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ABSTRACT The worldwide demand for reduction of CO2 pollution, with more penetration of renewable
energy sources and an increased number of electric vehicles (EVs), demonstrates the importance of economic
dispatch (ED) with taking into account the reduction of CO2 emission. ED is a classical problem in which
EVs imposemore penetration as a dynamic load, and its impact as vehicle-to-grid (V2G) is the possible future
trend with cost minimization. Based on the integration of EVs and hybrid renewable sources concerning
both economic dispatch and pollution minimization, the multi-objective function is converted into a single
comprehensive objective by using the judgment matrix methodology. In this paper, the investigation involves
the minimization of the cost of all three objectives viz. operation cost, pollution cost, and carbon emissions
with ED by incorporating V2G technology. The algorithms which include particle swarm optimization,
as well as artificial bee colony, are applied under various operation and control strategies. The proposed
models are verified and analyzed with different case studies. In terms of operation economics, the simulation
results validate the superior performance of EVs based microgrid (MG) model in the coordinated charging
and discharging mode. Further, the comparison of both algorithms shows better results with the ABC
algorithm in terms of cost minimization of all objectives. ABC is better in V2G based microgrid with
coordinated charging and dischargingmodewhile its performance is significant during a large number of EVs
(i.e., 700 EVs).Moreover, the load shedding scenarios are integrated which enables theMG system to operate
in dual mode (i.e., seamless transition). In this paper, the main contribution involves penetration of EVs as
dynamic load and its V2G impact in a coordinated or uncoordinated way, application of ABC algorithm for
this particular load problem with improved results, and inclusion of short-term load shedding scenarios.

INDEX TERMS Vehicle-to-grid (V2G), electrical vehicles (EVs), particle swarm optimization (PSO),
artificial bee colony (ABC), dynamic ED, operating cost (OC), pollutant treatment cost (PTC), carbon
dioxide emission (CE).

NOMENCLATURE

ABBREVIATIONS
PG Power Grid
WT Wind Turbine
MT Micro Gas Turbine
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PV Photovoltaic
DE Diesel Engine
DG Diesel Generator
FC Fuel Cell
BSS Battery Storage System
PSO Particle Swarm Optimization
TP Thermal Plants
DERs Distributed Energy Resources
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RES Renewable Energies Sources
MOED Multi-Objective ED
ABC Artificial Bee Colony
OC Operation Cost
SOED Single Objective Economic Dispatch
PTC Pollutant Treatment Cost
LSS Load Shedding Scenarios
CE Carbon Dioxide Emissions
CHP Combined Cooling Heating and Power
GA Genetic Algorithm
IP Interior Point
PS Pattern Search
EP Evolutionary Programming
EBCO Enhanced Bee Colony Optimization
HIC Hybrid Imperialist Competitive
GWA Grey Wolf Algorithm
FLC Fuzzy Logic Controller
DP Dynamic Programming
MPC Model Predictive Control
COM Classical Optimization Method
ARO Adjustable Robust Optimization
V2G Vehicle-To-Grid
SOC State of charge

I. INTRODUCTION

For the time being, the integration of renewable energy
sources (RESs) has been significantly increased due to the
global energy decline as well as the increase of environmental
concerns represented in greenhouse gases (GHG emission).
However, with distributed energy resources (DERs), the con-
cept of microgrid (MG) has been exaggerated [1]. It has
reshaped the power grid to fully utilize both the renewable
energy sources (RESs) and the distributed energy generation
(DEG).
Along with the revolution of MGs, the later penetration

of electric vehicles (EVs) of clean energy sources that have
almost zero pollutant emissions as compared to conventional
combustion engines is considered the beginning of a new
era [2]. Although the combustion engines are considered
more economical, EVs cost is expected to be decreased
when the improvement of the energy storage technology with
declining fossil fuels will happen soon. The charging of EVs
affects the main grid performance in terms of increasing peak
hours, and fluctuations of the voltage and frequency [3], [4].
With the intervention of vehicle-to-grid (V2G) technol-
ogy [5], the above mentioned issues will become obsolete.
With the utilization of bidirectional converters, bidirectional
power flow is, therefore, possible to have access to power
from the utility grid and even to supply it as DERs with
the use of power converters while EVs are plugged-in.
However, by controlling the charging/discharging process of
EVs that installed in an MG, peak load could be shifted, and
therefore, a reliable and economical grid operation can be
achieved [6], [7].

Economic dispatch (ED) is considered the fundamen-
tal concern for operation engineers working with any
MG system. Dynamic ED transforms the MG model into
discrete-time equations with small steps (i.e., in minutes
which can be solved with 1 or 5 minutes steps) followed
by static ED for solving each minute’s intervals [8]. In this
way, this strategy will work as the consecutive scheduling
according to the real MG operation.

Many researchers have chosen multi-objective function
with consideration of different objectives, which include
operating costs along with the emission and environmen-
tal considerations with the help of various dispatch algo-
rithms mentioned in [9], [10]. Many kinds of researches
have been carried out about the ED as mentioned above
problems which include minimum fuel cost, low SO2 emis-
sions, low NOx emissions in [11]. At the same time, uni-
fied consideration of SO2 and NOx altogether was not
assumed in terms of environmental pollution. In [12], GHG
emission was analyzed, except CO2 emissions, as an indi-
vidual objective function entity rather than combining it
with pollutant emissions. NSGA-II was implemented in [11]
and [13]; however, it was only possible for solving one dura-
tion of schedule, but the dynamic ED which was designed
to handle the consecutive durations, was observed in [12].
The charging/discharging and demand-side phenomena for
photovoltaic based grid-connected MG with EVs, transfer-
able loads and distributed resources were examined in [14].
The operating cost (OC) is considered as objective function
with four cases. While multi-objective seeker optimization
was applied with fuzzy logic. The authors in [15] proposed
a power routing strategy for EVs based unbalanced hybrid
MG system. The objective function involves minimization of
power loss and power imbalance factor along with improved
system load ability as well as voltage profile. For DC
MG system, fast EVs charging scheme is proposed in [2]
with virtual-battery based droop control with improved bus
voltage, ED and battery State of Charge (SOC).

