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Abstract. In this paper we study the hyperbolic thermoelastic system, which is
obtained when, instead of Fourier’s law for the heat flux relation, we follow the linearized
model proposed by Gurtin and Pipkin concerning the memory theory of heat conduction.
In this case the thermoelastic model is fully hyperbolic. We show that the linear system
is well posed and that the solution decays exponentially to zero as time goes to infinity.

1. Introduction. In this work we study the asymptotic behaviour as time goes to
infinity of solutions of the thermoelastic hyperbolic system. In the classical linear theory
of thermoelasticity, Fourier’s law is used to describe the heat conduction in the body.
This theory has two principal shortcomings. First, it is unable to account for memory
effect which may prevail in some materials, particularly at low temperatures. Secondly,
the corresponding parabolic part of the system predicts an unrealistic result, that a
thermal disturbance at one point of the body is instantly felt everywhere in the body.
These observations lead one to believe that for materials with memory, Fourier’s law is
not a good model and we have to look for another more general constitutive assumption
relating the heat flux to the material thermal history.

The model we study here is related to the following linearized constitutive equations:

oz, t) = ae(z,t) — /Ooog(s)a(a:,t —8)ds — cab(z,t),

q(x,t) = =Ko (x,t) - /000 k(s)8.(x,t — s)ds,

e(x,t) = c,8(z,t) + aug(z,t),
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where o is the axial stress, £ = u, is the deformation, ¢ is the heat flux, e is the internal
energy, and 6 is the temperature difference from the reference value. The memory kernels
g and k are assumed to be regular functions decaying to zero as time goes to infinity. So,
the corresponding motion and balance energy equations are given by

pouge —diva =0,

e, +divg =0,

and assuming pg = ¢, = ¢ = 1, we obtain the following system:

t
Uy — AQUgy T / g(t - T)uxx('v T) dr + af, = 0.

t
0 + Kobypr — / k(t — 7)05: (-, 7) dT + qugs = 0.

— o0
When Ky = 0 and k > 0 the heat flux relation was proposed by Gurtin and Pipkin [6].
In this case the heat conduction is independent of the present values of the temperature
gradient. When Ky > 0 and k£ > 0 the heat flux relation was proposed by Coleman
and Gurtin [1]: in this model the heat conduction depends on the present values of the
temperature gradient. Note that when k(¢) = 0 and K > 0 the heat flux relation reduces
to Fourier’s law.

Let us describe briefly some related results. Concerning the viscoelastic system (with-
out temperature) we have the work of Dafermos [2]. He proved that the solution of the
viscoelastic system goes to zero as time goes to infinity without giving explicit rates of
decay. Lagnese in [7] considered the linear viscoelastic plate equation obtaining uniform
rates of decay for the solution but introducing additional damping terms acting on the
boundary. Uniform rates of decay for isotropic viscoelastic materials which occupy the
whole R? were obtained by Dassios [3], provided the relaxation kernel is an exponential
function. Dassios’s work was improved in {12, 14] for bounded and unbounded viscoelas-
tic materials with relaxation function which may decay exponentially or polynomially.
For bounded materials the rate of decay of the solution is the same as the rate of decay
of the relaxation function, while for materials that occupy the whole space, the rate of
decay is like (1 + ¢)~ 9, where ¢ depends on the rate of decay of the relaxation function
and the dimension of the space. Concerning the thermoviscoelastic model (k = 0) we
have the work of Liu and Zheng [8] who proved the exponential stability of the semi-
group associated to the system. For the n-dimensional case, see Rivera [10]. Finally,
when k(t) > 0 and Ky > 0, Giorgi and Naso [5] proved also the exponential decay of the
solution. Here we will study the following model:

Uy — QUzy +afly =0 in (0,L) x RT, (1.1)
O, —k* 0. +0ug =0 in (0,L) x RT, (1.2)
u(x, 0) = up(x), ue(z, 0) = uq (), 6(x,0) = Oy(x),
with the following boundary condition:

w(0,t) = u(L,t) = k*0(0,t) =k *0(L,t) =0 Vt > 0.
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Note that the above boundary condition implies the Dirichlet boundary condition for 6
provided § € H'(0,L). For simplicity we consider that the initial past history is fixed
and is equal to zero,

O(z,t) =0, Vt<0.

