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ABSTRACT 
The high-frequency fractional power law of relaxation, seen in a wide range of materials, 
yields a constant ratio of the macroscopic energy lost per radian to the energy stored in the sys- 
tem, in the corresponding frequency range. For almost two decades, the above energy criterion 
has been supposed to imply the existence of similar microscopic properties which determine 
the observed power-law exponent. Here, a rigorous formulation of the energy-criterion argu- 
ment is proposed in the frame of a new probabilistic approach to derive the Havriliak-Negami 
(HN) and Kohlraush-Williams-Watts (KWW) responses. In this approach the commonly ob- 
served macroscopic laws are related to the microscopic scenario of relaxation, and the energy- 
criterion interpretation is applied to the physical basis of the relation. The presented consid- 
erations reinforce the physical significance of the empirically found forms of relaxation, and 
open a new line of analysis of relaxation phenomena. 

1 INTRODUCTION. 
IDE-RANGING experimental information has led to the conch- W sion that the classical phenomenology of relaxation breaks down 

in complex systems. It has been found that the pure Debye response is 
hardly ever found in nature, and that deviations from it may be rela- 
tively large (see e.g. [l-51). It appears to be a general rule that the com- 
plex dielectric susceptibility x(w) exhibits the fractional power laws in 
frequency 

I .  \ n,-1 

m 
and 

Ax(w)= (E) O < W < W ,  (2) 

where the exponents n and m fall in the range (0,l); the constant w, 
is the loss peak frequency, and Ax(w) = x(0) - x(w) 131. 

The fundamental consequence of property (1) is that for large w the 
ratio of the imaginary to real components of the complex susceptibil- 

ity x (w)  = x ' (w)  - ix"(w) is a constant, dependent only on the 
exponent n 

(3) 

The physical significance of this simple property is that at high fre- 
quencies the ratio of the macroscopic energy lost per radian to the en- 
ergy stored at the peak is independent of frequency. Jonscher alleged [3, 
51 that fractional power law (1) and energy criterion (3) are inescapably 
connected with the fact that the energy loss in every microscopic re- 
versal is independent of the rate of reversals in the corresponding fre- 
quency range. He assumed that since in any dielectric system the total 
polarization is the sum of individual microscopic polarizations and the 
total loss is the sum of individual microscopic losses, the microscopic 
relationship also must have the property of energy lost to energy stored 
being independent of frequency. 

Until recently, the fundamental limitation of the energy-criterion ar- 
gument, with its tacit assumption that the macroscopic and the micro- 
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scopic approaches are equivalent, has been the lack of precise deriva- 
tion. The present paper sets out to provide a rigorous justification of 
this under very general conditions. Namely, we propose here a new 
probabilistic approach to model relaxation processes in which the re- 
lation between the phenomenological relaxation laws and the micro- 
scopic cause is discussed from a statistical background, and the energy 
criteria are involved by the properties of relaxation rates. 

In theoretical attempts to model relaxation it is commonly assumed 
that the empirical relaxation laws correspond to a kind of general be- 
havior which is independent of the details of examined systems. This 
idea has stimulated the proposal of several relaxation mechanisms (see 
e.g. [6-181) that differ mainly in the interpretation of the relaxation 
function. In the framework of statistical models, the fact that the large 
scale behavior of complex systems is to some extent independent of the 
precise local nature of the considered system, should come as no sur- 
prise. Intuitively, one expects 'averaging principles' like the law of large 
numbers to be in force. However, it turns out to be very hard to make 
this intuition precise in concrete examples of stochastic systems with 
a large number of locally interacting components. The crucial point is 
to find a natural technique to relate the local random characteristics of 
complex systems to the deterministic and universally valid empirical 
relaxation laws. Since the classical methods of statistical physics are not 
efficient enough to describe scaling properties (1) and (2), one should 
introduce new probabilistic tools appropriate to build up a bridge be- 
tween the microscopic world of interacting molecules and the macro- 
scopic world of the observed phenomena. In our opinion, a particular 
model can open a new line of analysis of the dielectric relaxation if it 
includes frequency-independent microscopic energy relations. The di- 
electric spectrum of such a model is then obtained immediately with 
the value n determined by the ratio of the lost-to-stored energy. 