The OC was taken as an objective function by authors
in [16] and was not considered in [17], even though the
V2G operation was taken in both cases. In [18], a single
cost function was assumed, and the performance of differ-
ent algorithms was analyzed. Carbon dioxide emission (CE)
with other objective functions was considered in [19] as
multi-objective functions without considering OC, CE and
pollutant treatment cost (PTC). Authors considered the only
grid-connected case in [20] without considering renewables
penetration with V2G technology, while no optimization with
cost function was carried out. A single objective function was
examined in [21] and the performance of multi-optimization
algorithms was investigated without considering the V2G
scenario. Authors in [22], minimization of OC was rec-
ognized as a single objective function without considering
OC, CE, and PTC. Model predictive control was applied
in [23], [24] with consideration of OC and PTC, while the
V2G scenario was out of scope. Only the V2G case without
optimization cost functions was studied in [25]. A single
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TABLE 1. Summary of related research on EVs.

objective function was solved with the V2G case in [26]
without keeping in view the integration of renewable energy
resources as well as multi-objective cost functions (OC, PTC,
CE). V2G with OC and CE in [27] was elaborated without
PTC. In [28], V2G with OC and PTC was expressed without
CE cost function and PV generation. V2G with OC and PTC
was taken in [28] and [29] while the additional cost factor of
CE was also considered in [29]. Table 1 shows a summary of
relevant research that was performed on EVs in recent times.
It is observed from Table 1 that almost all of the literature
considered particular objectives out of all three proposed
objectives mentioned in this study.
The contribution of this paper can be highlighted as fol-

lows: ED optimization considering OC, PTC, and CE using
ABC algorithm, the effect of EV on ED with different charg-
ing modes and scheduling strategies, The DES consisting
of PV, WT, DE, FC and Battery Storage System (BSS),
the results of ABC algorithms are compared with the results
of PSO algorithms.
After a comprehensive review of literature studies, it is

concluded that Economic dispatch (ED) is a classical problem
in which the existing approaches rarely used detailed analy-
sis of EVs as dynamic load in both coordinated as well as
un-coordinated way. At the same time, ABC is not applied to
this particular type of ED problem. Furthermore, short-term
load shedding scenarios are also not discussed in the literature
studies during ED. Due to energy shortage and greenhouse
gas (GHG) emissions globally, the new future trend involves
high penetration of EVs and its application as a vehicle to grid
(V2G). Therefore, more advanced algorithms like ABC are
required to solve more complicated ED problems. As com-
pared to other existing approaches, the ABC algorithm does
not trap in local minima during the search of the best opti-
mal solution. The specific attribute of the ABC algorithm is
the limit cycle which is identified by a scout bee to avoid
local minima. In this paper, the main contribution involves
penetration of EVs as dynamic load and its V2G impact
in a coordinated or uncoordinated way, application of ABC

algorithm for this particular load problem with improved
results, and inclusion of short-term load shedding scenarios.

II. THE LOAD MODELS OF EVS

A. SPATIAL AND TEMPORAL ATTRIBUTES

The proposed study presented the EVs system for domestic
hybrid PEVs. The owner’s driving preferences are considered
as a spatial characteristic of EVs. The probability function
with consideration of daily mileage of EVs is expressed
as [30]:
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1
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Also, the similar relationship for ending time is [30]:
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where µs = 8.920; σs = 3.240; µt = 17.470; σt = 3.410.
EVs data follows a normal distribution, and our data which

is taken from [29], follows a normal distribution, and there-
fore, it is selected for this research study.

B. AUTONOMOUS MODE

The preference is the owners who can conveniently initiate
EV charging, keeping in view any of the policies imposed by
the government while the EV scheduling process is not active.
The unidirectional power flow with the charging period is
expressed as:

TC =
SW100

100PCηC_EV
(3)

whereW100 shows the power utilization (kWh/100km), PC is
charging power (kW), ηC_EV is charging efficiency.
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FIGURE 1. Flow diagram for computational load (a) autonomous mode.

The sum of the charging load PEVload (t) can be calcu-
lated by adding the values of every duration interval. As for
charging periods of EVs are not dependent on one another;
therefore, the daily load curve can be foundwith the following
relationship as:

PEVload (t) =
N
∑

i=1

Pi(t) (4)

where N is the sum of vehicles; Pi(t) is the charging power;
i is duration interval t (kW). Fig. 1 (a) shows the autonomous
mode flowchart.

C. COORDINATED MODE

The coordinated mode (V2G) is meant to control EVs prop-
erly and centrally by keeping in view the electricity pricing
policy and the behavior of the owners. Grid-connected EVs
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FIGURE 1. (Continued.) Flow diagram for computational load (b) coordinated mode.

which are scheduled are analyzed. The assumption is made
that these EVs can be completely scheduled. EVs will be
charged during off-peak load durations, while EVs will be
discharged during peak load hours.
Themaximum discharging duration can be calculated from

the battery SOC, daily mileage, and discharging power as
follows:

Tmax _disC =
(SOCmax − SOCmin)CEV

PdisC
−

SW100

100PdisC
(5)

The actual discharging time TdisC when EVs are discharg-
ing can be calculated as follows:

TdisC = Tend_disC − Tstart_disC (6)

The EV charging demand is the sum of total utilization in
the everyday period, which includes daily transport utilization
and discharge capacity as follows:

WEV = PdisCTmax _disC − PdisCTdisC (7)
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Then expression for the charge duration is as follows:

TC =
WEV

PCηC_EV
(8)

Equation (4) will provide a total EV charging load. A coordi-
nated mode flow chart is shown in Fig. 1 (b).