By * we are denoting the convolution product, that is, kxg(-,t) = f(f k(t—7)g(-,T)dr.
The system (1.1)—(1.2) is obtained when we consider the memory effect only due to
the temperature following Gurtin-Pipkin’s model [6]. In this case the model is fully
hyperbolic which, in particular, implies the finite speed of propagation of the thermal
disturbances and is physically more realistic. From the mathematical point of view, this
system is also more interesting than the usual thermoelastic model following Fourier’s
law, and more interesting than the thermoviscoelastic model of memory type. This is be-
cause the dissipation produced by Gurtin-Pipkin’s model is weaker than the dissipation
in classical thermoelasticity and also weaker than the dissipation produced by thermo-
viscoelastic materials, which has a damping term due to the stress memory and another
because of the temperature. So, in our model, we remove the dissipation given by the
stress memory and we only consider the dissipation due to the memory of the heat flux.
So, we may ask under such conditions, whether the dissipation produced by the memory
of the heat flux is strong enough to produce exponential decay of the solution.

The main result of this paper is to show that the solution of system (1.1)-(1.2) decays
exponentially as time goes to infinity provided the kernel & is positive definite and also
decays exponentially to zero.

The main difficulty in showing the exponential decay is that the dissipation does not
depend on the present values of the heat flux. The boundary condition also plays an
important role. When we apply the multiplicative technique, the Dirichlet boundary
conditions for both the displacement and the difference of temperature, introduce point-
wise terms, which are not possible to estimate using standard Sobolev’s inequalities.

Unfortunately, the method used to achieve uniform rates of decay in the aforemen-
tioned works is based on the estimates of the present values of the temperature gradient
or second-order estimates of the stress memory. Thus, the methods that have been used
for establishing uniform rates of decay to thermoelasticity and viscoelasticity, fail in the
case of materials with thermal history and a new asymptotic technique has to be devised.

To overcome the above difficulties we use some boundary inequalities to the wave
equation, together with some technical ideas involving positive definite kernels. We also
introduce two new multipliers (see (4.9)—(4.10) below) which will help us to get the
required estimate.

The remaining part of this paper is organized as follows. In section 2 we justify
the hyperbolicity of the thermoelastic system. In section 3 we prove the existence and
uniqueness of weak solutions and finally, in section 4 we prove that the solution has an
exponential decay.

2. The thermoelastic hyperbolic system. In this section we will show that sys-
tem (1.1)—(1.2) has a hyperbolic behaviour. To do so, we will assume that e and k(0) are
positive constants. Let us differentiate equation (1.2) with respect to the time; therefore,
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we have
k(O)QII + kl * HII = Ott + QUgtt.
Using Volterra’s resolvent kernel we can rewrite the above equation as
1
Oz = W{ett + Uz} + 1 * {04 + cugy},
where k(0)! is the resolvent kernel of k/k(0) and is given by the solution of

_K(@®)

k(O)(t) + k' 1 = )

and, performing an integration by parts, we get

1
Ore = W{ett + ugge} +1(0){0: + auge )

—Ut){0:(, 0) + cuze(-,0)} + U * {0 + ause}.
Thereby we have that
Ot — k(0)0zz + e = f,
where
f==U0){6; + aug} +1(£){0:(-,0) + auge(-,0)} — ' x {6; + qug:}.

Differentiating equation (1.1) and denoting by v = wu; we get that the couple (v,8)
satisfies

Vgt — QUgq + by = 0, (2.1)
Gtt - k‘(O)Gm + augy = f (22)

Since f has only first-order derivatives in v and 6, we consider f as data. In fact, let
us suppose we are given the values v,v,,v;,0,6;,8, on a curve 4. Thus, for v given
parametrically by

z=f(s), t=gs),
we prescribe in v the Cauchy data,
v="hi(s), ve=¢i1(s), v =1i(s),
6 = ha(s), 0, = wa(s), 6y = 1h2(s).
Therefore, additionally to system (2.1)-(2.2), the second-order derivative of v and 6
satisfies:
Vaof' + Uz’ = Y,
ver f +vieg’ =Y,
Oraf' + Oned’ = 3,
Ozt f' + 01eg’ = 5.
So, we can rewrite the above system in the following form:

AU=F
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where
1 0 0 a -a 0 Vgt 0
0 1 a 0 0 —k(0) O f
{0 0 ¢ 0 f 0 | v e
A=lg 0 0 0o o |° Y7 0. | T 1
0 0 0 ¢ 0 f! Vig ©h
0 g 0 f 0 0 0,z A

After some calculations it is not difficult to see that
det(A) = =(f')* + (k(0) + a+ a*)(f'g")* — ak(0)(¢)*.
Therefore, a characteristic curve will satisfy
(dz)* — (k(0) + a + o?)(dt dz)? + ak(0)(dt)* = 0,
and since
(k(0) + a + a?)? — 4ak(0) = (k(0) — a)? + 2(k(0) + a)a® + a* > 0,
for any «, we conclude that system (1.1)-(1.2) is of hyperbolic type.

3. Existence and regularity. In this section we prove the existence and regularity
of weak solutions of the hyperbolic thermoelastic equation with memory. Let us introduce
the following space:

W = {w ¢ H*(0,L); w(0) = w(L) = 0}.

To simplify our analysis let us define the binary operator

t L
k() = / k(t — T)/ [v(x,t) — v(z,7)|* dz dr.
0 0
Under this notation we have

LEMMA 3.1. For any v € C([0,T]; H'(0, L)) and n € C(R),

L pt 1 L 1
/ / n(t — Tv(z, 7) drog(z, t) do = — —n(t) / [v|*dz + =n'Dv
o Jo 2 0 2

¢ L
_Ld {an - (/ ndt)/ |v|? da:}.
2dt 0 0

Proof. To show the above identity, it is enough to differentiate with respect to time
the expression nv. a

The definition of weak solution we use in this work is given as follows.

DEFINITION 3.1. We say that the pair (u, ) is a weak solution of the system (1.1)-

(1.2) if
w € C(0,T}; W) N C1([0,T); LX(0, L)),
6 € C((0,T); L*(0, L)),
k0 € L2(0, T W),
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and satisfies the following identities:

T L T L T /L
/ / u®dy, dx dt + a/ / U, dr dt — a/ / 0®, dx dt
Jo Jo 0o Jo o Jo

L

:_/ uo(m)q>t(x,0)dx+/Lul(x)qa(x,omx

0

0
T L T L T L
- / 0<I>tdzdt+/ / k*ﬁwémd;cdt—a/ / u ®, dx dt
0 o Jo o Jo

Lo
= /0 Oo(z)P(x,0) dx

for any ® € C%([0,T]; W) such that ®(-,T) = &,(-,T) = 0.
Let us introduce the energy functions

1 L
B(tivg)i= 5 [ o+ afuaf? + [of)
0

1 L
F(tivwg)i= 5 [ lloul® + aloal® + o + K(@)lgal® = K] do
0

and let us denote by {w; € W;j € N} an orthonormal basis of W such that —w; .. =
/\j’UJj.

The following lemma will play an important role in the sequel.
LEMMA 3.2. Let us suppose that & € L}(R") is a strongly positive definite kernel satis-
fying k' € L' (R"); then we have

¢ t
[ beruPar < ok [ keatrintr)ar
0 0
for any y € L} .(R") where K = |k|? + 4|k’|? and By > 0 is such that the function
k(t) — Boe~t is a positive definite kernel.

Proof. See [15]. O
In these conditions we are able to prove the following theorem.

THEOREM 3.1. Let us suppose that the initial data satisfies (ug,u1,6p) € W x L? x L2
Then there exists a unique weak solution for (1.1)-(1.2). Moreover, if we take the initial
data

ug € H2(0,LYNW, u €W, 6y eW,
then the solution satisfies
u € C([0,T); H*(0, L) nW) n C* ([0, T); W) N C3([0, T); L*(0, L)),
6 € C([0,T); W)yn ([0, T]; L*(0, L)).

