up to a normalization factor, it coincides with the continuous Hahn polynomial [49].

Each term in the sum (3.9) is polynomial in x and, therefore, it yields a divergent

contribution upon integration over x. For the integral in (3.9) to be well-defined, the sum

over the spins should be regular on the real x−axis and decrease sufficiently fast at infinity.

It is convenient to introduce the auxiliary function

f(x) =

∞∑
S=0

zτ/2−4AS,τPS,τ (x) , (3.12)

where the sum runs over all nonnegative spins. Using (3.11) we can rewrite (3.9) as

EEC =

∫ ∞
−∞

dx

2π
[f(x) + f(−x)] . (3.13)
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In the next subsection, we show that f(x) is a meromorphic function with poles located in

the lower half-plane and a simple pole at infinity

f(x) =
if∞
x

+O(1/x2) . (3.14)

The sum of the functions f(x)+f(−x) has poles on both sides of the real axis and decreases

at infinity as O(1/x2). This allows us to close the integration contour in (3.13) into the

lower half-plane and compute the integral by the residues at all the poles of f(x) except

the one at infinity. Since the sum of all residues of f(x) equals zero, the integral is then

given by the residue at infinity

EEC = f∞ . (3.15)

To find f∞, we have to examine the asymptotics of (3.12) at large x and match it into (3.14).

This is done in section 3.3.

3.2 Warm up example

Let us examine (3.12) to the lowest order in the coupling. Replacing in (3.10)

τ = 6 + γS+2 = 6 + aγ
(0)
S+2 +O(a2) (3.16)

and taking into account that 1/Γ(2− τ/2) = O(a), we find

AS,τ = a
Γ(2S + 6)

32Γ2 (S + 3)
C

(0)
S+2γ

(0)
S+2 +O(a2) . (3.17)

Here C
(0)
S+2 and γ

(0)
S+2 are the leading order expressions for the conformal data of the twist-

two operators with spin S + 2 [46]

C
(0)
S+2 =

Γ2(S + 3)

Γ(2S + 5)
, γ

(0)
S+2 = 2 [ψ(S + 3)− ψ(1)] , (3.18)

where ψ(x) = (ln Γ(x))′ is the Euler ψ−function.

Substituting (3.16) and (3.17) into (3.12) we get

f(x) =
a

16z

∞∑
S=0

(5S + 5) [ψ(S + 3)− ψ(1)]PS,6(x) +O(a2) (3.19)

=
a

4z

[
i

x+ i
2

− 1

2(x+ i
2)2

]
+O(a2) , (3.20)

where the sum in the first relation can be evaluated using the properties of the continuous

Hahn polynomial (see appendix A for details).

The relation (3.20) illustrates the main feature of the function f(x) mentioned in the

previous subsection. Namely, each term in the sum (3.19) is polynomial in x but the

function has a (double) pole at x = −i/2. It arises from the large spin contribution. For

S � 1 we have PS,6(x) ∼ S−3+2ix (see (A.3)), so that the sum (3.19) scales as

f(x) ∼
∫ ∞
S0

dS S−2+2ix lnS ∼ 1/(1− 2ix)2 , (3.21)

where S0 � 1.
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At large x we compare (3.20) with (3.14) and (3.15) to get

EEC =
a

4z
+O(a2) . (3.22)

This relation is in agreement with the known LO result for the energy-energy correlation [50]

EEC = −a ln(1− z)

4z2(1− z)
+O(a2) (3.23)

in the end-point region z = sin2(χ/2)→ 0.

3.3 Comparison with the jet calculus

Following the analysis in the previous subsection, we can understand analytical properties of

the function f(x) defined in (3.12) by examining the large spin contribution. For S � 1 the

anomalous dimensions and the OPE coefficients are given by (2.11) and (2.12), respectively,

whereas the continuous Hahn polynomial scales as (see (A.3))

PS,τ (x) ∼ S−τ/2+2ix , (3.24)

where τ = 6 + γS+2. Substituting these relations into (3.12) we find that at large S the

function f(x) is given by an integral similar to (3.21). At weak coupling, perturbative

corrections to CS+2 and τ modify the integrand of (3.21) by terms of the form an lnk S.