III. MODELING OF MULTI-OBJECTIVE COST FUNCTIONS

A. COST FUNCTIONS

The function based on multiple objectives problem with n-
dimension decision variables is mathematically expressed in
the following way [29]:

minF = {f1(x), f2(x), . . . , fk (x)}
s.t.
{

gi(x) ≤ 0; i = 1, 2, . . . , q

hj(x) = 0; j = 1, 2, . . . , p
(9)

where x = (x1, x2, . . . , xn) are decision variables based on
n-dimension; fk (x) is the kth objective, gi(x) ≤ 0 and
hj(x) = 0 are inequality and equality constraints respectively.
ED objectives of MG which are analyzed in this paper are

as follows:

1) OPERATING COST

The OC (C1) of the MG is expressed:

minC1 = CFuel + COM + CDC +MCGRID + (1 −M )CLS
(10)

where CFuel,COM ,CGRID, CLS , and M are fuel cost; O&M
cost; interaction cost between MG and power grid (PG);
compensation cost for interruptible load; grid connection/
disconnection indication respectively. M = 1 indicates MG
is connected with PG, while M = 0 shows a standalone mode
of the MG.

In the cost functions and formulas (10), the energy loss
cost is not considered. Economic dispatch (ED) problems
typically handle generation sources while distribution and
transmission losses are generally out of the scope of the
ED problem. We picked reference paper problems [29] and
applied the ABC algorithm while no change in the problem
is made.

The depreciation cost (CDC ) is determined [29]:

CDC =
InCost ∗

[

d(1+d)l

(1+d)l−1

]

Pmax ∗ 8760 ∗ cf
∗ Pi (11)

where Pi, i, cf , InCost, d, l and Pmax are output power;
capacity factor; installation cost; interest rate (8%); DG life-
time; and DG maximum power respectively.

About the pollutant emissions types and the corresponding
cost, we only considered three pollutants, namely CO2, SO2,
and NOx. The emission parameters along with the corre-
sponding weight as well as processing costs, are mentioned
in Table 5.

2) POLLUTANT TREATMENT COST

The pollutant treatment cost (C2) of the MG is:

minC2 =
K
∑

i=1

∑

k

(Ckγik)Pi +
∑

k

(CkγGridk)PGrid (12)

where K , k,Ck , γik , γGridk , and PGrid are the sum of total
DGs; pollutants emissions type; treatment cost; pollutant
emissions coefficient; coefficient of grid pollutant emissions;
and grid output power respectively.

3) CARBON EMISSIONS COST

The carbon emission cost (C3) can be expressed as:

minC3 =
K
∑

i=1

CCO2γiCO2Pi + CCO2γGridCO2PGrid (13)

where CCO2γiCO2 and γGridCO2 are the carbon treatment
cost, coefficient emissions, and coefficient of grid emissions,
respectively.

B. CONVERSION TO SINGLE OBJECTIVE FUNCTION

The judgment matrix methodology (JMM) expressed in [31]
finds the weight of the objective, which is also a reflection
of the situation and the owner’s priority. The proposed study
applied JMM to find the weight coefficients for every objec-
tive and finally combine in a single objective, as follows [29]:

C = ω1C1 + ω2C2 + ω3C3 (14)

where ω1, ω2, ω3 are the weight coefficients for each objec-
tive. The main idea of the judgment matrix method is to find
a judgment matrix that which objective has more priority.
Based on the analytic hierarchy process expressed in [32],
the criteria are shown in Table 2:

TABLE 2. The criteria for the judgment matrix.

Every objective (OC, PTC, CE) is graded in three cate-
gories. Table 2 shows the judgment numbers with priorities,
and the matrix can be expressed:

J =





1 3 5
1
3 1 3
1
5

1
3 1



 (15)

After calculation, weight coefficients are found as ω1 =
0.6370, ω2 = 0.2583, ω3 = 0.1047.

According to the judgment number in table 2, there are
many matrices which can be expressed, but the authors
choose the formulas (15) due to the following reasons:

• Because the multi-objective problem can be represented
in two ways, namely single objective, and Pareto-front.
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• As the single objective representation of the multi-
objective problem is straightforward. Therefore, a judg-
ment number matrix is used.

• In multi-objective optimization, the objectives to be
improved are conflict. For the convenience of the
description, assuming all the objectives are to be min-
imized.

• The ‘‘conflict’’ implies that there is no single solution
at the same time which can fulfill all objectives, yet a
solution set. These solutions structure the Pareto-front
in the objective space, and these solutions are called
Pareto-optimal solutions and structure the Pareto Set
in the decision space. Moreover, these solutions ought
to equally distribute on the Pareto-front. To avoid this
problem, a more convenient matrix number matrix is
used.

• If the objective function includes conflicted terms, then
we need to treat each objective function differently. But
in our case, a single-objective problem based on judg-
ment number is selected.

• The use of weights can be adapted as a single objective
function for a multi-objective problem.

• In the multi-objective problem, the solution is not
unique, and there is no unique, natural, and canonical
solution concept.

C. CONSTRAINTS

1) POWER BALANCE OF MG

N
∑

i=1

Pi + PGrid + PBS = PLoad + PEVload (16)

where PLoad ,PEVload ,PEVload , and PBS are load; EV power;
and BSS output respectively.

2) POWER LIMITS

DGs power limits are expressed as:

Pimin ≤ Pi ≤ Pimax (17)

where Pimin and Pimax are the minimum and maximum
limit [29].
In the constraints of formulas (17), the limit of reactive

power and voltage is not considered. As the EV load is active,
we only considered active power, P. In ED problems, only
limits of active power (P) are considered. Further, we do
not measure voltage because it is not the load flow problem.
Also, the DE ramp rate is considered as 1 kW/min, which
is taken from the base paper. Because the voltage limit is
directly related to power quality and power system security,
further discussion and analysis about the voltage limit will
be considered in the subsequent paper involving power flow
analysis.

3) RAMP RATE LIMITS

DEs ramp rate is expressed as:

|PG(t) − PG(t − 1)| ≤ rmax ∗ 1t (18)

where PG(t)PG(t − 1)rmax and t are outputs, maximum ramp
rate, and time interval, respectively.