Proof. Our starting point is to construct the Galerkin approximation ™ and 8™ of
the solution. Let us denote by

u%ﬁ=zmwmu 0%@=Z%wmu
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where the functions g; , and h; , are given by the solution of the approximated system,
L L L
/ U w; dx+a/ u;”w]-,xdw—a/ 0w dx =0, j=1,...,m, (3.1)
0 0 0

L L L
/ 07 w; dz + / k* 07 w; . dr — a/ uwjzdr =0, j=1,...,m, (3.2)
0 0 0

um(',o) = uO,m7 u:n(10) = ul,m7 07”('30) = 00,m7

m L m L
UY,m = E / uow; dT ¢ Wy, Ulm = E / urw; dz p wjy,
= Lo 0

=1

m L
90,m = Z {/ Gowj dl’} ’LUJ'.
s=1 (/0

The existence of the approximated solutions 4™ and §™ is guaranteed by standard results
on ordinary differential equations. Our next step is to show that the approximated
solution remains bounded for any m > 0. To this end, let us multiply equation (3.1) by
R}, and (3.2) by gj.m. Summing the product result in j we arrive at

and

d L
tu™ ™) = — magm .
L Eum,6m) /0 ko 070 dx

Integrating from 0 to ¢ the above relation and using Lemma, 3.2 it follows that
t oL
E(t;u™,0™) + Co/ / |k * 67 dx dr < E(0;u™,6™). (3.3)
0o Jo

From our choice of ug pm, U1 m, and g, it follows that
(ul,uf*, ™) is bounded in L>(0,T; L*(0, L)), (3.4)
Ex6™ is bounded in L?(0,T; L?(0, L)). (3.5)

Let us denote U™ = u™ — 4™ and ©™ = ™ — 6™ with m > n. We may rewrite the
sequences u” and 8" as

u" () = Zhj,n(t)wj(-), 0" (- t) = Zgj,n(t)wj(-),

where
hjn(t) = gjn(t) =0, n<j<m.

Using similar arguments as above we can show the corresponding inequality (3.3) to
{U™,©™}. This implies that {u™} and {#™} are Cauchy sequences in C*(0,T; L%(0, L))N
C(0,T; H'(0,L)) and C(0,T; L%(0, L)), respectively. Multiplying equations (3.1) and
(3.2) by v € C([0,T]) such that ¢(T") = ¢+(T) = 0 and performing an integration over
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[0,T] we have

T oL
/ / U Wy do dt + (L/ / 05,2 da dt — / / 0" w; o dx dt
0o Jo 0 Jo Jo

:/ ul‘mwjga(O)dm—i-/ wo.mw;p(0) dx
Jo 0

T pL T L T pL
— / / 0w dr dt 4+ / / k07w, o drdt — a/ / up wj e dr dt
o Jo Jo Jo o Jo

L
= / Bo,mw;e(0) dx.

0
From (3.4), (3.5) and using the density of the set {w;p;;5 € N,p; € CY([0,7])} in
CY([0,T]; W) we conclude that (u,#) is a weak solution of the system (1.1)-(1.2), where
(u, 8) arc obtained by taking the limit when m — oo. The uniqueness follows by standard
methods for hyperbolic equations. To show the regularity let us differentiate equations
(3.1) and (3.2) with respect to time to get

L L L
/ Uy w; dr + a/ upwj o do — ()z/ 07w, » dx =0, (3.6)
0 0

0
L L L L
/ 07w, dx + k(0) / 07 w;  dx + / k' %67 w; , do + « / uppw;de =0.  (3.7)
Jo 0 0 Jo
Multiplying equation (3.6) by A7, and (3.7) by gj,, and using similar arguments as
above our conclusion follows. |

4. Uniform rate of decay. In this section we show that the solution of the system
(1.1)—(1.2) decays exponentially as time goes to infinity. The method we use here is
based on the construction of a functional £(t) equivalent to the first-order energy whose
derivative is negative proportional to itself. Here we will assume that & and —k' are
positive definite kernels satisfying