Such terms generate higher order poles an/(x + i/2)2+k but they do not alter analytical

properties of f(x).

Let us now find the leading asymptotic behaviour of the function (3.12) at infinity.

For x→∞ we find from (3.10) and (3.11)

PS,τ (x) = (−1)S
∑
k≥0

(−S)k(S + τ − 1)k
[(τ/2)k]2

(ix)k

k!

=
(−1)SΓ2(τ/2)

Γ(−S)Γ(S + τ − 1)

∫
dj

2πi

Γ(−j)Γ(−S + j)Γ(S + τ − 1 + j)

Γ2(τ/2 + j)
(−ix)j , (3.25)

where (a)k = Γ(a+ k)/Γ(a) is the Pochhammer symbol. Here in the first relation we used

a series representation of the hypergeometric function and replaced (τ/4 + ix)k ∼ (ix)k at

large x. In the second relation, we converted the sum into a Mellin-Barnes integral.

Substituting (3.25) into (3.12) we can employ the Sommerfeld-Watson transformation

to rewrite the sum over spins as

f(x) =

∫
dS dj

(2πi)2
zτ/2−4AS,τ

Γ(S + 1)Γ2(τ/2)Γ(−j)Γ(j − S)Γ(j + S + τ − 1)

Γ(S + τ − 1)Γ2(τ/2 + j)
(−ix)j ,

(3.26)

where the integration over j runs parallel to the imaginary axis and separates the poles

generated by the functions Γ(j + . . . ) and Γ(−j + . . . ). The integration contour over S is

defined in a similar manner.
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To find the leading asymptotics of (3.26) at large x we move the integration contour

over j to the left and pick up the residue at the right-most pole. This pole is located at

j = S and its contribution to (3.26) is

f(x) =

∫
dS

2πi
zτ/2−4AS,τ

Γ(S + 1)Γ2(τ/2)Γ(−S)Γ(2S + τ − 1)

Γ(S + τ − 1)Γ2(τ/2 + S)
(−ix)S + . . . , (3.27)

where the dots denote subleading terms suppressed by powers of 1/x. Then, for the same

reason as before, we move the integration contour over S to the left and pick up the residue

at the leading pole S = −1. In this way, we arrive at

f(x) = − 1

ix

(
zτ/2−4AS=−1,τ

(τ/2− 1)2

τ − 3

)
+O(1/x2) , (3.28)

where the expression inside the brackets is evaluated for the unphysical value of spin S = −1

and τ = 6 + γ1(a).

The relation (3.28) has the expected form (3.14). We apply (3.15) together with (3.10)

and obtain the following result for the leading asymptotic behaviour of the EEC in the

end-point region z = sin2(χ/2)→ 0

EEC = zτ/2−4 C1(a)Γ(τ − 3)

4Γ3 (τ/2− 1) Γ(2− τ/2)
(3.29)

= z−1+γ1(a)/2 C1(a) Γ(3 + γ1(a))

4Γ3 (2 + γ1(a)/2) Γ(−1− γ1(a)/2)
, (3.30)

where in the second relation we replaced τ = 6 + γ1(a). Here γ1(a) and C1(a) are, re-

spectively, the anomalous dimension and the OPE coefficient of the twist-two operator

analytically continued to Lorentz spin S = 1.

The relations (3.29) and (3.30) agree with the analogous expressions previously derived

in [51] using a different approach based on the OPE expansion of light-ray operators [52, 53].