It was stressed several times [19-261 that the approach based on the 
general probabilistic formalism of limit theorems enables us to treat re- 
laxation of complex systems, regardless of the precise nature of local 
interactions. In a natural way, it gives an efficient method for evalu- 
ating the dynamical averages of relaxation processes. Unfortunately, 
it goes beyond the classical methods of statistical physics taking into 
account limit theorems for probability distributions that have lnfinite 
variance, and therefore do not satisfy the assumptions of the central 
limit theorem. Nevertheless, this approach has the advantage of clari- 
fying the nature of relaxation phenomena despite the difficulties caused 
by the use of a new language to describe the time evolution of the non- 
equilibrium state of a stochastic system. 

2 NON-EXPONENTIAL 
RELAX AT1 ON 

The time-domain relaxation function 4(t) is a solution of the two- 
state master equation 

!!!%I = -.(t)$(t) 
d t  (4) 

where the nonnegative quantity r ( t )  is the transition rate of the system 
(i.e. the probability of transition per unit time), see e.g. 171. The function 
4(t) has the meaning of the survival probability of the non-equilibrium 
initial state of the relaxing system [27]. In other words, 4(t)  is deter- 
mined by the probability that the system as a whole will not make a 

transition out of its original state for at least a time t after entering it at 
t=O. The inverse Stieltjes-Fourier transform 

4*(w) = j exp[-itw] d [ l -  4(t)l (5) 
0 

relates the time-domain response to the complex susceptibility x ( w  ) by 
the formula x(w) = q5* ( w ) ( x 0  - x-) + x-, where the constant x- 
represents the asymptotic value of the dielectric susceptibility x(w)  at 
high frequencies, and xo is the value of the opposite limit. 

A purely empirical analytical expression convenient for represent- 
ing the two-powerlaw response, that is, satisfying (1) and (2), is given 
by the frequency-domain Havriliak-Negami (HN) relaxation function 
[2-51 

. . _ _ .  
where O<a, ytl. For a=l and itl ,  Equation (6) takes the form known 
as the Cole-Davidson (CD) function; for y=l and at1 it takes the form 
of the Cole-Cole (CC) function, and for a=l and y=l one obtains the 
classical Debye (D) form. Alternatively, the time-domain relaxation 
data often are fitted by means of the Kohlraush-Williams-Watts (KWW) 
stretched exponential function 12-51 

with Otatl although this response does not satisfy the power-law 

A common practice, following the historically oldest approach to re- 
laxation, is to assign the non-exponential relaxation behavior to differ- 
ent local properties of the investigated systems and to interpret this be- 
havior in terms of a superposition of exponentially relaxing processes. 
The non-exponential relaxation function d ( t )  is assumed to take the 
form of a weighted average of an exponential decay exp[-t/.r] with 
respect to the distribution of relaxation time 7 121. If the relaxation time 
can take values from the set { T I ,  7 2 ,  . . .} only, then 

dKW,(t) = exp[-(w,t)"] (7) 

property (2). 

i 

where pi  denotes the corresponding weight equal to the probability of 
taking value ri. In case of a continuous distribution of the relaxation 
time (when its values cannot be limited to any finite nor countable set), 
the corresponding equation takes the integral form 

m 

0 
m 
r 

(9) 

= J h(ln-r)exp[-t/r]  ci1riT 
0 

where g(r) = (l/T)h(ln T )  is the relaxation-time probability density 
function. 