K K" e CHRY), (4.1)
T

T
/ Exppdt < —C k* opdt. (4.2)
0 0

The above inequality is satisfied for any function & that is the sum of exponential func-
tions with varying rates of decay. Since the kernel k decays exponentially, we take v > 0
small enough such that there exists € > 0 satisfying

k(t) := k() < Ce™e.
Let us denote v(z,t) = u(z, t)e™ and ¢(x,t) = 6(x,t)e’". Then
vy = uge?t + yuet = wet 4 yu,
Vi = ugpe?t + yuge + yue?t + y2ue?t = upe?t + 2yu, — A%,
o1 = 0" + v,
k* ppg = €7 (k% 0g).
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From the above identities it is easy to see that the pair (v, ) satisfies

Vpt — AQUqgz + 0y = R, (4.3)
Py — k * ez + Uzt = 5, (4.4)

where R and S are given by

R = 2vyu, — 'yzv,
S = yp + ayvg,

with v and ¢ satisfying the same boundary conditions and initial values as in system
(1.1)-(1.2). Let us introduce the energy function

1 L
E(tiv,0) =5 [ [P +aloeP + o) .
0

So, to show the exponential decay of the couple (u, 8) it is enough to show that F(T, v, )
is bounded. To this end, we start with the following Lemma.

LEMMA 4.1. Let us suppose that the initial data satisfy
ug € HX0,L)NW, u €W, 6yecW.

Then we have

d L L
GECv 0 < = [hrpupndoter [ (ul + ol + o) d
0 0

Proof. Multiplying equation (4.3) by v; and equation (4.4) by ¢ and integrating from
0 to L, we get

L L
%E(t;v,go) = —/ k% 0gpq dz + / (Rvy + Sp) dz. (4.5)
0 0

After applying Hélder’s inequality and Young’s inequality we have

L L 3 L
5
/ Ru; dx| < —7/ |vt|2d$+ﬂ/ lvg|? dr,
0 2 Jo 0

2
L
/ Spdr
0

L 2., oL
< 3—7/ |<p|2dx+ﬂ/ |ve |2 dz.
2 Jo 2 Jo

Thereby, our conclusion follows. O
To get — fOL l¢|?dz and — fOL |vz|?dx we will use the following lemma (note that
k(0) = k(0)).
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LEMMA 4.2. With the same hypotheses as Lemma 4.1 we have

d L. ko) [t L L
_4 k*wdxg——/ |<p|2dx+C/ |k*%|2d:c+c/ |E * g |? da
dt Jo 4 Jo 0 0
L L
—a/ vtk*gozdx—/ S(k * o) dz, (4.6)
0 0
d rt o L L o2 (L
— < = 2 2 = 2
dt/O vugdr < 2/0 |vg| dx+/0 |ve dx+2a/0 lp|” dzx
L
+vc/ (Jve|* + |vz)?) dz. (4.7
0

Proof. Multiplying equation (4.4) by —k * o and integrating from 0 to L we have

L A R L
/ (pr — k% @z + QU ) (—k * @) dx = —/ S(k * @) dz. (4.8)
0 0

Note that

L d [t R X L L
—/ pik*x pdr = — o(—k * @) daz+k(0)/ ]2 da:+/ k' * ppdz,
0 dt Jo 0 0

LA . LA
J R T A s
0 0

L R L .
a/ Uact(_k*(,@) dx '—_a/ ’Utk*QOI dx.

0 0

On the other hand, from (4.3) we have

d [t L L
VU dz:/ |vt|2d:v+/ VU dT
0 0

dt Jo
L L L L
:/ |’ut|2dx+a/ vvmdx—a/ vgoxdx+/ Rudx
0 0 0 0

Lo a (L, 2 (L
< |v|da:——/ [vz] dm+—/ lp]” dz
/0 ' 2 Jo 2a Jo
L
#r(1t6) [l + o) do.
0

The proof is now complete. ]
Let us introduce the multipliers ¢ and w given by

— Qg = V4 in (0,L) x RY, (4.9)
q(0,t) = q(L,t) =0 in RT,

—Wyy =9 — P in (0,L) x RY, (4.10)
wz(0,t) = wy(L,t) =0 in RT,
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where 3 = 1 fOL pdz. We easily get
L
laslfn < (e +1) [ ful*da, (411)

L L
/0 lwz|? dz Sc/0 ol dz. (4.12)

In this condition we have

LeMMA 4.3. With the same hypotheses as Lemma 4.1 we have that for any (v, ) and
any & > 0, there exist Cs > 0 such that