Comparing (3.30) with the analogous relation (1.4) predicted by the jet calculus, we

notice that they involve the twist-two anomalous dimensions γ1 and γ̂3, evaluated for

different values of Lorentz spin, S = 1 and S = 3, respectively. The reason for this is that

the anomalous dimensions γ1 and γ̂3 correspond of two different operators — the lowest

weight of the twist-two N = 4 supermultiplet and the SU(4) singlet operator of the form

tr(φID
S
+φI)+ . . . , respectively. The latter operator belongs to the same supermultiplet and

its anomalous dimension is related to that of the former as γ̂S = γS−2 (see [46, 54]). Thus,

the relations (1.4) and (3.30) have the same z−dependence of the EEC. The relation (3.30)

also allows us to predict the hard function entering (1.4)

h(a) =
C1(a) γ1(a) Γ(2 + γ1(a))

Γ2
(
1 + 1

2γ1(a)
)

Γ
(
2 + 1

2γ1(a)
)

Γ
(
1− 1

2γ1(a)
) . (3.31)

In the next subsection, we test this relation using available results for the EEC in the small

angle limit.

The relation (3.30) describes the leading behaviour of the EEC at small z. The expres-

sion on the right-hand side of (3.30) arises from the contribution to the OPE (3.4) of the
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conformal primary operator with the minimal twist τ = 6 +O(a). Taking into account the

contribution to (3.4) of the operators with higher twist τ = 2(n+ 3) +O(a) (with ≥ 1), we

can generate subleading O(zn−1) corrections to (3.30). They take the form (3.29) with C1

being the OPE coefficient for the operator of twist τ . Another source of subleading correc-

tions to the EEC has a kinematical origin and has to do with the fact that the relation (3.1)

was obtained from (1.3) by replacing z/(1− z) = z+O(z2) and 1/(1− z)3 = 1 +O(z). To

incorporate these corrections, it is sufficient to substitute z → z/(1− z) on the right-hand

side of (3.29) and insert the additional factor of 1/(1− z)3 (see eq. (1.3)).

3.4 Checks

Expanding (3.31) in powers of γ1(a) we get

h(a) = C1(a)

(
γ1 +

γ2
1

2
− γ3

1

4
+

(
1

8
− ζ3

4

)
γ4

1 +O(γ5
1)

)
. (3.32)

The weak coupling expansion of C1(a) and γ1(a) starts at order O(a0) and O(a), respec-

tively. To compute h(a) at order O(a`) we need the expressions for C1(a) and γ1(a) at

(`− 1) and ` loops, respectively.

To find C1(a) and γ1(a) we have to analytically continue the expressions for the OPE

coefficients and anomalous dimensions of the twist-two operators from even spins to S = 1.

To the leading order in the coupling, this can be easily done using (3.18). Starting from

the next-to-leading order, the expressions for CS(a) and γS(a) involve alternating nested

harmonic sums S±a,±b,.... These sums depend on the sign factors (−1)S and their continu-

ation from even and odd spins gives rise to two different functions S
+
±a,±b,... and S

−
±a,±b,...,

respectively [55]. In order to compute C1(a) and γ1(a), we only need the former function.

The twist-two anomalous dimension γS can be computed for even S and any coupling

in planar N = 4 SYM from integrability. For our purpose, we use the analytical expression

for γS to order O(a4) from refs. [56, 57]. Following [55], we can analytically continue it to

S = 1 to get the four-loop result for γ1,9

γ1(a) = 2a+ a2

(
−ζ3 +

π2

3
− 4

)
+ a3

(
3ζ5 +

π4

120
− 3ζ3 −

4π2

3
+ 16

)
+ a4

(
− 69ζ7

8
+
π2ζ5

6
− π4ζ3

144
+

9ζ2
3

2
− 107π6

15120

+ 16ζ5 −
13π2ζ3

6
− 23π4

360
+ 14ζ3 + 8π2 − 80

)
+O(a5) , (3.33)

where a = g2N/(4π2). This relation is in agreement with the findings of [30].

