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Abstract. In this paper we consider a one-dimensional linear thermoe-
lastic system of Timoshenko type with past history acting only in one
equation. We consider the model where the heat conduction is given
by Green and Naghdi’s theories and prove exponential and polynomial
stability results for the equal and nonequal wave-speed propagation.
Our results are established under conditions on the relaxation function
weaker than those in [9].

1. Introduction

In 1921, Timoshenko [35] gave, as model for a thick beam, the following
system of coupled hyperbolic equations:

ρutt = (K(ux − ϕ))x, in (0, L)× (0,+∞)
Iρϕtt = (EIϕx)x +K(ux − ϕ), in (0, L)× (0,+∞), (1.1)

where t denotes the time variable and x is the space variable along the beam
of length L, in its equilibrium configuration, u is the transverse displacement
of the beam and ϕ is the rotation angle of the filament of the beam. The
coefficients ρ, Iρ, E, I and K are respectively the density (the mass per unit
length), the polar moment of inertia of a cross section, Young’s modulus of
elasticity, the moment of inertia of a cross section, and the shear modulus.

An important issue of research is to look for a minimum dissipation by
which solutions of system (1.1) decay uniformly to the stable state as time
goes to infinity. In this regards, several types of dissipative mechanisms have
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been introduced. For instance, Raposo et al. [31] used two linear frictional
dampings acting on both equations to stabilize the system uniformly. An
exponential decay result has been proved. Kim and Renardy [15] considered
(1.1) together with two boundary controls of the form

Kϕ(L, t)−K∂u

∂x
(L, t) = α

∂u

∂t
(L, t), ∀t ≥ 0

EI
∂ϕ

∂x
(L, t) = −β∂ϕ

∂t
(L, t), ∀t ≥ 0

and used the multiplier techniques to establish an exponential decay result
for the natural energy of (1.1). They also provided numerical estimates to
the eigenvalues of the operator associated with system (1.1). An analogous
result was also established by Feng et al. [8], where the stabilization of
vibrations in a Timoshenko system was studied. Yan [36] generalized the
result of [15] by considering boundary conditions of the form

K(ϕ(L, t)− ∂u

∂x
(L, t)) = f1(

∂u

∂t
(L, t)), ∀t ≥ 0

−EI ∂ϕ
∂x

(L, t) = f2(
∂ϕ

∂t
(L, t)), ∀t ≥ 0,

where f1, f2 are functions with polynomial growth near the origin. The
boundary stabilization of the nonuniform Timoshenko beam has also been
studied by Ammar-Khodja et al. [3]. They considered

αutt = (β(ux + ϕ))x, in (0, L)× (0,+∞)

γϕtt = (δϕx)x −K(ut + ϕ), in (0, L)× (0,+∞), (1.2)

u(0, t) = u(L, t) = 0, ϕx(0, t) = cϕt(0, t), ϕx(L, t) = −dϕt(L, t), t > 0,

for positive C1-functions α(x), β(x), γ(x), δ(x), and proved that the uniform
stability of (1.2) holds if and only if the wave speeds are equal ( δγ = β

α on
(0, L)); otherwise only the asymptotic stability has been proved. See also
recent work by Messaoudi and Mustafa [19], where the decay rate has been
discussed for several systems and without imposing any growth condition on
the damping functions. Stabilization by one damping has been considered
by many authors. Soufyane and Wehbe [34] showed that it is possible to
stabilize uniformly (1.1) by using a unique locally distributed feedback. They
considered

ρutt = (K(ux − ϕ))x, in (0, L)× (0,+∞)

Iρϕtt = (EIϕx)x +K(ux − ϕ)− b(x)ϕt, in (0, L)× (0,+∞) (1.3)
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u(0, t) = u(L, t) = ϕ(0, t) = ϕ(L, t) = 0, ∀t > 0,

where b(x) is a positive and continuous function satisfying b(x) ≥ b0 > 0,
for all x ∈ [a0, a1] ⊂ [0, L]. They proved that the uniform stability of (1.3)
holds if and only if the wave speeds are equal (Kρ = EI

Iρ
); otherwise only

the asymptotic stability holds. This result has been recently improved by
Rivera and Racke [23], where an exponential decay of the solution energy of
(1.3) has been established for b with indefinite sign. Ammar-Khodja et al.
[2] considered a linear Timoshenko-type system with memory of the form

ρ1ϕtt −K(ϕx + ψ)x = 0

ρ2ψtt − bψxx +
∫ t

0
g(t− s)ψxx(s)ds+K(ϕx + ψ) = 0

in (0, L)× (0,+∞), together with homogeneous boundary conditions. They
used the multiplier techniques and proved that the system is uniformly stable
if and only if the wave speeds are equal (Kρ1 = b

ρ2
) and g decays uniformly.

Precisely, they proved an exponential decay if g decays in an exponential
rate and a polynomial decay if g decays in a polynomial rate. They also
required some extra technical conditions on both g′ and g′′ to obtain their
result. Guesmia and Messaoudi [14] obtained the same uniform decay results
without imposing those extra technical conditions on g′ and g′′. Recently,
Messaoudi and Mustafa [20] improved the results of [2], [14] by allowing
more general relaxation functions. They established a more general decay
result, from which the exponential and the polynomial decay results are only
special cases. The feedback of memory type has also been used by Santos
[33]. He considered a Timoshenko system and showed that the presence
of two feedbacks of memory type at a portion of the boundary stabilizes
the system uniformly. He also obtained the rate of decay of the energy,
which is exactly the rate of decay of the relaxation functions. This latter
result has been pushed to a multi-dimensional problem by Messaoudi and
Soufyane [16]. Also, Rivera and Racke [22] treated a nonlinear Timoshenko-
type system of the form

ρ1ϕtt − σ1(ϕx, ψ)x = 0 (1.4)

ρ2ψtt − χ(ψx)x + σ2(ϕx, ψ) + dψt = 0

in a one-dimensional bounded domain. The dissipation is produced here
through a frictional damping which is only present in the equation for the
rotation angle. The authors gave an alternative proof for a necessary and suf-
ficient condition for exponential stability in the linear case and then proved
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a polynomial stability in general. Moreover, they investigated the global ex-
istence of small smooth solutions and exponential stability in the nonlinear
case. Recently, Fernández Sare and Rivera [9], considered Timoshenko type
system with past history acting only in one equation. More precisely they
looked into the following problem:

ρ1ϕtt −K(ϕx + ψ)x = 0 (1.5)

ρ2ψtt − bψxx +
∫ ∞

0
g(t)ψxx(t− s, .)ds+K(ϕx + ψ) = 0

and showed that the dissipation given by the history term is strong enough
to stabilize the system exponentially if and only if the wave speeds are equal.
They also proved that the solution decays polynomially for the case of differ-
ent wave speeds. For more results concerning well posedness and controlla-
bility of Timoshenko systems, we refer the reader to Alabau-Boussouira [1],
Fernández Sare and Racke [10], Messaoudi et al. [17], and Messaoudi and
Mustafa [18].