T T L T L .
/ lge (o2 ¢ dt < 6 / / (oel? + 1P + [val?) de dt + C / / e pgl? da dt.
0 H1 o Jo o Jo

Proof. We reason by contradiction. Let us suppose that there exists a sequence
{(v”, ") and &y > 0 such that

T T L T ;L
/ g2 ()12 dt > 6o / / (22 + [@" 2 + [o[?) de dt + v / / e @¥|2 da dt,
0 Ha o Jo o Jo

where

'ATHQXwTWngt=1- (4.13)

It follows that
vy, ", vY are bounded in L*°(0,T; L*(0, L)) (4.14)

and also that
kx@¥ —0 strong in L2(0,T; L*(0, L)). (4.15)

From (4.14) we have that there exist (v, ,v;) such that
(v}, ¢",v5) = (v, 0, va) in [L*(0, T3 L7(0, L)),
The above convergence together with (4.15) implies
bet = e =0

Since k * ¢ satisfies Dirichlet boundary conditions, we have that k * ¢ = 0 and, using
Volterra’s resolvent, we conclude that ¢ = 0. On the other hand, since —¢¥, = v} from
(4.14) it follows that

q%,q¢ is bounded in L*(0,T; H*(0, L)).
Applying Lions-Aubin’s Theorem (see [9], Theorem 5.1, p. 58) we conclude that

¢ —q, strong in L2(0,T; H3(0,L)). (4.16)
From (4.13) we have

T
| el e = 1. (@17)

Using (4.4) and since v satisfies Dirichlet’s boundary condition we have that

Vgt = YUz = v5(T,t) = v.(z,0)e”" = v(z,t) = v(z,0)e.
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Using (4.3) we have that
—avz, = 0.
Since v satisfies Dirichlet’s condition we conclude that v = 0. Therefore we have that
(vr, ¥, v%) =0 in L%(0,T; L%(0,L)%).

Finally, since —¢%, = vy from (4.16) we conclude that ¢, = 0. But this is contradictory
with (4.17). The proof is now complete. |

LEMMA 4.4. With the same hypotheses as Lemma 4.1 we have that
d [f a L 8a L
& [Cavins —5/ uf de+ S5 [ hoado s (% va) [iods

ExpalL. t)l2+|k*¢x0tl}+8wl KO, o2 4

8k(0 )
+—/ |15*99z|2dx+617/ (Joel? + lgl? + v ) de
2a Jp 0

where w; is the embedding constant of H3(0,L) — L°(0,L) and ¢; is a constant that
does not depend on ~.

Proof. Note that

d L L
T qzdeZ/ qmoda?+/ qzpr dz (4.18)
0 0 0
L L L L
:/ qztgod:r+/ qu*cpmda:—%/ qxvxtd:c+/ q.Sdx.
0 0 0 0
I, Iy I3 I

Recalling the definitions of w, v and ¢ we have

L L
I = / th((P - —95) dzr = _/ QztWeq AT
0 0

L L
= / QrztWy dT = —/ Vg Wy AT,
0 0

Using equation (4.3) we arrive at

L L L
L = —a/ Vg Wy dT + a/ Prwy dr — Rw, dx
0 0 0

L L L
= a/ VpWee dT — a/ PWyy dT — / Rw, dzx
0 0 0

L L L
=-—a/ vx(cp—E)dx—{-a/ @(cp—@)dx—-/ Ruw, dx
0 0 0

L L L 2 L
= —a/ vchda:+a/ |2 dz — a (/ cpdx) —/ Rw, dx.
0 0 0 0
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Since
L L
/ wadac:/ (2yv: — Y*v)w, dx (4.19)
0 0
L
<oy [ (ul? + lof? + loaf?) d,
0

<———/L|v |2dx+gl-/L| |? d (4.20)
32 z a J, N '

L
a/ vy dz
0

We conclude that

L L L

aa 8w

<% [Tt (2 1a / |<p|2dw+cv/ (oel? + 10 + oa?) dx
32 Jo a 0 0

Now we consider the term I5:

L
IQ:qz];‘*(pzhl)’—/ quc*gpzdx
0
. . L
< lacCo O r 0alL O] + 1 ga(00) + [ uik s de
0
. . L
<z Ol (o palL O]+ 1w a0 + [ ks da
0

Applying Hélder’s inequality and Young’s inequality in the last expression we have

w18k( )

I < lax (O, g + 2 L (L, )P + [ # 2 0,07

8k(0)
« 1 -
+§/0 |ve|? dz + %/0 |k * oz |2 d.