9I would like to thank Lance Dixon for his help in computing γ1 and C1.
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The twist-two OPE coefficients CS(a) are currently known to order O(a3) [42].10 Their

analytical continuation to S = 1 yields the three-loop result for C1

C1(a) =
1

2
− a+ a2

(
1

4
ζ3 +

11π4

720
− π2

3
+ 6

)
+ a3

(
3ζ2

3

8
− 109π6

15120
+ 6ζ5 −

7π2ζ3

12
− π4

48
+ 3ζ3 + 3π2 − 40

)
+O(a4) . (3.34)

Finally, we substitute (3.33) and (3.34) into (3.32) to get the hard function

h(a) = a+ a2

(
−ζ3

2
+
π2

6
− 3

)
+ a3

(
3ζ5

2
+

5π4

144
− ζ3 −

4π2

3
+ 17

)
+ a4

(
−69ζ7

16
+
π2ζ5

12
− 3π4ζ3

160
+ 3ζ2

3 −
389π6

30240

+20ζ5 − 2π2ζ3 −
3π4

16
+ 10ζ3 +

65π2

6
− 111

)
+O(a5) . (3.35)

The first three terms of the expansion are in agreement with the NNLO result for the

energy-energy correlation in N = 4 SYM [24, 25], the O(a4) term is a prediction.

4 Sum rules for the energy correlations

As follows from the definition (1.1), the EEC satisfies the normalization condition∫ 1

0
dz EEC(z) =

1

2

∫ 1

−1
d(cosχ) EEC(χ) =

(
∑

aEa)
2

2Q2
=

1

2
, (4.1)

where
∑

aEa = Q is the total energy. It was shown in [30] that this relation leads to

interesting consistency conditions for the singular behaviour of the EEC in the limits z → 0

and z → 1. In this section, we apply the ideas of [30] to derive nontrivial relations for a

‘regular’ part of the EEC that is obtained by subtracting from EEC(z) the terms singular at

the end-points. The analogous relations were also derived in [51] using the light-ray OPE.

Notice that the integral on the left-hand side of (4.1) coincides with the moments (2.4)

for N = 1. There is however an important difference — in distinction from (4.1), the

relation (2.5) does not take into account the Born contribution to the EEC. It is given

by (δ(z) + δ(1 − z))/4 and automatically satisfies (4.1). Therefore, subtracting the Born

contribution on both sides of (4.1) we deduce that the moments (2.4) have to vanish for

N = 1. Indeed, it is easy to see from (2.5) that ẼEC(1) = 0. As mentioned above, the

relation (2.5) implies that ẼEC(2) = 0. Adding the Born level contribution, we arrive at

the sum rule for the second moment of the EEC∫ 1

0
dzz EEC(z) =

1

4
, (4.2)

10The OPE coefficients are also known at order O(a4) for spin S = 2, 4, 6, 8 [58]. These results can be

used to find a numerical interpolation for S = 1.
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where z = (1 − cosχ)/2. This relation has a simple interpretation. Using the defini-

tion (1.1), the integral in (4.2) can be evaluated as

∑
a,b

EaEb
4Q2

(1− cos θab) =
∑
a,b

(papb)

4Q2
=

1

4
, (4.3)

where
∑

a pa = (Q,~0) is the total momentum.

It is convenient to split the EEC into the sum of singular and regular terms

EEC(z) = EEC0(z) + EECreg(z) + EEC1(z) , (4.4)

where EEC0(z) and EEC1(z) describe the singular behaviour for z → 0 and z → 1,

respectively. They have the following general form

EEC0(z) = δ(z)V0(a) +

[
ϕ0(z)

z

]
+

,

EEC1(z) = δ(1− z)V1(a) +

[
ϕ1(1− z)

1− z

]
+

, (4.5)

where ϕ0(z) and ϕ1(1− z) are given by the sum of logarithmically enhanced terms of the

form ak+1(ln z)n and ak+1(ln(1− z))n, respectively. Here the notation was introduced for

the ‘+’ distribution∫ 1

0
dz w(z)