Regarding the ramp rates of different generators, the data
is limited in research papers understandably, due to the con-
fidential bidding of various market players, often data in
research papers may not be a real picture. Formula 18 shows
a ramp rate for the DEs, which is taken from the base paper.
Future work will further include the different ramp rates of
various generators. All factors will be considered comprehen-
sively in the theoretical part.

4) BATTERY SOC

BSS of EVs in terms of SOC is expressed as:

SOCEV min ≤ SOCEV (t) ≤ SOCEV max (19)

where SOCEV min and SOCEV max are the minimum and max-
imum value of SOC [29]

5) LINE TRANSMISSION CAPACITY

Power flow between MG and PG is expressed as:

−PLmax ≤ PGrid ≤ PLmax (20)

where PLmax is the maximum capacity.

6) BATTERY OPERATION

Frequent charging and discharging of the battery will severely
affect the lifetime. Following are the constraints which are
expressed as follows:

SOCmin ≤ SOC(t) ≤ SOCmax (21)

−PBS max ≤ PBS (t) ≤ PBS max (22)

SOCend = SOCstart +
N−1
∑

t=0

PBS (t)ηC1t = SOCstart

SOCend = SOCstart +
N−1
∑

t=0

PBS (t)

ηD
1t = SOCstart (23)

where SOCmin and SOCmax are the minimum and maximum
SOC limits of the battery storage.PBS max, PBS(t) ηC , ηD
are minimum and maximum value; maximum BSS power;
charging and discharging efficiencies. SOCstart And SOCend
are the SOCs in the beginning and end of a cycle, respectively.
Taking into account that the dynamic ED strategy for the MG
is performed in cycles, an assumption may be applied that the
battery SOC is equal between the beginning and the end of a
cycle, as shown in formula (23).

IV. ECONOMIC DISPATCH STRATEGIES

Due to clean and renewable energy from PV and wind,
the maximum utilization of PV-wind is ensured in this study.
Different scheduling strategies for both operating modes of
the MG are as follows:

A. GRID-CONNECTED OPERATION

The following two approaches of the scheduling strategies for
economicMG operation are adopted in grid-connected mode.
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1) SCHEDULING SCHEME 1

Electric vehicles are charging in autonomousmode. The load,
which includes conventional and EV charging, is supplied by
DGs and the PG. Power flow is in both directions.

2) SCHEDULING SCHEME 2

Electric vehicles are charging and discharging in coordinated
mode. During the off-peak electricity pricing hours, EVs can
be charged to store energy in EV batteries for discharging
them at the peak pricing hours. The load, which includes
conventional and EV charging, is supplied by renewables and
PG. EVs start to discharge during peak pricing hours to feed
the peak load, and DGs, PG, and EVs supply the system load.
EVs are further used for transportation during parity hours,
and DGs and PG supply the system load which includes only
the conventional. Power flow is in both directions.

B. ISLAND OPERATION

The following two approaches of the scheduling strategies for
economic MG operation are adopted in island mode.

1) SCHEDULING SCHEME 3

EVs are charging in autonomous mode. The system load,
which is a combination of conventional and EV charging,
is supplied by DGs. To avoid frequent charging and to dis-
charge which will severely affect BSS life, BSS is used within
a set time duration, i.e., off-peak hours from 23:00-24:00,
0:00-6:00, while peak hours from 17:00-23:00. When DGs
output is not enough to meet the requirement, one portion will
be shut off.

2) SCHEDULING SCHEME 4

EVs are charging and discharging in coordinated mode.
The peak and off-peak load hours will be changed, which
includes peak hours and off-peak hours. BSS is discharged
0:00-6:00 while it is charged at 17:00-24:00. The system
load comprising of conventional and EV charging is supplied
by distributed generators (DGS) and electric vehicles (EVs).
When DGs output is not enough to meet the requirement, one
portion will be shut off.

V. PSO ALGORITHM

A. PSO CONCEPT

PSO is a search and intelligence-based optimization, which
is suggested by Kennedy and Eberhart in 1995 [29]. The
main idea is to establish a swarming group with random num-
bers [33]. The position of every swarm can be represented
as Xi = (xi1, xi2, . . . , xid )

T , and while the velocity of every
swarm is Vi = (vi1, vi2, . . . , vid )

T , where i = 1, 2, . . . , n,
n is the population size. Every swarm continuously adjusts its
position and velocity based on the expression shown below,

until the termination criterion is reached:














xk+1
i,d = xki,d + vki,d
vki,d = ωvki,d + c1.rand

k
1 .

(

pbestki,d − xki,d

)

+ c2.rand
k
2 .

(

gbestkd − xki,d

)

(24)

where xki,d , v
k
i,d , ω, c2, c1, pbest

k
i,d , gbest

k
d , rand

k
1 , and rand

k
2

are the position of a swarm i in k-th iteration; velocity; inertia
weight factor; acceleration coefficients; personal best; global
best; and random numbers respectively.

1) PSO PROCESS

• Step 1: Start initialization of swarm with its velocity and
position, coefficients, and maximum iterations.

• Step 2: Set the objective as a fitness value.
• Step 3: Calculate the fitness for every swarm for personal
best, while comparing with other swarms for global best.

• Step 4: Modify swarm velocity and position based on
Equation (24).

• Step 5: Modify the personal best and global best solu-
tions accordingly.

• Step 6: Repetitions of steps 4 and 5 until achieving the
limit for maximum iterations.

• Step 7: The end product is global best, personal best, and
its relevant position.