Recalling the definition of ¢ we conclude that I3 satisfies

L
I; = —a/ |ve|? dax.
0

Finally, we have that

L L
L= / g(ye + ayus) dz < &y / (loel? + lof? + [v[?) da
0 0

Taking the summation of the functions I; our conclusion follows. O

One of the main difficulties in proving the exponential decay is to estimate the point-
wise terms k * ¢,(0,t) and k % ¢, (L,t). We overcome this problem using the following
lemma.
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LEMMA 4.5. With the same hypotheses as Lemma 4.1 we have that

d t 2 L 7. 2 . 2
GI0 <kO) [ 1ol de = g {fox o LOF + R ga0.0F)
L ]% L . L
+C/ ; |2dx+—(0—)/ |vt|2da:+k(0)a/ v, |2 dx
0 2 0 0

k(0)aL L .
- (ia {Ivz(L,t)|2+|vz(0,t)l2}+cv/ (Jve|* 402+ vz |2 + & * @, |*) d
4]

where T;(t) = — fOL(:c - %){cpk % p 4 Quck * 0z + k(0)vzv ) dz.

Proof. Multiplying (4.4) by (z — %)fc * (p, we get

L L
/ (pt(x—£>k*<pxd:c / k*<pm<x—§>fc*apmdx
0 0

Is Ig

L L L L\ -
></ Vgt (T——)k*gozdx—/ S<x—§>k*4pxdx. (4.21)
0 0

Iz

Now we consider each term I,. We have

d [* L £
I5:£/0<p(:c——)k*<pzdx—/0<p(
d * L\ : k(0) [F L\ d, ,
= 5 <p($——2->k*cpxdm—7/0 (m—§>d—$|cp] dr
L
L
—/ w(x——)k’*apzdx
0
L I i L L I
:% w(m——)k*cpzdx%-%/ |cp|2d:c—/ cp(x—-—)k * 0 dz,
0
L d ol 2
Is = — / (z—§>£|k*<pz| dz

. 1
{|k*<pI(L t)[* + |k * (0, ) |2}+5/ |k * o |* dz,

L L .
vr<x—§>k*cpzdx—a/ vx<x——>k(0)<pxdx
0

Ig

1
2
L
4
d
“at o

Iz =«

L
—a/ Vg (a:—£>k’*apzdm.
0 2
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From (4.3) we have

2 .
k02 [ (o= DYt HO [ (oo 8) L

t
k(0)a [F L\ d, , . /L L
- | <x—§) —x|vx| dz — k(0) | v |25 Rdz

2
L ; L
=1Ac(0)di/0 Vg (x—{;—)vtdx+ﬁ(20—)/0 v |? dx
O

{| vz (L, t)|2+|vz 0, t | }

+@/j|w|?dx—k<o>/:vz (x——)Rdw

On the other hand, we have

L
L\ -~
a/ Vg (m—§>k’*<pzdx
0
L
/ (p(a:—£>k'*<pzda:
0 2

Using the above inequalities in (4.21) our conclusion follows. O
The exponential decay is summarized in the following theorem.

) L 2 L
< M/ |vz|2dm+ LA(SO / |k*(pw|2 dzx,
2 Jo 8ak(0) Jo

i L L
< lf@/ |<p|2dx+C/ |k % g dz.
2 Jo 0

THEOREM 4.1. Under the same hypotheses as Lemma 4.1, there exist positive constants
Cy and ~ such that

E(t;u,0) < CoE(0;u,8)c™ .