[
ϕ0(z)

z

]
+

=

∫ 1

0
dz [w(z)− w(1)]

ϕ0(z)

z
, (4.6)

where w(z) is a test function. The distribution [ϕ1(1− z)/(1− z)]+ is defined in the

same manner. As compared to (1.4) and (1.5), the relations (4.5) contain the additional

terms proportional to δ(z) and δ(1 − z). They describe the contribution from the special

configurations when, respectively, the same particle goes through the two detectors and

the final state consists of two back-to-back particles. To the lowest order in the coupling,

we have V0 = 1
4 +O(a) and V1 = 1

4 +O(a).

By construction, the function EECreg(z) does not contain singular O(1/z) and O(1/(1−
z)) terms for z → 0 and z → 1, respectively. In what follows we refer to it as a regular

part of the EEC. To the leading order in the coupling, we find from (3.23)

EECreg(z) =
a

4

[
− ln(1− z)

z2(1− z)
− 1

z
+

ln(1− z)

1− z

]
+O(a2) . (4.7)

Substituting (4.5) into the relations (4.1) and (4.2), we get the sum rules for the first two

moments of the regular part of the EEC∫ 1

0
dz EECreg =

1

2
− V0 − V1 ,∫ 1

0
dzz EECreg =

1

4
− V1 −

∫ 1

0
dz ϕ0(z) +

∫ 1

0
dy ϕ1(y) , (4.8)
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where y = 1−z. At zero coupling, the functions ϕ0(z), ϕ1(z) and EECreg(z) vanish leading

to V0(0) = V1(0) = 1
4 , in agreement with the Born level contribution.

To find the functions entering the right-hand side of (4.8), we have to match the

ansatz (4.5) to the leading singular behavior of the EEC at the end-points, eqs. (1.4)

and (1.5). For z → 0 we have EEC ∼ h(a) z−1+γ1/2/4. Applying the identity

1

z1−ε =
1

ε
δ(z) +

[
1

z1−ε

]
+

, (4.9)

we arrive at the first relation in (4.5) upon identification

ϕ0(z) =
1

4
h(a) zγ1(a)/2 ,

V0 =

∫ 1

0

dz

z
ϕ0(z) =

h(a)

2γ1(a)
. (4.10)

For z → 1, the functions in (4.5) are known from the Sudakov resummation. Namely,

ϕ1(y)/y coincides with (1.5) for y = 1− z and V1(a) is proportional to the hard function

ϕ1(y) =
H(a)

8

∫ ∞
0

db bJ0(b)S(4y/b2) ,

V1 =

∫ 1

0

dy

y
ϕ1(y) =

H(a)

4

∫ ∞
0

db J1(b)S(4/b2) , (4.11)

where the Sudakov form factor S(4y/b2) is given by (2.20).

Substituting the relations (4.10) and (4.11) into the sum rules (4.8) we find after some

algebra ∫ 1

0
dz EECreg(z) =

1

2
− 1

4
H(a)ξ0(a)− h(a)

2γ1(a)
,

∫ 1

0
dzz EECreg(z) =

1

4
− 1

4
H(a)(ξ0(a) + ξ1(a))− h(a)

4 + 2γ1(a)
. (4.12)

Here the notation was introduced for integrals involving the Bessel functions and the Su-

dakov form factor

ξ0(a) =

∫ ∞
0

dx√
x

e−γE J1(2
√
x e−γE ) e−

1
2

Γcusp(a) ln2 x−Γ(a) lnx = 1− ζ2
3

3
a3 +O(a4) ,

ξ1(a) =

∫ ∞
0

dx J2(2
√
x e−γE )

∂

∂x
e−

1
2

Γcusp(a) ln2 x−Γ(a) lnx (4.13)

= −a+ a2

(
3 +

π2

12
− ζ3

2

)
− a3

(
15 +

π2

2
− 11ζ3

2
+

11π4

720
− π2ζ3

4
− 7ζ5

2

)
+O(a4) ,

where we replaced the cusp and collinear anomalous dimensions with their expres-

sions (2.24).