For Timoshenko systems in classical thermoelasticity, Rivera and Racke
[21] considered

ρ1ϕtt − σ(ϕx, ψ)x = 0

ρ2ψtt − bψxx + k(ϕx + ψ) + γθx = 0 (1.6)
ρ3θt − kθxx + γψtx = 0

in (0,∞)× (0, L), where ϕ,ψ, and θ are functions of (x, t) which model the
transverse displacement of the beam, the rotation angle of the filament, and
the difference temperature respectively. Under appropriate conditions on
σ, ρi, b, k, γ, they proved several exponential decay results for the linearized
system and nonexponential stability result for the case of different wave
speeds.

In system (1.6), the heat flux is given by Fourier’s law. As a result,
this theory predicts an infinite speed of heat propagation. That is, any
thermal disturbance at one point has an instantaneous effect elsewhere in the
body. Experiments showed that heat conduction in some dielectric crystals
at low temperatures is free of this paradox and disturbances, which are
almost entirely thermal, propagate in a finite speed. This phenomenon in
dielectric crystals is called second sound. To overcome this physical paradox,
many theories have merged such as thermoelasticity by second sound or
thermoelasticity type III. By the end of the last century, Green and Naghdi
[11−13] introduced three types of thermoelastic theories based on an entropy
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equality instead of the usual entropy inequality. In each of these theories, the
heat flux is given by a different constitutive assumption. As a result, three
theories are obtained and were called thermoelasticity type I, type II, and
type III respectively. This theory is developed in a rational way in order to
obtain a fully consistent explanation, which will incorporate thermal pulse
transmission in a very logical manner and elevate the unphysical infinite
speed of heat propagation induced by the classical theory of heat conduction.
When the theory of type I is linearized the parabolic equation of the heat
conduction arises, whereas the theory of type II does not admit dissipation
of energy and it is known as thermoelasticity without dissipation. It is a
limiting case of thermoelasticity type III. See in this regard [4− 6] and [32]
for more details. To understand these new theories and their applications,
several mathematical and physical contributions have been made; see for
example [4 − 6], [24 − 30] and [37]. In particular, we must mention the
survey paper of Chandrasekharaiah [6], in which the author has focussed
attention on the work done during the last two decades. He reviewed the
theory of thermoelasticity with thermal relaxation and the temperature rate
dependent thermoelasticity. He also described the thermoelasticity without
dissipation and clarified its properties. By the end of his paper, he made a
brief discussion of the new theories, including what is called dual-phase-lag
effects. We recall here the type III thermoelasticity characterized by the
following constitutive equations for the heat flux:

q = −κ∗τx − κ̃θx,

where θ denotes the temperature, τ is the thermal displacement which sat-
isfies τt = θ, and κ∗, κ̃ are positive constants.

Zhang and Zuazua [37] discussed the long time behavior of the solution
of the system

utt − µ4u− (µ+ λ)∇(divu) + β∇θ = 0 (1.7)
θtt −∆θ + divutt −∆θt = 0

in Ω × (0,∞), subject to initial data and boundary conditions of Dirichlet-
Dirichlet type. They concluded the following: “For most domains, the energy
of the system does not decay uniformly. But under suitable conditions on the
domain, which might be described in terms of geometric optics, the energy of
the system decays exponentially. For most domains in two space dimensions,
the energy of smooth solutions decays in a polynomial rate.”

In [29], Quintanilla and Racke considered a system similar to (1.7) and
used the spectral analysis method and the energy method to obtain the
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exponential stability in one dimension for different boundary conditions
(Dirichlet- Dirichlet or Dirichlet- Neuman). They also proved a decay of
energy result for the radially symmetric situations in the multi-dimensional
case (n = 2, 3). We also recall the contribution of Quintanilla [28], in which
he proved that solutions of thermoelasticity of type III converge to solutions
of the classical thermoelasticity as well as to the solution of thermoelasticity
without energy dissipation and Quintanilla [26], in which he established a
structural stability result on the coupling coefficients and continuous depen-
dence on the external data in thermoelasticity type III.

In the present work we study the following system:

ρ1ϕtt −K(ϕx + ψ)x = 0

ρ2ψtt − bψxx +
∫ ∞

0
g(s)ψxx(x, t− s)ds+K(ϕx + ψ) + βθx = 0 (1.8)

ρ3θtt − δθxx + γψttx − kθtxx = 0

in (0, 1)× (0,∞), subject to the initial and boundary conditions

ϕ(., 0) = ϕ0, ϕt(., 0) = ϕ1, ψ(t., 0) = ψ0, ψ1(., 0) = ψ1,

θ(., 0) = θ0, θt(., 0) = θ1 (1.9)

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = θx(0, t) = θx(1, t) = 0 (1.10)

and prove uniform decay results. Precisely, we will show that, for ρ1
K =

ρ2
b , the first energy decays exponentially (respectively polynomially) if g

decays exponentially (respectively polynomially). In the case of different
wave speeds, we show that the decay is of polynomial type. This system
models the transverse vibration of a thick beam, taking into account the
heat conduction given by Green and Naghdi’ s theory. Following the idea of
Dafermos [7], we introduce

ηt(x, s) = ψ(x, t)− ψ(x, t− s), s ≥ 0; (1.11)

consequently we obtain the following initial and boundary conditions

ηt(x, 0) = 0, ∀t ≥ 0 (1.12)
ηt(0, s) = ηt(1, s) = 0, ∀s, t ≥ 0 (1.13)
η0(x, s) = η0(s), ∀s ≥ 0. (1.14)

Clearly, (1.11) gives

ηtt(x, s) + ηts(x, s) = ψt(x, t). (1.15)
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We also assume that g is a differentiable function satisfying

g(t) > 0, b̂ = b−
∫ ∞

0
g(s)ds > 0, g′(t) ≤ −k0g

p(t) (1.16)

for a positive constant k0 and 1 ≤ p < 3/2.
Remark 1.1. Under condition (1.16), it is easy to verify that

G0 =
∫ ∞

0
g1/2(s)ds <∞, Gp =

∫ ∞
0

g2−p(s)ds <∞, 1 ≤ p < 3/2.