Proof. Consider € = Then €k(0) < 1. From Lemmas 4.4 and 4.5 we have

4k:(0)

4 /L dx + €71 (t) <_3_a |v |2da:+ L|v |2 dx (4.22)
dt ) Jy Az ¥ €l =775 ), ¢ 16 x .

a L
SO oy (34 L) [ iokas

+c/ |k * g |* dz
0

L
m/ (el + o] + Josl? + [k % 0, ) do
0
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where C = ¢(a, L, k(0),d). Let us introduce the functional

L o L
&) :/ grpdr + €Ty (t) + —/ vy d.
0 4 Jo
From inequalities (4.22) and (4.7) we get
d o (L, aa (L, Lo,
—&(t) < —= - — 2|“d d 4.2
Ga0 <5 [ lula-S5 [P [ e @

L
- 8w k(0)

2 i a2

0 [TlrpP e+ 20 o (02,

L
. / (el + Lol? + sl + e 0[2) e,
0

where po = {82 + L 4 ek(0) + g—:} Note that

7 L 9 L
s@/ o2 dz + O“OO‘/ Ik % | d.
80uo Jo k(0)

Using the above estimate in (4.6) from Lemma 4.2 it follows that

d [t ko) [t kOa (L,
- = < -2 d v |? da
dt/o k*xppdr < , /0 lo]” dz + 80110 /0 |vg|* dx

L L
+c/ Ik*wz|2dfv+67/ (el + [val? + 1ol + [k * 0al?) de. (4.20)
0 0

L ~
a/ vk x g dx
0

Let us write

From (4.23) and (4.24) we get

d L L
GTO < ko [ o+l + ) de+ O [ Tlfxp P

8w1 k(0)
aL

+ ——llg=( )17 4 +70/ (lvel* + @] + [v2]® + |k * 9z |*) dz,  (4.25)

where ko = min{£2, 16 %} Finally, we consider the functional
L(t) =F(t) + NE(t;v,9).
From Lemma 4.1 and inequality (4.25) it follows that
d L L
GEO S o [IoP 4+ do 4 C [ lhr gl de
0 0

8w2k(0) . L, Lo 2 2
+— ==l O s =N [ kxpepedr+ Ney [ (o] + [oz]” + |¢]7) dz
0 0

L
+cv/ (0el? + [va]? + 10l + Ik * 0a]?) dz.
0
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Integrating from 0 to T" the above relation, using Lemma 3.2 and the inequality

T /L T L T L
/ / |k'*<p|2dxdt§—C/ / k'*cpcpdmdtﬁco/ / k * oo dx dt,
o Jo o Jo o Jo

it follows that

T L
L(T) — £(0) < —ko / / (ol + [0 + fen]?) de dr

—<m—c>/ / |k % pg|? dx dr

8“’1’“0)/ lgs( P2 g

+ Ney / / (Joel? + [z + lol?) d dr
0 ¢]

T L
+cv/ / (oel? + [osl? + [0l + [ # 0 ?) da dr.
0 0

From Lemma 4.3 we have that

T L
L(T) — £(0) < —ko / /0 (ll? + [0s]? + fon]?) de dr

N 8w1 2
+8‘“1k / / o2 + Jvz)? + |2 da dr

+NC’Y/ / |Ut|2+ |Ux|2+ |Lp|2dxd7'

0 0
T L )

+C'Y/ / [ve|? 4 |ve]? + |@|* + |k * .| dz dr.
o Jo

Choose § > 0 such that 8—“’;’2&6 < %‘l. Taking N large enough and v sufficiently small
we conclude that

L(T) - L(0) < —% /OT /OL Il 4 |vg | 4 |ve|? dz dT < 0, (4.26)
which implies
L(T) < L(0).
Repeating the above integration from 0 to nT" with n € N we conclude that
L(nT) < L(0). (4.27)
Observe that there exist positive constants ¢y and ¢ satisfying

o€ E(t;u,0) < L(t) < cre " E(tu,6). (4.28)
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Since any number ¢ > 0 can be written t = nT + r where » < T and E(t;u,0) is a
decreasing function, then from (4.28) and (4.27) it follows that there exists a positive
constant Cy such that

1
E(t;u,0) < E(nT;u,0) < —e 2T L(nT) < Coe T E(0;u, ).
o

Since t < 2nT, we have

E(t;u,0) < Coe " E(0;u,6).

The proof is now complete. O
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