It is a well-known fact of probability theory (see e.g. [28]) that both 
Equations (8) and (9) can be rewritten into a common form 

by means of a random variable T distributed as the considered relax- 
ation time, where ( ) denotes the expected value. Introducing a new 
random variable 6 = I/?, representing the corresponding relaxation 
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Figure 1. Dipolar clusters in the system of size N=100. The val- 
uesof thecluster sizesN1 =Nj=14, N~=N6=12, N3=13, N4=&=11, 
N7=16 were taken randomly Since NI+. . tN7=92<N=100 and 
NI+. . tN7 + N8=103>N=100, we obtain K N = ~ .  The 8 dipoles 
capable of responding to an external field are indicated by thick ar- 
rows. 

Figure 2. Cooperative regions built up from the clusters presented 
in Figure 1. The values of the region sizes Ml=M2=3, M3=4 were 
taken randomly Since M I  + M g = 6 < K ~ = 8  and M I  + + 
M3=10>K~=8, we obtain L N = ~ .  The 3 regions are indicated by 
thick borders. 

rate, we get equivalent formula 

which assigns the relaxation function to the Laplace transform of the 
relaxation-rate distribution. The distributions which produce the em- 
pirical non-exponential relaxation functions like (6) and (7) have been 
found already [2,29]. However, the information about them has given 
only slight progress in clarifying the underlying physical mechanism; 
and the distribution-function approach has been used mainly as a for- 
mal mathematical tool convenient to describe, analyze, and transform 
the data in order to compare them with the results obtained by different 
experimental techniques [30-331. The reason for this is that 4(t)  is a 
function describing the relaxation process of the system as a whole; and 
the approach concerns, in fact, the effective behavior of the macroscopic 
system represented by one (real or imaginary) object with the value of 
relaxation time 7 randomly taken according to the distribution of p .  In 
order to go further in clarifying the relaxation phenomenon, one should 
use the mathematical tool capable of relating the relaxational properties 
of the structural elements to the effective representation of the system. 

It has been observed already [3,6,10,15,17,18] that, in general, the 
relaxation behavior of the complex system as a whole cannot be at- 
tributed to any particular object chosen from those forming the system. 
It is also known that the problem of construction of an 'averaged' ob- 
ject representing the entire system in relaxation processes is not a triv- 
ial one. The recent advances in the stochastic theory of relaxation [25, 
261 provide the technique that enables us to formulate both the micro- 
scopic scenario of relaxation and the resulting effective representation 
of the system. Below, we present a stochastic mechanism that yields 
the macroscopic relaxation function of the HN and KWW forms. In 

this mechanism the hierarchical dynamics in the parallel multichannel 
scheme is applied as the scenario of the relaxation process. 

3 INTERNAL STRUCTURE OF 
THE TOTAL RELAXATION RATE 

In any dielectric complex system capable of responding to an exter- 
nal electric field, it is possible that only a part of the total number N of 
dipoles in the system is able to follow changes of the field [3,5]. How- 
ever, even if some dipoles do not contribute directly to the relaxation 
dynamics, they may affect the stochastic transition of the active dipole. 
This influence is reflected, for example, in the properties of individual 
relaxation rates /?IN, /?zN,  . . . of the active entities in the system. Let 
us explain that, according to the rate-theory concept, the individual re- 
laxation rates are considered here as the contributions of the dipoles to 
the total relaxation rate, see e.g. [34]. They often are assumed to take 
the form &N = /?;/AN with independent of the system size N 
and the same normalizing constant AN for each dipole. 

Let us assume that the ith active dipole interacts with Ni - 1 inac- 
tive neighbors forming a cluster of size Ni. The number KN of active 
dipoles in the system is identical with the number of clusters deter- 
mined by the local interactions. The latter is equal to the first index k 
for which the sum N I  + . . . + hi, of the cluster sizes exceeds N ,  the 
size of the system (see Figure 1). One can formulate this as follows 

I k  

i=l 
where k : X implies the value of k such that X holds. 