2. Uniform decay ρ1
K = ρ2

b

In this section, we state and prove our main decay result. In order to
exhibit the dissipative nature of system (1.8), we introduce the new variables
φ = ϕt, Ψ = ψt, and η̂t = ηtt. Thus, (1.8)-(1.15) yield

ρ1φtt −K(φx + Ψ)x = 0,

ρ2Ψtt − b̂Ψxx −
∫ ∞

0
g(s)η̂txx(x, s)ds+K(φx + Ψ) + βθtx = 0 (2.1)

ρ3θtt − δθxx + γΨtx − kθtxx = 0

η̂tt + η̂ts −Ψt = 0,

where x ∈ (0, 1), t ≥ 0 and s ≥ 0. We also obtain the following boundary
and initial conditions:

φ(., 0) = φ0, φt(., 0) = φ1, Ψ(t., 0) = Ψ0, Ψ1(., 0) = Ψ1

θ(., 0) = θ0, θt(., 0) = θ1 (2.2)

φ(0, t) = φ(1, t) = Ψ(0, t) = Ψ(1, t) = θx(0, t) = θx(1, t) = 0 (2.3)

η̂t(x, 0) = 0, ∀t ≥ 0
η̂t(0, s) = η̂t(1, s) = 0, ∀s, t ≥ 0 (2.4)
η̂0(x, s) = η̂0(s), ∀s ≥ 0.

In order to use the Poincaré inequality for θ, we introduce

θ = θ(x, t)− t
∫ 1

0
θ1(x)dx−

∫ 1

0
θ0(x)dx.

Then by (2.1)3 we easily verify that∫ 1

0
θ(x, t)dx = 0
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for all t ≥ 0; in this case the Poincaré inequality is applicable for θ. On the
other hand (φ,Ψ, θ, η̂t) satisfies the same partial differential equations (2.1)
and boundary conditions (2.2) − (2.4). In the sequel we shall work with θ
but we write θ for simplicity. Then the associated first-order energy is

E(t) = E1(φ,Ψ, θ, η̂t) =
γ

2

∫ 1

0
(ρ1φ

2
t + ρ2Ψ2

t +K |φx + Ψ|2 + b̂Ψ2
x)dx

+
β

2

∫ 1

0
(ρ3θ

2
t + δθ2

x)dx+
γ

2

∫ 1

0

∫ ∞
0

g(s)
∣∣η̂tx(s)

∣∣2 dsdx. (2.5)

Theorem 2.1. Suppose that
ρ1

K
=
ρ2

b
(2.6)

and let φ0,Ψ0, θ0 ∈ H1
0 (0, 1), η̂t0 ∈ L2

g(R+, H1
0 (0, 1)), φ1,Ψ1, θ1 ∈ L2(0, 1).

Then there exist two positive constants C and ξ, such that

E(t) ≤ Ce−ξt, p = 1 (2.7)

E(t) ≤ C

(t+ 1)1/(p−1)
p > 1. (2.8)

The proof of our result will be established through several lemmas.
Lemma 2.2. Let (φ,Ψ, θ, η̂t) be a solution of (2.1)-(2.4). Then we have

dE(t)
dt

= −βk
∫ 1

0
θ2
txdx+

γ

2

∫ 1

0

∫ ∞
0

g
′
(s)
∣∣η̂tx(s)

∣∣2 dsdx ≤ 0. (2.9)

Proof. Multiplying equation (2.1)1 by γφt, (2.1)2 by γΨt and (2.1)3 by βθt,
integrating over (0, 1), and summing up, using (1.16), we obtain (2.9).
Lemma 2.3. Let (φ,Ψ, θ, η̂t) be a solution of (2.1)-(2.4). Then we have,
for 1 < p < 3/2,(∫ 1

0

∫ ∞
0

g(s)
∣∣η̂tx(s)

∣∣2 dsdx)2p−1
≤ C0

∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx (2.10)

for a constant C0 > 0.
Proof. Using Hölder’s inequality, it is straightforward to see that, for any
r > 1, we have∫ 1

0

∫ ∞
0

g(s)
∣∣η̂tx(s)

∣∣2 dsdx
=
∫ 1

0

∫ ∞
0

g
1
2r (s)

∣∣η̂tx(s)
∣∣ 2r g 2r−1

2r (s)
∣∣η̂tx(s)

∣∣ 2r−2
r dsdx
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≤
(∫ 1

0

∫ ∞
0

g
1
2 (s)

∣∣η̂tx(s)
∣∣2 dsdx) 1

r
(∫ 1

0

∫ ∞
0

g
2r−1
2r−2 (s)

∣∣η̂tx(s)
∣∣2 dsdx) r−1

r
.

Remark 1.1, (1.11), (2.5), and (2.9) lead to∫ 1

0

∫ ∞
0

g1/2(s)
∣∣η̂tx(s)

∣∣2 dsdx ≤ 2E(0)
∫ ∞

0
g1/2(s)ds = 2G0E(0).

By taking r = (2p− 1)/(2p− 2), (2.10) follows.
Lemma 2.4. For 1≤ p ≤ 3/2, we have∫ 1

0

(∫ ∞
0

g(s)η̂tx(s)ds
)2
dx ≤ Gp

∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx. (2.11)

Proof. Using the Cauchy-Schwarz inequality, we get∫ ∞
0

g(s)η̂tx(s)ds =
∫ ∞

0
g1− p

2 (s)g
p
2 (s)η̂tx(s)ds

≤
(∫ ∞

0
g2−p(s)

)1/2(∫ ∞
0

gp(s)|η̂tx(s)|2ds
)1/2

.

Therefore, (2.11) follows by Remark 1.1.
As in [21], let

I1 :=
∫ 1

0
(ρ2ΨtΨ + ρ1φtω)dx, (2.12)

where ω is the solution of

−ωxx = Ψx, ω(0) = ω(1) = 0.