We recall that EECreg(z) is obtained from the EEC by subtracting all terms that are

singular for z → 0 and z → 1. This function describes the EEC away from the end-points

and it is not captured neither by the Sudakov resummation, nor by the jet calculus. It
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is therefore remarkable that its first two moments (4.12) can be expressed in terms of a

few functions of the coupling constant controlling the singular behavior of the EEC in the

end-point region.

The expressions on the right-hand side of (4.12) depend on the hard functions, h(a) and

H(a), and the anomalous dimension γ1(a). Using their explicit expressions (2.25), (3.33)

and (3.35), we obtain the sum rules at order O(a3)∫ 1

0
dz EECreg(z) =

(
1

4
+
π2

24

)
a+

(
−7

4
+
π2

8
− 31π4

1440

)
a2

+

(
49

4
− π2 − 5ζ3

4
+

π4

576
+

7π2ζ3

24
− 27ζ5

8
+

1027π6

120960
+
ζ2

3

4

)
a3

+O
(
a4
)
, (4.14)∫ 1

0
dzz EECreg(z) =

π2

24
a+

(
1

4
− 5π2

48
+
ζ3

4
− π4

72

)
a2

+

(
−2 +

2π2

3
− 11ζ3

8
+
π4

80
− π2ζ3

12
− 5ζ5

4
+

197π6

40320
+

7ζ2
3

16

)
a3

+O
(
a4
)
. (4.15)

The sum rule (4.14) agrees at order O(a2) with the results of [30]. Using (4.7) it is straight-

forward to verify the relations (4.14) and (4.15) at order O(a). At order O(a2), the function

EECreg(z) can be expressed in terms of classical polylogarthms [24]. Evaluating its first two

moments, we reproduced the O(a2) terms on the right-hand side of (4.14) and (4.15). At

order O(a3), the function EECreg(z) has a complicated form — it is given by a sum of har-

monic polylogarithms plus a two-fold finite (elliptic) integral [25]. This makes an analytical

calculation of its moments problematic. Evaluating them numerically, we reproduced the

O(a3) correction to (4.14) and (4.15) within one percent accuracy. The relations (4.14)

and (4.15) were also verified numerically to high accuracy in [51]. This provides a stringent

test of the approach described above.

5 Concluding remarks

In this paper, we have studied the energy-energy correlation in the end-point region. Our

starting point was the representation (1.3) of the EEC in terms of the Mellin amplitude of

the four-point correlation function of the conserved currents. We used the properties of the

correlation functions to find this observable in N = 4 SYM in the limit of small and large

angles. In both cases, we obtained a concise representation of the EEC in terms of the

conformal data of the twist-two operators. We verified that the obtained expressions are in

a perfect agreement both with the available results of the explicit calculation of the EEC

at weak coupling and with the analogous expressions obtained using QCD resummation

techniques. We would like to emphasize that the above analysis was made under a tacit

assumption that the spectrum of scaling dimensions is sparse, allowing us to neglect a high-

twist contribution. This assumption is justified at weak coupling but it does not hold at

strong coupling due to a level-crossing phenomenon [43]. Indeed, the final states in N = 4
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SYM do not contain jets at strong coupling and the EEC becomes a flat function of the

angle [22].

We argued that, in the back-to-back region, the EEC is governed by the asymptotic

behaviour of the four-point correlation function in the limit when the operators are light-like

separated in a sequential manner. In this limit, the correlation function can be expressed

in terms of a light-like rectangular Wilson loop and a hard function. This property is

rather general — it follows from the resummation of the leading, twist-two contribution

to the OPE in different channels and it does not rely on the conformal symmetry. We

demonstrated that the resulting expression for the EEC in the back-to-back region coincides

with the one predicted by the Sudakov resummation. We found that the hard function in

N = 4 SYM is closely related to the asymptotics of the OPE coefficients of the twist-two

operators with large spin and used this relation to predict the maximally transcendental

part of the hard function in QCD.