VI. ABC ALGORITHM

A. BASIC ABC CONCEPT

In 2005, Karaboga [18] had described a bee swarm algo-
rithm called an artificial bee colony (ABC) algorithm for
optimizingmulti-variable numerical functions. Themain idea
is the intelligence and behavior of honey beemovements [34].
Using a global search algorithm like the ABC algorithm is the
best method to combat the local extremes issues [34]. There
are three players in bee colony foodstuffs: i) the food sources,
ii) the employed bees, and iii) the unemployed bees, which
are divided into onlooker and scout bees [34]. Employed bee
examines a food source and executes a negotiation dancing
after returning to a colony to attract visitors to its food supply.
As the length of the dancing is related to the consistency of
the food supply, stronger suppliers (global optima) have a
higher chance that the onlooker bees should prefer. Once a
food supply is depleted, the used bee is turned into a guide
bee that looks unexpectedly for a fresh supply of food. This
is a crucial stage in the feeding cycle as it helps prospective
food suppliers to be found at minimal cost to the colony [35]
and [18].
In the current study, the objective is to optimize the ED

considering OC, PTC, and CE. The on-looker bee supervises
and sends many employed bees to find the food source (i.e.,
the optimal size of DGs). While the scout bee brings the
same solution during each specified iterations. The on-looker
bee then checks the fitness (i.e., cost function) for the best
solution and saves it in memory. During each iteration, an on-
looker bee selects the best optimal solution out of multiple
solutions after a specified number of iterations. In the second
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phase, the scout bee is instructed by an on-looker bee to find
the random food source (i.e., random solutions for DG size).
For a global optimum solution, on-looker bee assigns the duty
to the scout bee for a random search to avoid the trap in
local minima. Therefore, ABC is a diversified algorithm that
finds the global best optimal solution without trapping in the
localminima, which shows its superior behavior, among other
algorithms.

B. INITIAL SOLUTIONS

The initial factors in the ABC algorithm are the number of
food points (NFP), which is equal to the total bees. The initial
population for solutions is created by random numbers, with
the following relationship for random positions [18]:

Xij = Xj,min + rand ×
(

Xj,max − Xj,min
)

,

i = 1, 2, . . . NFP, j = 1, 2, . . . , J (25)

where Xij is the ith population of the jth vector and NFP
is set to equal 5. Xj,min and Xj,max show the minimum and
maximum boundaries of the jth vector. At the same time, rand
is a random number that is uniformly distributed, ranging
from 0 to 1. The following relationship can represent the
fitness function:

Fitnessi = Obj
(

Xij
)

+
M
∑

m=1

λeq,m
∣

∣h
(

Xij
)
∣

∣

2

+
N
∑

n=1

λineq,n
∣

∣g
(

Xij
)

− glim
∣

∣

2
(26)

where Obj is the objective function, while equality and
inequality constraints are represented by h

(

Xij
)

and g
(

Xij
)

respectively. The penalty factors are abbreviated λeq,m and
λineq,n can be adjusted in the optimization process. glim can
be defined as follows:

glim =











Xj, if Xj,min ≤ Xj ≤ Xj,max

Xj,min, if Xj < Xj,min

Xj,max, if Xj > Xj,max

(27)

The value of the penalty factor can be increased if one or more
variables violate the limits, and the corresponding individual
will, therefore, be discarded to skip the infeasible solution.
The flowchart of the ABC algorithm is illustrated in Fig. 2.

VII. STUDY SYSTEM

This paper suggested an MG, including wind, solar, diesel
engine, fuel cell, BSS and electric vehicles. In the grid-
connected mode, the BSS is not active for scheduling due
to the support from the power grid. In the islanded model,
the BSS is actively participating in scheduling. There are
30 wind generators and 30 solar generators. The maximum
capacity of wind and solar is 30 kW each. DEs and FCs
are 60 kW each. DE ramp rate is 1 kW/min. BSS power
is 150 kWh, with a power limit of 30 kW. The minimum
and maximum value of SOC for BSS is 10% and 100%,

FIGURE 2. ABC optimization technique flowchart.

TABLE 3. EV parameters.

TABLE 4. DGs parameters.

TABLE 5. Emissions parameters.

respectively which is also mentioned in Table 3. The max-
imum line capacity is 300 kW. Energy buying and selling
prices are real-time values for this paper. The compensation
cost for the interrupted load (LS) is 1.450 PKR/kWh, and
Table 3 shows EV parameters [29], and Table 4 shows DG
parameters [29]. DGs means wind, solar, diesel and fuel
cells. Table 5 shows the emissions coefficients and treatment
costs [29]. Fig. 4 shows. Wind and solar power, load profile
and real electricity price [29]. Different types of EVs are
considered in this research. The number of EVs ranges from a
minimum value of 80 to a maximum value of 700. Regarding
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FIGURE 3. Flow chart of the employed ABC and PSO optimization methodologies.
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FIGURE 4. (a) The power output (wind & solar); (b) Load profile of MG;
(c) Electricity rate.

the specific network topology of the MG, authors have used
the parameters of the base paper by keeping the same MG
topology, as mentioned in the base paper. The base of the
real-time price set in Fig. 4(c) is taken from an article [29]
which is already mentioned in the manuscript. Fig. 3 shows
the flowchart of the proposed ABC and PSO optimization
methodology.
The current study suggests a dispatch cycle of 1 day,

which is subdivided into minute steps. The population size
is 5, maximum iterations are 5, and the upper bound of the
acceleration coefficient is set as 1.

A. SIMULATION ANALYSIS

Fig. 5 shows the simulation analysis of the everyday load
of electric vehicles in various modes. Fig. 5a shows that the
higher peak load is observed during more penetration of EVs.

FIGURE 5. Load profile (a) autonomous mode; (b) coordinated mode.

The EV charging is analyzed at 18:00-19:00, which is a busy
time, as vehicle owners usually start charging. The simula-
tion analysis is precisely according to the priority of vehicle
owners. If a large number of vehicles are charging suddenly,
it will ultimately boost the burden on the utility grid. Fig. 5b
elaborates vehicle charging at off-peak hours 0:00-8:00. This
is consistent with MG stability, as well as economical due
to the lowest electricity price. From 8:00 to 16:00, vehi-
cles are used for transportation. Vehicles are discharging at
16:00-24:00 to contribute to ED.