Lemma 2.5 Let (φ,Ψ, θ, η̂t) be a solution of (2.1)-(2.4). Then we have, for
any ε1, λ1 > 0,

dI1(t)
dt

≤ (− b̂
2

+ λ1)
∫ 1

0
Ψ2
xdx+ ε1ρ1

∫ 1

0t
φ2
tdx+ (ρ2 +

ρ1

4ε1
)
∫ 1

0
Ψ2
tdx

+
β2

2b̂

∫ 1

0
θ2
txdx+

Gp
4λ1

∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx. (2.13)

Proof. By taking a derivative of (2.12) and using equations (2.1) we con-
clude

dI1(t)
dt

= −b̂
∫ 1

0
Ψ2
xdx+ ρ2

∫ 1

0
Ψ2
tdx−K

∫ 1

0
Ψ2dx− β

∫ 1

0
Ψθtxdx

+K
∫ 1

0
ω2
xdx+ ρ1

∫ 1

0
φtωtdx−

∫ 1

0
Ψx

∫ ∞
0

g(s)η̂tx(s)dsdx.
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By using Young’ s inequality and∫ 1

0
ω2
xdx ≤

∫ 1

0
Ψ2dx ≤

∫ 1

0
Ψ2
xdx∫ 1

0
ω2
t dx ≤

∫ 1

0
ω2
txdx ≤

∫ 1

0
Ψ2
tdx,

we find that

dI1(t)
dt

≤ −b̂
∫ 1

0
Ψ2
xdx+ ε1ρ1

∫ 1

0
φ2
tdx+ (ρ2 +

ρ1

4ε1
)
∫ 1

0
Ψ2
tdx

+
β2

2b̂

∫ 1

0
θ2
txdx+

b̂

2

∫ 1

0
Ψ2
xdx−

∫ 1

0
Ψx

∫ ∞
0

g(s)η̂tx(s)dsdx. (2.14)

Using Young’s inequality and (2.11), the last term in the right-hand side of
(2.14) can be estimated as follows:∫ 1

0
Ψx

∫ ∞
0

g(s)η̂tx(s)dsdx ≤ 1
4λ1

∫ 1

0

(∫ ∞
0

g(s)η̂tx(s)ds
)2
dx+ λ1

∫ 1

0
Ψ2
xdx

≤ Gp
4λ1

∫ 1

0

∫ ∞
0

gp(s)|η̂tx(s)|2dsdx+ λ1

∫ 1

0
Ψ2
xdx, λ1 > 0. (2.15)

Inserting (2.15) into (2.14), we obtain the desired result.
Next, we set

I2 := −ρ2

∫ 1

0
Ψt(x, t)

∫ ∞
0

g(s)η̂t(s)dsdx. (2.16)

Lemma 2.6 Let (φ,Ψ, θ, η̂t) be a solution of (2.1) − (2.4). Then we have,
for any ε2 > 0,

dI2(t)
dt

≤ −ρ2g0
2

∫ 1

0
Ψ2
tdx+ ε2b̂

2

∫ 1

0
Ψ2
xdx+ ε2K

2

∫ 1

0
(φx + Ψ)2dx

+
β2

2

∫ 1

0
θ2
txdx+Gp

(
1 +

1
4ε2

+
C∗

4ε2
+
C∗

2

)∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx
− C∗g(0)

2ρ2

∫ 1

0

∫ ∞
0

g′(s)
∣∣η̂tx(s)

∣∣2 dsdx. (2.17)

Proof. Using the second and fourth equations of (2.1) we get

dI2(t)
dt

= b̂

∫ 1

0
Ψx

∫ ∞
0

g(s)η̂tx(s)dsdx+
∫ 1

0

(∫ ∞
0

g(s)η̂tx(s)ds
)2
dx
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+K

∫ 1

0
(φx + Ψ)

∫ ∞
0

g(s)η̂t(s)dsdx+ β

∫ 1

0
θxt

∫ ∞
0

g(s)η̂t(s)dsdx

− ρ2g0

∫ 1

0
Ψ2
tdx+ ρ2

∫ 1

0
Ψt

∫ ∞
0

g(s)η̂ts(s)dsdx. (2.18)

By using (2.11) and Young’s inequality, we obtain the following estimates:

b̂

∫ 1

0
Ψx

∫ ∞
0

g(s)η̂tx(s)dsdx

≤ ε2b̂2
∫ 1

0
Ψ2
xdx+

Gp
4ε2

∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx
+K

∫ 1

0
(φx + Ψ)

∫ ∞
0

g(s)η̂t(s)dsdx

≤ ε2K2

∫ 1

0
(φx + Ψ)2dx+

C∗Gp
4ε2

∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx,
β

∫ 1

0
θxt

∫ ∞
0
g(s)η̂t(s)dsdx ≤ β2

2

∫ 1

0
θ2
xtdx+

C∗Gp
2

∫ 1

0

∫ ∞
0

gp(s)|η̂tx(s)|2dsdx,∫ 1

0
Ψt

∫ ∞
0

g(s)η̂ts(s)dsdx = −
∫ 1

0
Ψt

∫ ∞
0

g′(s)η̂t(s)dsdx

≤ ρ2g0
2

∫ 1

0
Ψ2
tdx−

C∗g(0)
2ρ2

∫ 1

0

∫ ∞
0

g′(s)
∣∣η̂tx(s)

∣∣2 dsdx,
where C∗ is the Poincaré constant. By inserting all the above estimates into
(2.18), relation (2.17) follows.

Next we introduce the functional

J(t) : = ρ2

∫ 1

0
Ψt(φx + Ψ)dx+

ρ1b̂

K

∫ 1

0
Ψxφtdx

+
ρ1

K

∫ 1

0
φt(t)

∫ ∞
0

g(s)η̂tx(s)dsdx. (2.19)

Lemma 2.7. Let (φ,Ψ, θ, η̂t) be a solution of (2.1)− (2.4). Assume that
ρ1

K
=

ρ2

b̂+ g0
=
ρ2

b
. (2.20)

Then, for ε3 > 0, we conclude

dJ(t)
dt
≤
[
φx

(
bΨx +

∫ ∞
0

g(s)η̂tx(x, s)
)]x=1

x=0
− K

2

∫ 1

0
(φx + Ψ)2dx
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+ ρ2

∫ 1

0
Ψ2
tdx+ ε3

∫ 1

0
φ2
tdx+

β2

2K

∫ 1

0
θ2
txdx (2.21)

− g(0)C(ε3)
∫ 1

0

∫ ∞
0

g′(s)
∣∣η̂tx(s)

∣∣2 dsdx.
Proof. Differentiating J(t), we obtain

dJ(t)
dt

= ρ2

∫ 1

0
Ψtt(φx + Ψ)dx+ ρ2

∫ 1

0
Ψt(φx + Ψ)tdx

+
ρ1b̂

K

∫ 1

0
Ψxφttdx+

ρ1

K

∫ 1

0
φt

∫ ∞
0

g(s)η̂ttx(s)dsdx

+
ρ1b̂

K

∫ 1

0
Ψtxφtdx+

ρ1

K

∫ 1

0
φtt

∫ ∞
0

g(s)η̂tx(s)dsdx.