Analyzing the EEC in the back-to-back limit z → 1, we took into account the loga-

rithmically enhanced terms and ignored the corrections suppressed by powers of (1 − z).

Such corrections are known to have a more complicated form. In the present approach,

the power suppressed corrections can be systematically taken into account by including the

high-twist contribution to the OPE in the light-like limit.

In the small angle limit, we computed the EEC in N = 4 SYM by expanding the

correlation function over the conformal partial waves in the channel corresponding to the

product of calorimeter operators. This leads to a representation for the EEC as an infinite

sum over the spins of the exchanged states. We used the properties of the conformal blocks

to show that the sum is given by the contribution of the state with unphysical value of the

spin S = −1.

According to (3.30), the z−dependence of the EEC in the small angle limit is governed

by the twist-two anomalous dimension γ1(a). The same anomalous dimension controls the

scale dependence of the parton distribution function in deep inelastic scattering and it is

known as the space-like anomalous dimension. In the leading logarithmic (LL) approxima-

tion, with γ1(a) replaced by its one-loop expression γ1(a) = 2a+O(a2), the relation (3.30)

agrees with the prediction of the jet calculus. Notice that the factor of zγ1(a)/2 in (3.30)

arises in this approach from the scale dependence of the parton fragmentation function

and, therefore, one would naively expect that γ1(a) should have the meaning of a time-like

anomalous dimension. At one loop, the time-like (γ
(T )
N ) and space-like (γ

(S)
N ) anomalous

dimensions coincide. They differ starting from two loops and are related to each other

as [59]

γ
(S)
N = γ

(T )

N+γ
(S)
N

. (5.1)

It is therefore counter-intuitive that (3.30) depends on the space-like anomalous dimension.

The resolution of the puzzle goes as follows [60]. The EEC at small angles χ measures

the correlation between the two partons within the jet with the relative transverse momen-

tum p2
⊥ = Q2χ2 ∼ Q2z. Let DN (Q2/p2

⊥) be the probability in the moment space to find

the pair of partons with the tranverse momentum p2
⊥ and virtuality up to Q2. It satisfies
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the QCD evolution equation [61, 62]

Q
∂

∂Q
DN (Q2/p2

⊥) =

∫ 1

0
dxxN−1PT (x)DN (x2Q2/p2

⊥) , (5.2)

where PT (x) is a time-like splitting function describing the fragmentation of a parton with

a fraction x of the longitudinal momentum. The EEC is related to DN (Q2/p2
⊥) for N = 3

and p2
⊥ = zQ2. The additional factor of x2 in the argument of DN (x2Q2/p2

⊥) on the right-

hand side of (5.2) takes into account the evolution of the virtuality of the parton during

the fragmentation process. In the LL approximation, we can neglect this factor and solve

the evolution equation as DN (Q2/p2
⊥) ∼ (Q2/p2

⊥)−γ
(T )
N /2, where γ

(T )
N = −

∫ 1
0 dxx

N−1PT (x)

is the time-like anomalous dimension. Going beyond this approximation, we seek for a

solution to (5.2) in the form DN (Q2/p2
⊥) ∼ (Q2/p2

⊥)−γN/2. Its substitution into (5.2) yields

γN = −
∫ 1

0
dxxN−1+γNPT (x) = γ

(T )
N+γN

. (5.3)

Comparing this relation with (5.1) we conclude that γN = γ
(S)
N . Thus, in agreement

with [22], the EEC has a power law behaviour at small z with the power given by the

space-like anomalous dimension. The same result was obtained in [30] from a factorization

formula for the EEC in the small angle limit.