Depending on the screening mechanisms [3], the active dipoles may 
'see' some of their active neighbors. If so, the cooperative regions built 
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cluster 
sizes 

N% 

Table 1. Microscopic stochastic scenario leading to the empirical 
relaxation responses. The heavy-tail property i:; defined in Equa- 
tion (20). 

Assumotions I Results 

active-dipole cooperative 
relaxation -region 

rates sizes 
P I N  M3 

I 

~ = l - - a y  

n=l-a 

n=l -y  

no 
power 

law 

n=i--o 

Property of: 

m=a 

m=a 

no 
power 
law 
no 

power 
law 
no 

power 
law 

Property oj 

cooperative 
-region 

relaxation 
rates 
P j  N 
- 

eavy tail heavy tail I ( M , )  <- I heavy tail 
rith a=a with a=a with a=a 

-- 

Empirimla! 
response 

-- -- 
HN 

o<a< 1 

o<y< 1 

cc 
o<a< 1 

-,=l 

CD 
a=l 

-- 

~- 

o<y< 1 
D 

fY=l  

y = l  

KWM 
o<a< 1 

-- 

-- 

-- -- 

A 

up from the active dipoles may appear. The number LN of such meso- 
scopic regions is determined by their sizes M I ,  A&,  . . .; namely, 

where MJ is a number of interacting active dipoles in the gth cooper- 
ative region (see Figure 2). The contribution of each region to the total 
relaxation rate is the sum of the contributions of all active dipoles over 
the region. Hence, for the j t h  region, its relaxation rate, say G, is 
equal to 

For j=1 it is simply the sum 
M ,  

i=J 
for .j=2 it is 

and so on. 

namely, 

is provided by the total relaxation rate PN whi:h is the sum of the 
contributions over all cooperative regions 

Following (11), the effective representation of the system as a whole, 

4(t) = ("XP[-&) (17) 
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Figure 3. The log-log plot of the tail function P T ( X  > z) shows if 
the distribution of random variable X has a heavy tail. The heavy-tail 
property manifests there as the asymptote (dotted line) of the plotted 
function (solid line) with the slope parameter between -1 and 0 (i.e. 
situated in the marked area). 

L N  

b N = x P , ,  (18) 

P = ijzm PN (19) 

j=1 

In fact, studying relaxation phenomena, one usually deals with sys- 
tems consisting of a large number of dipoles so that the limit 

can represent the entire system in (11) instead of the exact PN (in prac- 
tice, it is enough when N N lo5). 

In general, the number of dipoles directly engaged in the relaxation 
process, as well as their locations, are random. Therefore, all the quan- 
tities N,, M,, &N, and those defined by them, have to be considered 
as random variables. Their stochastic characteristics obviously would 
determine the properties of the total relaxation rate 8, if they were 
known. But in general they are not known. Nevertheless, on the basis 
of limit theorems of probability theory, it is possible to define the dis- 
tribution of the limit P, representing a large relaxing system, even with 
rather limited knowledge about the distributions of micro/mesoscopic 
quantities. 

of random variables Ni, Mj, and P ~ N .  Each sequence consists of inde- 
pendent and identically distributed nonnegative random variables that 
have either finite expected value or heavy-tailed distributions. Then 
the total relaxation rate a takes the form, by means of (5)  and (ll), 
corresponding to one of the empirical responses; for details see Table 1. 