By using equations (2.1), we find

dJ(t)
dt

=
∫ 1

0
(φx + Ψ)

[
b̂Ψxx +

∫ ∞
0

g(s)η̂txx(x, s)ds−K(φx + Ψ)− βθtx
]
dx

+ ρ2

∫ 1

0
Ψ2
tdx+ b̂

∫ 1

0
Ψx(φx + Ψ)xdx

+ (
ρ1b̂

K
− ρ2)

∫ 1

0
Ψtxφtdx+

ρ1

K

∫ 1

0
φt(t)

∫ ∞
0

g(s)(Ψt − η̂ts)x(s)dsdx

+
∫ 1

0
(φx + Ψ)x

∫ ∞
0

g(s)η̂tx(s)dsdx,

and exploiting (2.20), we conclude

dJ(t)
dt

= −K
∫ 1

0
(φx + Ψ)2dx+ ρ2

∫ 1

0
Ψ2
tdx

+
ρ1

K

∫ 1

0
φt

∫ ∞
0

g
′
(s)η̂tx(s)dsdx+

[̂
bφxΨx

]x=1

x=0

+
[
φx(x, t)

∫ ∞
0

g(s)η̂tx(x, s)
]x=1

x=0
− β

∫ 1

0
(φx + Ψ)θxtdx.

Young’s inequality gives (2.21).
Next, to handle the boundary terms appearing in (2.21), we make use of

the function q(x) = 2 − 4x, x ∈ [0, 1]. Consequently, we have the following
results.
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Lemma 2.8. Let (φ,Ψ, θ, η̂t) be a solution of (2.1)− (2.4). Then we have,
for any λ3 > 0 and ε3 > 0,[

φx(̂bΨx +
∫ ∞

0
g(s)η̂tx(s, x))

]x=1

x=0

≤ −ε3
K

d

dt

∫ 1

0
ρ1q(x)φtφxdx+ 3ε3

∫ 1

0
φ2
xdx+

2ρ1ε3
K

∫ 1

0
φ2
tdx

− 1
4ε3

d

dt

∫ 1

0
ρ2q(x)Ψt(̂bΨx +

∫ ∞
0

g(s)η̂tx(s)ds)dx

+
1
ε3

(
b̂2 +

b̂2

8λ3
+
b̂2λ3

2
+ ε23

)∫ 1

0
Ψ2
xdx+

β2

4ε3λ3

∫ 1

0
θ2
xtdx (2.22)

+
G0

4ε3

(
4 +

1
2λ3

+ 2λ3

)∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx
+

ρ2

4ε3
(2b+ ε3)

∫ 1

0
Ψ2
tdx+

λ3K
2

ε3

∫ 1

0
(φx + Ψ)2dx

− ρ2g(0)C(ε3)
∫ 1

0

∫ ∞
0

g′(s)
∣∣η̂tx(s)

∣∣2 dsdx.
Proof. By using Young’s inequality, we easily see that, for ε3 > 0,[

φx(̂bΨx +
∫ ∞

0
g(s)η̂tx(x, s))

]x=1

x=0

≤ ε3
[
φ2
x(1, t) + φ2

x(0, t)
]

+
1

4ε3

(
b̂Ψx(0, t) +

∫ ∞
0

g(s)η̂tx(0, s)ds
)2

(2.23)

+
1

4ε3

(
b̂Ψx(1, t) +

∫ ∞
0

g(s)η̂tx(1, s)ds
)2
.

By exploiting

d

dt

∫ 1

0
ρ2q(x)Ψt

(
b̂Ψx +

∫ ∞
0

g(s)η̂tx(s)ds
)

=
∫ 1

0
ρ2q(x)Ψtt

(
b̂Ψx +

∫ ∞
0

g(s)η̂tx(s)ds
)

+
∫ 1

0
ρ2q(x)Ψt

(
b̂Ψtx +

∫ ∞
0

g(s)η̂ttx(s)ds
)

and equation (2.1)2 we get

d

dt

∫ 1

0
ρ2q(x)Ψt

(
b̂Ψx +

∫ ∞
0

g(s)η̂tx(s)ds
)
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=
∫ 1

0
q(x)

(
b̂Ψxx +

∫ ∞
0

g(s)η̂txx(x, s)ds−K(φx + Ψ)− βθtx
)

×
(
b̂Ψx +

∫ ∞
0

g(s)η̂tx(s)ds
)
dx

+
∫ 1

0
ρ2q(x)Ψt

(
b̂Ψtx +

∫ ∞
0

g(s)η̂ttx(s)ds
)
. (2.24)

Simple calculation shows that∫ 1

0
q(x)

(
b̂Ψxx +

∫ ∞
0

g(s)η̂txx(x, s)ds
)(
b̂Ψx +

∫ ∞
0

g(s)η̂tx(s)ds
)
dx

= −1
2

∫ 1

0
q
′
(x)
(
b̂Ψx +

∫ ∞
0

g(s)η̂tx(x, s)ds
)2
dx

+
(q(x)

2

(
b̂Ψx +

∫ ∞
0

g(s)η̂tx(s)ds
)2)x=1

x=0
. (2.25)

The last term in (2.24) can be treated as follows:∫ 1

0
ρ2q(x)Ψt

(
b̂Ψtx +

∫ ∞
0

g(s)η̂ttx(s)ds
)

(2.26)

= ρ2b̂

∫ 1

0
q(x)ΨtΨtxdx+ ρ2

∫ 1

0
q(x)Ψt

∫ ∞
0

g(s)η̂ttx(s)dsdx

= −ρ2b̂

2

∫ 1

0
q
′
(x)Ψ2

tdx+ ρ2

∫ 1

0
q(x)Ψt

∫ ∞
0

g(s)η̂ttx(s)dsdx

= −ρ2b̂

2

∫ 1

0
q
′
(x)Ψ2

tdx+ ρ2

∫ 1

0
q(x)Ψt

∫ ∞
0

g(s)(Ψtx(t)− η̂tsx(s))dsdx

= −ρ2b̂

2

∫ 1

0
q
′
(x)Ψ2

tdx+ g0ρ2

∫ 1

0
q(x)ΨtΨtx − ρ2

∫ 1

0
q(x)Ψt

∫ ∞
0
g(s)η̂tsx(s)dsdx

= −ρ2(̂b+ g0)
2

∫ 1

0
q
′
(x)Ψ2

tdx+ ρ2

∫ 1

0
q(x)Ψt

∫ ∞
0

g′(s)η̂tx(s)dsdx.