B. COMPARISON BETWEEN PSO AND ABC

Scheduling strategy-1 is chosen to be the study case to
investigate the performance of PSO and ABC algorithms.
Fig. 6 shows the convergence value of fitness function,
while Table 5 depicts parameters of PSO and proposed ABC
algorithms. To find how scalable the proposed approach is,
the comparison of fitness value for both algorithms (i.e., ABC
and PSO) in Fig. 6 shows the fast convergence during the
ABC method. Furthermore, the comparison Tables 5 also
indicates the computational burdenwhich is half in the case of
the ABC method. For the computational cost of the proposed
approach, Table 5 shows the simulation time of 4.098 s which
is half as compared to that of PSO. Further, the computational
cost is 395.01 PKR which is 2.23 % lower as compared
to the PSO method. The fitness function which decides the
computational burden is also shown in Figure 5 which shows
fast convergence of the ABC convergence curve.
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FIGURE 6. Convergence value for PSO and ABC.

Since ABC optimization is a heuristic search method, its
optimization results have certain randomness. In all research
studies, the convergence curve. normally decides the selec-
tion of the most suitable solution as the authors checked PSO
and ABC algorithms while all heuristic algorithms do in the
same way. Hence Fig 6 shows the effectiveness of the ABC
algorithm over PSO. To further select the final solution, the
authors took an average of twenty (20) optimization results,
while an average of five (5) and even three (3) results were
also enough in some cases where the variation trend of ran-
dom numbers was negligible.
Fig. 6 elaborates that the ABC converges faster as com-

pared to PSO. As depicted in Table 6, the total simulation
time is also less for ABC. Based on the comparison of the
convergence values of Table 6, it is verified that the proposed
ABC is superior in performance as compared to PSO.

TABLE 6. Comparative analysis of the computational burden between
two algorithms.

C. SCHEDULING ANALYSIS IN THE GRID-CONNECTED

MODE

1) DGS OUTPUT

After the ED of the MG, the outcome of the scheduling
strategies of EVs, FCs, DEs, and PG are shown in Fig. 7. Due
to the penetrationmaximization of renewables, the figures are
not drawn with WT and PV.
During the scheduling strategy-1 of the MG system,

Fig. 7a shows that the power grid output is negative from
0:00 to 5:30; i.e., the MG supplies extra energy to PG. the
reason is that the WT output power is higher than the require-
ments of the MG. After 5:30, the renewables are ineffective
in fulfilling the requirements; therefore, PG is used due to
its lowest overall cost. Throughout the simulation period,
FC is ON and is prioritized for scheduling due to a lower
price. From 08:30 to 11:00, the cost of PG is more than
FC; therefore, FC is added with PG to feed requirements.

FIGURE 7. Economic dispatch (a) scheduling scheme 1; (b) scheduling
scheme 2.

From 11:00 to 24:00, DE and FC have higher prices than PG,
so PG for better economics supplies load demand.

When the scheduling strategy 2 of M is adopted, Fig. 7b
shows that the vehicle’s load is supplied at 0:00-8:00. Overall
costs of PG and DE are lower than FC, therefore both pro-
vide energy with less power contribution from FC. Between
02:00-04:00 and 06:00-08:00, DE has a lower cost. During
the interval starting from 8:00 to 16:00, vehicles are not
active for scheduling. Before 13:00, the cost of DE is low as
compared to FC and power grid, so it supplies more energy
with FC and power grid. During interval 13:00-16:00, cost of
the power grid and DE is low as compared to FC, therefore
both supplies more energy with FC.

Meanwhile, when the costs of DE and FC are low as
compared to PG (see Fig. 7b from 10:00-13:00), then extra
power is supplied to PG for economical operation. After
16:00, the cost of DE and FC is low as compared to PG;
therefore, the power grid is not used during this period.
After 16:00, vehicles started to discharge and to contribute to
scheduling; therefore, PG power is decreased, and vehicles
began to supply energy to PG for the economical operation.

2) COST FUNCTION

Table 7 shows the cost for individual functions as well as
an overall comprehensive single objective for both strategies.
Table 7 depicts average values after repeatedly computing
ten times.
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TABLE 7. Grid-connected scheme: dispatch results (pkr) under
scheduling schemes 1 and 2.

From the values of Table 7, it is observed that selecting
scheduling strategy 2 with ABC algorithm decreases the cost
by 18.79%, which is the single objective cost as compared to
the selection of strategy 1. Further, it reduces 17.76% of the
operating cost, 29.84% pollutant emissions, and 25.52% the
carbon dioxide emissions. While simulation studies with
the same strategies are also carried out by using the PSO
algorithm, it is observed that selecting scheduling strategy 2
with the PSO algorithm decreases the cost by 18.52%, which
is the single objective cost as compared to the selection of
strategy 1. Further, it reduces 17.59% of the operating cost,
29.82% pollutant emissions, and 25.17% the carbon dioxide
emissions. The simulation study elaborates that vehicle coor-
dinated mode can reduce all three objectives costs during the
grid-connected mode of the MG. This is also verified that
the best results are found with the proposed ABC algorithm,
as shown in Table 7.
Different results obtained in Table 8 are analyzed that all

the objectives are achieved with their best costs by opting
proposed ABC algorithm as compared to the PSO algorithm.
This concludes the observation shown in Table 8 that ABC
is showing slightly better performance as compared to the
PSO algorithm to minimize the comprehensive cost (1.46%),
operating cost (0.97%), carbon emission cost (0.07%), and
pollutant treatment cost which is 1.39%.

TABLE 8. Comparison (pkr) of PSO and ABC under scheduling
strategies 1 and 2.

Based on Fig. 8a and Fig. 8b, vehicles are charging during
off-peak hours, and discharging during peak hours to accom-
plish the target of peaks shifting as well as to lower the cost of
buying energy units fromPG. Therefore, vehicles are efficient
in coordinated mode and are contributing to MG stability as
well as cost reduction.

D. SCHEDULING ANALYSIS IN THE ISLAND MODE

1) DGS OUTPUT

After the ED of the MG, the outcome of the scheduling
strategies of EVs, FCs, DEs, and PG are shown in Fig. 6.