Let us add that the distribution of a nonnegative random variable, 
say X ,  has a heavy tail if the tail P T ( X  > x) satisfies the condition 

lim = const > 0 
z+- 5 - a  

In the proposed scheme we take stochastically independent sequences 

(20) 
PT(X > .) 
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Figure 4. Examples of continuous heavy-tailed distributions. The 
asymptotes (dotted lines) of the log-log plotted tail functions (solid 
lines) indicate the heavy-tail property [a) The Pareto distribution 
PT(X > 2) = (1 + with A=l and b=0.3,0.6, and 0.9. 
Condition (20) is satisfied with a = b. To get heavy-tailed Pareto dis- 
tributions, any values of A > 0 and Ocbcl may be taken. (b) The 
Burr distribution PT(X > z) = (1 + with A=l, b=0.6, 
1.2, and 1.8 0.6, and 0.9, and ~ 0 . 5 .  Condition (20) is satisfied with 
a = be. To get heavy-tailed Burr distributions, any positive values of 
A,  b, and c such that Ocbcil may be taken. 

for some Otatl; i.e. if for large values of 2 the tail exhibits a fractional 
power law ca (see also Figure 3). There are many different continuous 
and discrete distributions satisfying condition (20). Classical examples 
of continuous ones are completely asymmetric LCvy-stable laws, also 
the Pareto and Burr distributions with an appropriate choice of their pa- 
rameters [28,35], see Figure 4. To get discrete distributions with heavy 
tails, one can simply apply a quantizer transformation 1361 to some of 
the above continuous examules as shown in Figure 5 .  

I 

n 

I 
1 oa IO' 102 1 o3 

W x J  (b) 

Figure 5. Example of discrete heavy-tailed distribution. (a) The tail 
functions of the continuous heavy-tailed Pareto random variable X ,  
with A = l  and b=0.5 (dashed line) and of the discrete random variable 
X such that X = lOn if and only if 10(n - 1) < X ,  < 1On 
for n = 1 ,2 ,  . . . (solid line). Random variable X is obtained from 
X ,  by the quantizer transformation. (b) The asymptote (dotted line) 
of the log-log plotted tail function (solid line) shows that the obtained 
discrete distribution has a heavy tail. 

If the distribution of random variable X has a heavy tail, then 
the expected value ( X )  is infinite. Therefore, the two considered at- 
tributes, the finiteness of the expected value and heavy-tail property 
(20), clearly exclude each other. Besides, both provide only limited 
information on the corresponding distributions. Hence, the condi- 
tions put on the distributions of microscopic quantities in the proposed 
scheme (see Table 1) are rather general. On the other hand, the macro- 
scopic result is determined in any detail. 

Summing up, under a given internal structure of the total relaxation 
" rate, the scheme proposed above can lead from a very general stochastic 
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scenario of relaxation to the deterministic empirical laws given by (6) 
and (7). Moreover, the internal structure of defined by summation 
procedures (14) and (18) represents the hierarchical dynamics in the 
parallel multichannel scheme of relaxation. 

4 MICROSCOPIC ENERGY 
CRITERION 

In this Section we shall decode the information contained in Table 1. 
The table presents the relationship between the asymptotic behavior 
of the empirical relaxation functions and the properties of the under- 
lying stochastic mechanism. As one can see there, the macroscopic 
response exhibits high-frequency power law (1) with the exponent n 
when the distribution of cooperative-region relaxation rates 6 sat- 
isfies condition (20) with a = 1 - n. On the other hand, % given 
by summation procedure (14) has heavy-tail property if at least one of 
the cooperative-region size and the active-dipole relaxation rate has a 
heavy tailed distribution. 

can be formulated also as the scaling 
property of the mesoscopic relaxation rates 

b + - (21) 
for any fixed constant 00. The asymptotic behavior of the 6 dis- 
tribution at large h is connected with the short-time behavior of the 
mesoscopic relaxation function &(t) = (exp[-tP,N]). One can 
show that (21) is related to the following scaling condition on &(t) 

(22) 
for any constant c>0. As a consequence of (22), the response function 
fj( t)= -d&(t ) /d t  of the mesoscopic cooperative region in the com- 
plex system at the origin t ---t 0 the form 

where L( t )  is a function slowlyvarying at t = 0 (i.e. L(c t ) /L( t )  + 

1 as t -+ 0 for any constant c > 0). Since Z(t) is a probability density 
function, it is locally integrable in any neighborhood of point t = 0, 
and its Fourier transform leads us to the properties of the frequency- 
domain response. It can be shown [37] that short-time property (23) of 
the response function E(t) corresponds to the following asymptotic 
behavior of its inverse Fourier transform %(L) for the high-frequency 
region 