Inserting (2.25) and (2.26) into (2.24), we arrive at(
b̂Ψx(0, t) +

∫ ∞
0

g(s)η̂tx(0, s)ds
)2

+
(
b̂Ψx(1, t) +

∫ ∞
0

g(s)η̂tx(1, s)ds
)2

= − d

dt

∫ 1

0
ρ2q(x)Ψt

(
b̂Ψx +

∫ ∞
0

g(s)η̂tx(s)ds
)
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+2
∫ 1

0

(
b̂Ψx +

∫ ∞
0

g(s)η̂tx(x, s)ds
)2
dx (2.27)

−K
∫ 1

0
q(x)(φx + Ψ)

(
b̂Ψx +

∫ ∞
0

g(s)η̂tx(s)ds
)
dx

−β
∫ 1

0
q(x)θtx

(
b̂Ψx +

∫ ∞
0

g(s)η̂tx(s)ds
)
dx

+2ρ2(̂b+ g0)
∫ 1

0
Ψ2
tdx+ ρ2

∫ 1

0
q(x)Ψt

∫ ∞
0

g
′
(s)η̂tx(s)dsdx.

Now, we estimate the terms in the right-hand side of (2.27), Hölder’s and
Young’s inequalities, as follows:
The second term

2
∫ 1

0

(
b̂Ψx +

∫ ∞
0

g(s)η̂tx(x, s)ds
)2
dx (2.28)

≤ 4b̂2
∫ 1

0
Ψ2
xdx+ 4Gp

∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx.
The third term∣∣∣K ∫ 1

0
q(x)(φx + Ψ)(̂bΨx +

∫ ∞
0

g(s)η̂tx(s)ds)dx
∣∣∣

≤ 2K
∣∣∣ ∫ 1

0
(φx + Ψ)(̂bΨx +

∫ ∞
0

g(s)η̂tx(s)ds)dx
∣∣∣ (2.29)

≤ 4K2λ3

∫ 1

0
(φx + Ψ)2dx+

1
4λ3

∫ 1

0

(
b̂Ψx +

∫ ∞
0

g(s)η̂tx(s)ds
)2
dx,

≤ 4K2λ3

∫ 1

0
(φx + Ψ)2dx+

b̂2

2λ3

∫ 1

0
Ψ2
xdx+

Gp
2λ3

∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx.
The fourth term∣∣∣β ∫ 1

0
q(x)θtx(̂bΨx +

∫ ∞
0

g(s)η̂tx(s)ds)dx
∣∣∣ (2.30)

≤ β2

λ3

∫ 1

0
θ2
txdx+ 2b̂2λ3

∫ 1

0
Ψ2
xdx+ 2Gpλ3

∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx.
The last term∣∣∣ρ2

∫ 1

0
q(x)Ψt

∫ ∞
0

g
′
(s)η̂tx(s)dsdx

∣∣∣ (2.31)
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≤ ρ2ε3

∫ 1

0
Ψ2
tdx− ρ2g(0)C(ε3)

∫ 1

0

∫ ∞
0

g
′
(s)
∣∣η̂tx(s)

∣∣2 dsdx.
Inserting (2.28)− (2.31) into (2.27), we obtain(

b̂Ψx(0, t) +
∫ ∞

0
g(s)η̂tx(0, s)ds

)2
+
(
b̂Ψx(1, t) +

∫ ∞
0

g(s)η̂tx(1, s)ds
)2

≤ − d

dt

∫ 1

0
ρ2q(x)Ψt

(
b̂Ψx +

∫ ∞
0

g(s)η̂tx(s)ds
)

+
(

4b̂2 +
b̂2

2λ3
+ 2b̂2λ3

)∫ 1

0
Ψ2
xdx +

β2

λ3

∫ 1

0
θ2
xtdx (2.32)

+Gp

(
4 +

1
2λ3

+ 2λ3

)∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx
+ 2ρ2

(
b̂+ g0 +

ε3
2

)∫ 1

0
Ψ2
tdx+ 4K2λ3

∫ 1

0
(φx + Ψ)2dx

− ρ2g(0)C(ε3)
∫ 1

0

∫ ∞
0

g′(s)
∣∣η̂tx(s)

∣∣2 dsdx.
Similarly, by using equation (2.1)1, we arrive at

d

dt

∫ 1

0
ρ1qφtφxdx ≤ −K

[
φ2
x(1) + φ2

x(0)
]

(2.33)

+3K
∫ 1

0
φ2
xdx+K

∫ 1

0
Ψ2
xdx+ 2ρ1

∫ 1

0
φ2
tdx.

Hence the assertion of the lemma follows from (2.23), (2.32) and (2.33).
Let us introduce the functional

K(t) := −ρ1

∫ 1

0
φtφdx− ρ2

∫ 1

0
ΨtΨdx.

It easily follows, by using
∫ 1
0 Ψ2dx ≤

∫ 1
0 Ψ2

xdx,

d

dt
K(t) ≤ −ρ1

∫ 1

0
φ2
tdx− ρ2

∫ 1

0
Ψ2
tdx+ (̂b+ 3

2)
∫ 1

0
Ψ2
xdx (2.34)

+K
∫ 1

0
φ2
xdx+

β2

2

∫ 1

0
θ2
txdx−

∫ 1

0
Ψx

∫ ∞
0

g(s)η̂tx(s)dsdx.

By using (2.11), we obtain, for any ε3 > 0,

d

dt
K(t) ≤ −ρ1

∫ 1

0
φ2
tdx− ρ2

∫ 1

0
Ψ2
tdx+ (̂b+ 3

2 + ε3)
∫ 1

0
Ψ2
xdx (2.35)
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+K

∫ 1

0
φ2
xdx+

β2

2

∫ 1

0
θ2
txdx+ C(ε3)Gp

∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx.
Let us set

Θ(t) :=
∫ 1

0
(ρ3θtθ +

k

2
θ2
x + γΨxθ)dx.