The relation (1.2) establishes the connection between the EEC and the four-point

correlation function of the conserved currents. It can be thought as a generalization of

the optical theorem for the energy-energy correlation. We would like to emphasize that

this relation does not rely on conformal symmetry and it also valid in QCD. This leads

to the following important consequences. The very fact that the EEC is related to the

Euclidean correlation function (upon a nontrivial analytical continuation to its Wightman

counterpart in Minkowski space-time) implies that its asymptotic behavior in the end-point

region is controlled by the space-time quantities. This property is not specific feature of

N = 4 SYM and it should also hold in QCD.

We remind that the representation analogous to (1.2) holds for the total cross-section

σtot of the process V → everything. By virtue of the optical theorem, it is given by

the imaginary part of the two-point correlation function of the U(1) currents. This rep-

resentation allows us not only to compute efficiently perturbative corrections to σtot in

QCD [63–67] but also to describe the leading nonperturbative corrections to σtot in terms

a few nonperturbative scales (QCD vacuum condensates) [68, 69]. In the similar manner,

the representation (1.2) can be used to study the nonperturbative corrections to the energy-

energy correlation in QCD. These interesting problems require further investigation.
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A Continuous Hahn polynomial

For a nonnegative integer S, the function PS,τ defined in (3.10) coincides (up to a normal-

ization factor) with the continuous Hahn polynomial [49]. It satisfies the finite-difference

equation

2ix(2S + τ − 1)PS,τ (x) = (S + τ − 1)(S + τ/2)PS+1,τ (x)− S(S + τ/2− 1)PS−1,τ (x) ,

(A.1)

where τ is an arbitrary parameter. In what follows we consider τ to be independent on S.

At large S, the polynomial scales as PS,τ (x) ∼ Sα. Substituting this ansatz into (A.1)

and matching the leading large S asymptotics we find α = −τ/2 + 2ix, in agreement

with (3.24). We can obtain the same result by using the Mellin-Barnes representation for

the hypergeometric function in (3.10)

PS,τ (x) =

∫
dj

2πi

Γ(−j)Γ(τ/4− ix+ j)Γ2(τ/2)

Γ(τ/4− ix)Γ2(τ/2 + j)
S2j + . . . , (A.2)

where we replaced the Pochhammer symbols (−S)j(S + τ − 1)j by their leading large S

asymptotics. Here the integration contour runs parallel to the imaginary axis and separates

the poles of the two Γ−functions in the numerator. Moving the integration contour to the

left, we pick up the residue at the leading pole j = ix− τ/4 to get

PS,τ (x) = S−τ/2+2ix Γ2(τ/2)

Γ2(τ/4 + ix)
+ . . . , (A.3)

where the dots denote subleading terms.

Taking the sum over S = 0, 1, . . . on both sides of (A.1) we get

2ix
∑
S≥0

(2S + τ − 1)PS,τ (x) = (τ/2− 2)
∑
S≥0

(2S + τ − 1)PS,τ (x)− (τ − 2)(τ/2− 1) (A.4)

wherefrom ∑
S≥0

(2S + τ − 1)PS,τ (x) =
(τ − 2)2

2(τ/2− 2− 2ix)
. (A.5)

Then, we multiply both sides of (A.1) by ψ(S + τ/2)− ψ(1), with ψ(x) = (ln Γ(x))′ being

the Euler ψ−function, and go through the same steps to get

(τ/2− 2− 2ix)
∑
S≥0

(2S + τ − 1) [ψ(S + τ/2)− ψ(1)]PS,τ (x)

=
∑
S≥0

(2S + τ − 1)PS,τ (x) +
1

2
(τ − 2)2 [ψ(τ/2− 1)− ψ(1)] . (A.6)

Together with (A.5) this leads to∑
S≥0

(2S + τ − 1) [ψ(S + τ/2)− ψ(1)]PS,τ (x)

=
(τ − 2)2

2(τ/2− 2− 2ix)2
+

(τ − 2)2

2(τ/2− 2− 2ix)
[ψ(τ/2− 1)− ψ(1)] . (A.7)

Replacing τ = 6 we encounter the sum that enters (3.19).
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