Condition (20) applied to 

P r ( G  2 b/c)  =: c a P r ( G  2 b )  

1 - &(ct) = c a p  - &(t)) 

- 

- 
f j ( t )  c=z t a - % ( t )  (23) 

- x j ( w )  =%’(U) - i z ” ( w )  
(24) 

Q ( i w ) - a L ( l / u )  w -+ w 

Property (24) yields straightforwardly the mesoscopic energy crite- 
rion 

-11 

(25) -- x j  - ( U )  - cot [(l-a);] w >> w, 
X j ’ ( W )  

that is consistent with the macroscopic one in Equation (3), since a = 
1 - n. We have shown that the energy criterion on the mesoscopic 
level of cooperative regions of active dipoles is fulfilled if the presented 
stochastic mechanism leads to the empirical response satisfying macro- 
scopic energy criterion (3). 

As one can see in Table 1, in case of the HN, CC, and KWW responses, 
the distribution of active-dipole relaxation rates p z ~  has a heavy tail 

with a = a. By repeating the above argumentation, the microscopic 

(26) x: 
can be derived each mentioned case. The obtained characteristic con- 
stant 1 - a is yet different from the macroscopic power-law exponent 
n in the HN case. Besides, the high-frequency power law ( L - 7  ob- 
served in the CD response has other origins than those indicated by the 
microscopic energy criterion; it results only from the heavy-tail prop- 
erty of the distribution of cooperative-region sizes, see Table 1. 

In conclusion, the considerations presented in this Section confirm 
the Jonscher hypothesis that the identical property of individual struc- 
tural elements of the system is hidden behind the macroscopic energy 
criterion (3); it appears, however, that this hypothesis concerns rather 
the mesoscopic cooperative regions rather than the particular active di- 
poles themselves. 

5 CONCLUSIONS 
XTENSIVE studies of relaxation processes on a wide range of di- E electrics made evident the non-exponential behavior of dielectric 

systems. To interpolate the fractional power laws, observed in fre- 
quency and in time, the phenomenological HN and KWW laws were 
introduced. The justification of those laws was provided rather by their 
applicability as fitting functions than by theoretical investigations. 

In this paper we propose a probabilistic approach to model relax- 
ation processes which leads to both mentioned above empirical laws. In 
this approach, going beyond the classical methods of statistical physics, 
the link between the microscopic world of real objects forming the sys- 
tem and the macroscopic world of physical phenomena is provided 
by the form of the total random relaxation rate. This form follows 
from the mathematical construction of an imaginary object representing 
the relaxation behavior of the entire complex system, the construction 
which is based on the hierarchical dynamics in the parallel multichan- 
nel scheme of relaxation and the ideas of limit theorems of probability 
theory. The explicit effective representation of the system, expressed 
in terms of the total relaxation rate, is then shown to be related to the 
phenomenological HN and KWW laws under general conditions put on 
the microscopic stochastic properties. The obtained results reinforce, 
hence, the physical significance of the empirically found forms of relax- 
ation. 

The high-frequency power-law form of response has a very sim- 
ple and intuitively self-evident interpretation as the energy criterion 
although this interpretation (proposed by Jonscher) lacked the neces- 
sary theoretical rigor capable of providing a proper justification. The 
presented approach justifies the applicability of the energy criterion on 
the micro, meso, and macroscopic levels, and reveals the self-similar 
dynamics hidden in the energy-criterion idea. The discussion of the 
energy criterion as a natural and inevitable physical condition for ob- 
servation of property (1) in relaxation phenomena opens a new line of 
understanding these phenomena. 
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