Lemma 2.9. Let (φ,Ψ, θ, η̂t) be a solution of (2.1)− (2.4). Then we have,
for any ε2 > 0,

d

dt
Θ(t) ≤ −δ

∫ 1

0
θ2
xdx+ (ρ3 +

γ2

4ε2
)
∫ 1

0
θ2
t dx+ ε2

∫ 1

0
Ψ2
xdx. (2.36)

Proof. We differentiate Θ(t) and use (2.1)3 to obtain

d

dt
Θ(t) = ρ3

∫ 1

0
θ2
t dx− δ

∫ 1

0
θ2
xdx+ γ

∫ 1

0
Ψxθtdx.

Young’s inequality then yields (2.36).
To finalize the proof of Theorem 2.1, we define the Lyapunov functional

L as follows:

L(t) := NE(t) +N1I1 +N2I2 + J(t) +
ε3
K

∫ 1

0
ρ1qφtφxdx (2.37)

+
1

4ε3

∫ 1

0
ρ2q(x)Ψt(̂bΨx +

∫ ∞
0

g(s)η̂tx(s)ds)dx+ µK(t) + Θ(t).

Consequently, by using (2.9), (2.13), (2.17), (2.21), (2.22), (2.34), (2.36),∫ 1

0
θ2
t dx ≤

∫ 1

0
θ2
txdx,

and ∫ 1

0
φ2
xdx ≤ 2

∫ 1

0
(φx + Ψ)2dx+ 2

∫ 1

0
Ψ2
xdx

we get

d

dt
L(t) ≤ − [Nβk − C1]

∫ 1

0
θ2
txdx+ Λ1

∫ 1

0
Ψ2
xdx+ Λ2

∫ 1

0
φ2
tdx (2.38)

+ Λ3

∫ 1

0
Ψ2
tdx+ Λ4

∫ 1

0
(φx + Ψ)2dx

+
[
N
γ

2
− C2

] ∫ 1

0

∫ ∞
0

g′(s)
∣∣η̂tx(s)

∣∣2 dsdx− δ ∫ 1

0
θ2
xdx
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+ (ρ3 +
γ2

4ε2
)
∫ 1

0
θ2
t dx+ C3

∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx,
where C1, C2 and C3 are positive constants independent of N and

Λ1 = N1(− b̂
2

+ λ1) +N2ε2b̂
2 + ε2 + 2(3ε3 + µK)

+
1
ε3

(̂b2 +
b̂2

8λ3
+
b̂2λ3

2
+
ε23
4

) + µ(̂b+
3
2

+ ε3)

Λ2 = N1ε1ρ1 + ε3 +
2ρ1ε3
K
− µρ1

Λ3 = N1(ρ2 +
ρ1

4ε1
)−N2

g0ρ2

2
+ ρ2 +

1
4ε3

(2ρ2b+ ρ2ε3)− µρ2

Λ4 =
K2λ3

ε3
− K

2
+N2ε2K

2 + 2(3ε3 + µK).

At this point, we have to choose our constants very carefully. First, we take
λ3 = ε23, µ = 1/16, and λ1 < b̂/4, then we pick

ε3 ≤ min(
K

4(K2 + 6)
,

Kρ1

32(K + 2ρ1)
).

Once ε3 and µ (hence λ3) are fixed, we then choose N1 so large that

N1
b̂

8
>

1
ε3

(̂b+
b̂2

8λ3
+
b̂2λ3

2
+
ε23
4

) + 2(3ε3 + µK) + µ(̂b+
3
2

+ ε3).

After that, we pick ε1 small enough so that ε1 ≤ 1/64N1 and N2 large enough
so that

N2
g0ρ2

2
> N1(ρ2 +

ρ1

4ε1
) + ρ2 +

1
4ε3

(2ρ2b+ ρ2ε3)− µρ2.

Now, we pick ε2 so small that

ε2 < min
{ 16
N2K

,
N1b̂

16(N2b̂2 + 1)

}
.

Finally, after fixing all constants, we choose N large enough so that

N > max
{C1

βk
,
2(C2 + C3/k0)

γ

}
.

Consequently, there exists σ1 > 0 such that (2.38) takes the form

d

dt
L(t) ≤ −σ1

[ ∫ 1

0
(θ2
t + θ2

x + Ψ2
x + Ψ2

t + φ2
t + (φx + Ψ)2)dx
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+
∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx]. (2.39)

On the other hand, we can choose N even larger if needed so that

β1 ≤ L(t) ≤ β2E(t) (2.40)

for two positive constants β1, β2. We distinguish two cases.
Case 1: p = 1. A combination of (2.39) and (2.40) leads to

d

dt
L(t) ≤ −ξL(t). (2.41)

A simple integration of (2.41) over (0, t) and use of (2.39) lead to (2.7).
Case 2: p > 1. We use (2.5) and (2.9) to get

E2p−1(t) ≤ C(E(0))2p−2

∫ 1

0
(φ2
t + Ψ2

t + |φx + Ψ|2 + Ψ2
x + θ2

t + θ2
x)dx

+C
[ ∫ 1

0

∫ ∞
0

g(s)
∣∣η̂tx(s)

∣∣2 dsdx]2p−1
(2.42)

≤ C(E(0))2p−2

∫ 1

0
(φ2
t + Ψ2

t + |φx + Ψ|2 + Ψ2
x + θ2

t + θ2
x)dx

+CC0

∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx.
A combination of (2.39), (2.40) and (2.42) gives

L′(t) ≤ −cE2p−1(t) ≤ −cL2p−1(t). (2.43)

A simple integration of (2.43) leads to

L(t) ≤ C

(t+ 1)1/(2p−2)
. (2.44)

To obtain (2.8), we observe that∫ 1

0

∫ t

0
g(s)

∣∣η̂tx(s)
∣∣2 dsdx =

∫ 1

0

∫ t

0
g(s)

∣∣η̂tx(s)
∣∣ 2p ∣∣η̂tx(s)

∣∣ 2(p−1)
p dsdx

≤
(∫ 1

0

∫ t

0

∣∣η̂tx(s)
∣∣2 dsdx)(p−1)/p(∫ 1

0

∫ t

0
gp(s)

∣∣η̂tx(s)
∣∣2 dsdx)1/p

(2.45)

and use (2.44) and η̂tx(x, s) = Ψx(x, t)−Ψx(x, t− s) to get∫ t

0

∫ 1

0

∣∣η̂tx(s)
∣∣2 dxds
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≤ 2
∫ t

0

∫ 1

0
|Ψx(x, t)|2 dxds+ 2

∫ t

0

∫ 1

0
|Ψx(x, t− s)|2 dxds

≤ 4

γb̂
tE(t) +

4

γb̂

∫ t

0
E(t− s)ds

≤ Ct

(t+ 1)1/(2p−2)
+ C

∫ t

0

ds

(t− s+ 1)1/(2p−2)

≤ C

(t+ 1)(3−2p)/(2p−2)
+

2p− 2
3− 2p

C
[
1− 1

(t+ 1)(3−2p)/(2p−2)

]
≤ Π, p < 3/2,

where Π is a constant independent of t. Hence, we get∫ ∞
0

∫ 1

0

∣∣η̂tx(s)
∣∣2 dxds ≤ Π.