FIGURE 8. Dispatch results (a) scheduling scheme 3; (b) scheduling
scheme 4.

Due to the penetration maximization of renewables, the fig-
ures are not drawn with WT and PV.

When scheduling strategy 3 of the MG system is adopted,
Fig. 8a shows that the BSS is charging during the period
0:00-6:00, because the MG load is less, and DE and FC
supply power afterward. From 12:00 to 13:00, FC is unable
to meet the demand, and BSS is not in service so far, while
power shortfall is observed, therefore part of the load needs
to be shut off. During the time interval, 15:00-16:00. EVs are
connected for charging, and the BSS feeds the excess power.
During 16:00-22:00, more shortage is observed due to vehicle
charging, and meanwhile, BSS starts to discharge energy for
low peak and low power shortage. After 22:00, MG demand
is reduced and wind, solar, DE, and FC are fulfilling the load
requirements as well as charging of the BSS.

During MG operation with scheduling strategy 4, Fig. 8b
shows that vehicle charging occurred at 0:00-8:00, which
drastically increases the power demand while DE and FC
powers are sufficient to fulfill this requirement, so the
BSS is controlled to remain in idle state. Time duration at
8:00-16:00 is not involved in vehicle scheduling, and the
power demand is supplied by both DE and FC. DE and FC
power is unable to fulfill load requirements at 16:00-17:00,
and the BSS supplies the power mismatch. After 16:00,
vehicles start discharging to contribute to scheduling while
charging the BSS at the same time. Further, the FC is not
participating from 18:00 to 22:00 due to the high participating
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cost. After 18:00, DE and FC power-sharing are gradually
decreasing due to their higher price as compared to that
of V2G until FC is not involved in delivering power at
18:00 while DE reduces its output from 20:00 onwards.

2) COST FUNCTION

Table 9 shows the cost for individual functions as well as
an overall comprehensive single objective for both strategies.
Table 9 depicts average values after repeatedly computing
10 times.

TABLE 9. Island Operation: dispatch results (pkr) under scheduling
schemes 3 and 4.

The data of Table 9 shows improvement results after
adopting the scheduling strategy 4. ABC algorithm reduces
the overall single objective cost by 25.17% as compared
with taking the scheduling strategy 3. Further, the scheduling
strategy 4 reduces the operating cost by 25.55%, reduces
the pollutant emissions by 20.38%, and reduces the carbon
dioxide emissions by 28.72%. When the PSO algorithm is
applied with the same strategies, it is observed that it reduces
the overall single objective cost by 18.59% as compared with
adopting the scheduling strategy 3. Further, the scheduling
strategy 4 reduces the operating cost by 19.82%, reduces
the pollutant emissions by 3.59%, and reduces the carbon
dioxide emissions by 18.89%. This verifies the superior
performance of the proposed methodology with ABC that
the vehicle coordination for charging and discharging mode
is reducing the operating cost, pollutant emissions, and the
carbon dioxide emissions while MG is running under the
standalone (islanded) mode. Vehicles charging enhances
peak loads while following the vehicles (EVs) charging in
autonomous mode, leading to a substantial recompense cost
due to the loss of interruptible loads (LOIL), as shown
in Fig. 6a. At the same time, the vehicles operating in
discharging mode obviates a significant part of LOIL while
pursuing the vehicles charging and discharging in coordi-
nation mode (see Fig. 6b), hence it reduces the operating
cost, pollutant emissions, and the carbon dioxide emissions.
By concluding the remarks of this section, the selection of the
vehicle’s coordination in charging and discharging mode will
surely trim the demand shortage during the MG operation
in standalone mode, which will assist in getting a better
operation in terms of economics.
Different results obtained in Table 10 are analyzed that all

the objectives are achieved with their best costs by opting
proposed ABC algorithm as compared to the PSO algorithm.
This concludes the observation shown in Table 12 that ABC is

showing significantly better performance to minimize the
comprehensive cost (35.40%), operating cost (28.91%), and
carbon emission cost (52.04%). In comparison, drastically
significant improvement with ABC algorithm is observed in
reducing pollutant treatment cost which is 467.69%.

TABLE 10. Comparison (pkr) of pso and abc under scheduling
strategies 3 and 4.

E. SCHEDULING ANALYSIS WITH CONSIDERATION OF

LOAD SHEDDING IN THE GRID-CONNECTED MODE

1) DGS OUTPUT

After the ED of the MG, the outcome of the scheduling
strategies of EVs, FCs, DEs, and PG are shown in Fig. 9. Due
to the penetrationmaximization of renewables, the figures are
not drawn with WT and PV.

During the scheduling strategy 1 of the MG system, forced
load shedding is carried out from 01:40 to 02:20, as shown
in Fig. 9(a1). However, the power grid output is positive
throughout the simulation time; i.e., the power grid supplies
excess electricity to the MG. This is because the PV output
power is zero, while wind power is insufficient to feed the
load requirements. So, the power grid is used due to its low-
est overall objective cost. Throughout the simulation period,
DE is enabled and is prioritized to be scheduled due to its
lower objective cost. From 14:00 to 22:00, the cost of PG
turns lowest among all DGs, so the power grid feeds most
of the power demand. From 07:00 to 24:00, DE and FC costs
are higher than that of PG; hence most of the load demand is
supplied by PG for improvement of the economics.

Similarly, Fig. 9(a2) shows the DGs output power dur-
ing load shedding from 10:00 to 11:40, while Fig. 9(a3)
shows the DGs power when load shedding is executed from
16:40 to 20:00.

When the scheduling strategy 2 of MG is adopted, forced
load shedding is carried out from 01:40 to 02:20, which is
shown in Fig. 9(b1). Fig. 9(b1) depicts the vehicle charging
load at 0:00-8:00, while overall PG cost is lower than FC
and DE, so the power grid provides output power together
with less power contribution from FC and DE. From 8:00 to
16:00, vehicles are not participating in scheduling, while
16:00-19:00 time range shows lower DE cost as compared
to the FC; therefore, it supplies power. After 16:00, vehicles
follow the discharging mode, and contributing in the schedul-
ing; therefore PG power is decreased, and vehicles started to
provide output to PG, and the economic benefits for vehicle
owners are ensured.

Similarly, Fig. 9(b2) shows the DGs output power dur-
ing load shedding from 10:00 to 11:40, while Fig. 9(b3)
shows the DGs power when load shedding is executed from
16:40 to 20:00.
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FIGURE 9. Dispatch results with load shedding scenarios 1-3 (a) scheduling scheme 1; (b) scheduling scheme 2.

To verify the work and to validate the presented method
sufficiently, the authors run multiple simulation results.
Table 6-9 shows the average values of twenty (20) simulation
results, while one solution set in the form of Figures 6-8 is
selected, and almost the same DGs trend was observed in
these results. Hence, more results were only skipped for the
reader to avoid any repetition with more number of pages.

2) COST FUNCTION

Table 11 shows the cost for individual functions as well as
an overall comprehensive single objective for both strategies.
Table 11 depicts average values after repeatedly computing
two times.

It is observed from Table 11 that by selecting scheduling
strategy, 2 for LSS-1 with PSO reduces by 78.29% the com-
prehensive single objective cost as compared to the selection
of scheduling strategy 1. While strategy-2 also reduces by
79.25% the operating cost, reduces by 57.04%pollutant emis-
sions, and decreases by 90.72% the carbon dioxide emissions.
Results for scheduling strategy 2 for LSS-2 and LSS-3 with
PSO are also shown in Table 11. It is also observed from
Table 11 that by selecting scheduling strategy, 2 for LSS-1
with ABC reduces by 79.57% the comprehensive single
objective cost as compared to the selection of schedul-
ing strategy 1. While strategy-2 also reduces by 80.55%
the operating cost, reduces by 58.59% pollutant emissions,
and decreases by 92.23% the carbon dioxide emissions.
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TABLE 11. Grid-connected Operation: dispatch results (pkr) under scheduling schemes 1 and 2.

Results for scheduling strategy 2 for LSS-2 and LSS-3 with
ABC are also shown in Table 11. This simulation result
elaborates that the vehicle’s coordination in charging and
discharging mode is reducing the operating cost, carbon
emissions and pollutant emissions during the grid-connected
mode of the MG. This is also verified that all the objectives
are achieved with their best prices by opting proposed ABC
algorithm as compared to the PSO algorithm. Contradictory
performance between PSO and ABC is observed only in one
case i.e., LSS-3, when PSO beats ABC in cost minimization
of three objectives. In this case, PSO reduces by 53.76% the
comprehensive single objective cost as compared to the selec-
tion of scheduling strategy 1. While strategy-2 also reduces
by 53.70% of the operating cost, reduces by 52.16% pollutant
emissions, and decreases by 62.48% of the carbon dioxide
emissions.
On the other hand, ABC reduces by 51.20% the compre-

hensive single objective cost as compared to the selection
of scheduling strategy 1. While strategy-2 also reduces by
52.03% the operating cost, reduces by 31.36%pollutant emis-
sions, and decreases by 59.79% of the carbon dioxide emis-
sions. Different results shown in Table 12 are analyzed that all
the objectives are achieved with their best costs by opting for
the PSO algorithm instead of the proposed ABC algorithm.
This concludes the observation shown in Table 12 that PSO
is showing slightly better performance during peak load hours
to minimize the comprehensive cost (4.76%), operating cost
(3.11%) and carbon emission cost (4.31%) while significant
improvement with PSO is observed in reducing pollutant
treatment cost which is 39.88%.
Based on Fig. 5a, and Fig. 5b, the vehicles are charging

during off-peak hours and discharging during peak hours
for peaks shifting and to lower the buying cost of energy

TABLE 12. Comparative analysis (pkr) of PSO and ABC under load
shedding scenarios.

units from PG. Therefore, the vehicle’s coordination in both
(charging and discharging) mode under different LSSs con-
tributes to the MG stability, as well as declines the compre-
hensive single objective cost, the operating cost, pollutant,
and the carbon dioxide emissions. Similarly, LSS-2 during
load shedding from 10:00 to 11:40 while LSS-3 during load
shedding duration from 16:40 to 20:00 also shows a similar
trend in reducing the overall single objective function cost as
well as the operating cost, pollutant and the carbon dioxide
emissions.

VIII. CONCLUSION

Keeping in view the natural (spatial and temporal) behav-
iors of vehicles, two vehicles (EVs) models are presented
in this paper. By considering the current investigations on
multi-objective ED of the MG to determine minimum possi-
ble values, three main and crucial daily life factors are consid-
ered as the objective functions. Five control and optimization
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techniques for standalone and grid-connected modes of the
MG operations are established. Further, V2G based multi-
objective ED model of the MG system is developed, and
the judgment matrix methodology is used to convert it into
a single objective. Keeping in view the safety constraints,
the model validity, along with the algorithms, is verified
through simulation of the case studies by using PSO andABC
algorithms under different scheduling strategies. With the
use of the ABC algorithm, the simulation studies depict the
superior performance of vehicles with charging/discharging
in a coordinated mode in terms of better operation economics
as compared to the autonomous charging mode. Further,
the dual-mode (seamless transition) is also analyzed during
load shedding hours with consideration of three different sce-
narios. During LSS-3 with load shedding during peak hours,
it is observed that PSO has slightly better performance to
minimize the comprehensive cost, operating cost and carbon
emission cost while significant improvement with PSO is
observed in reducing pollutant treatment cost. This concludes
the observation that ABC is better in V2G based MG with
coordinated charging and discharging mode. At the same
time, its performance is significant during a large number of
EVs (i.e., 700 EVs instead of 80EVs) while PSO performed
better with the case of load shedding during peak hours.
The future work includes some EVs which don’t obey the
dispatching strategy proposed in this paper.
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