Consequently, we have from (2.45)∫ 1

0

∫ ∞
0

g(s)
∣∣η̂tx(s)

∣∣2 dsdx ≤ Π(p−1)/p
(∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx)1/p

or (∫ ∞
0

∫ 1

0
g(s)

∣∣η̂tx(s)
∣∣2 dxds)p ≤ C ∫ ∞

0

∫ 1

0
gp(s)

∣∣η̂tx(s)
∣∣2 dxds. (2.46)

Similarly to (2.42), we obtain

Ep(t) ≤ C

∫ 1

0
(φ2
t + Ψ2

t + |φx + Ψ|2 + Ψ2
x + θ2

t + θ2
x)dx

+C
[ ∫ 1

0

∫ ∞
0

g(s)
∣∣η̂tx(s)

∣∣2 dsdx]p (2.47)

≤ C

∫ 1

0
(φ2
t + Ψ2

t + |φx + Ψ|2 + Ψ2
x + θ2

t + θ2
x)dx

+C
∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx.
A combination of (2.39), (2.40), and (2.47) yields

L′(t) ≤ −cEp(t) ≤ −cLp(t). (2.48)

A simple integration of (2.48) gives

L(t) ≤ C

(t+ 1)1/(p−1)
. (2.49)
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Again, use of (2.40) leads to (2.8). This completes the proof of Theorem 2.1.

3. Polynomial decay ρ1
K 6=

ρ2
b

In this section, we show that in the case of different wave-speed propaga-
tion (ρ1K 6=

ρ2
b ), the solution energy E(t) decays at a polynomial rate even if

the relaxation function g decays exponentially provided that the initial data
are regular enough. Let’s define the second-order energy by

E2(t) = E1(φt,Ψt, θt, η̂
t
t), (3.1)

where E1 is given in (2.5).
Theorem 3.1 Suppose that

ρ1

K
6= ρ2

b
(3.2)

and let

φ0,Ψ0, θ0 ∈ H2(0, 1) ∩H1
0 (0, 1), η̂t0 ∈ L2

g(R+, H2(0, 1) ∩H1
0 (0, 1)),

φ1,Ψ1, θ1 ∈ H1
0 (0, 1). (3.3)

Then there exists a positive constants C, such that, for all t ≥ 0,

E(t) ≤ Ct−1/(2p−1), p ≥ 1. (3.4)

To prove this result, we need two lemmas.
Lemma 3.2. Suppose that (3.3) holds and let (φ,Ψ, θ, η̂t) be a solution of
(2.1)− (2.4). Then we have

dE2(t)
dt

= −βk
∫ 1

0
θ2
ttxdx+

γ

2

∫ 1

0

∫ ∞
0

g
′
(s)
∣∣η̂ttx(s)

∣∣2 dsdx ≤ 0. (3.5)

Proof. We differentiate equations (2.1) with respect to time and then mul-
tiply by γφtt, γΨtt, and βθtt respectively. By integrating over (0, 1) and
summing up, as in Lemma 2.2, we obtain (3.5).
Lemma 3.3. Suppose that (3.2), (3.3) hold and let (φ,Ψ, θ, η̂t) be a solution
of (2.1)− (2.4). Then, for ε3 > 0, we conclude

dJ(t)
dt

≤
[
φx(bΨx +

∫ ∞
0

g(s)η̂tx(x, s))
]x=1

x=0
− K

2

∫ 1

0
(φx + Ψ)2dx

+ρ2

∫ 1

0
Ψ2
tdx+ ε3

∫ 1

0
φ2
tdx+

β2

2K

∫ 1

0
θ2
txdx (3.6)

−g(0)C(ε3)
∫ 1

0

∫ ∞
0

g′(s)
∣∣η̂tx(s)

∣∣2 dsdx
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+C(ε3)
∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂ttx(s)

∣∣2 dsdx.
Proof. Similarly to the proof of Lemma 2.7, we have

dJ(t)
dt

=
∫ 1

0
(φx + Ψ)

[
b̂Ψxx +

∫ ∞
0

g(s)η̂txx(x, s)ds−K(φx + Ψ)− βθtx
]
dx

+ ρ2

∫ 1

0
Ψ2
tdx+ b̂

∫ 1

0
Ψx(φx + Ψ)xdx (3.7)

+ (
ρ1b̂

K
− ρ2)

∫ 1

0
Ψtxφtdx+

ρ1

K

∫ 1

0
φt(t)

∫ ∞
0

g(s)(Ψt − η̂ts)x(s)dsdx

+
∫ 1

0
(φx + Ψ)x

∫ ∞
0

g(s)η̂tx(s)dsdx.

Since ρ1
K 6=

ρ2
b we then have to handle the term

∫ 1
0 Ψtxφtdx. For this, we use

the idea of [9] to obtain∫ 1

0
Ψtxφtdx =

1
g0

∫ 1

0

(∫ ∞
0

g(s)η̂ttx(s)ds
)
φtdx (3.8)

− 1
g0

∫ 1

0

(∫ ∞
0

g′(s)η̂tx(s)ds
)
φtdx,

where g0 =
∫∞
0 g(s)ds. Therefore, using Young’s inequality and (2.11), we

estimate the terms of (3.8) as follows:

1
g0

(
ρ1b̂

K
− ρ2)

∫ 1

0

(∫ ∞
0

g(s)η̂ttx(s)ds
)
φtdx (3.9)

≤ ε3
2

∫ 1

0
φ2
tdx+ C(ε3)

∫ 1

0

∫ ∞
0

gp(s)|η̂ttx(s)|2dsdx

and

1
g0

(
ρ1b̂

K
− ρ2)

∫ 1

0

(∫ ∞
0

g′(s)η̂tx(s)ds
)
φtdx (3.10)

≤ ε3
2

∫ 1

0
φ2
tdx− g(0)C(ε3)

∫ 1

0

∫ ∞
0

g
′
(s)|η̂tx(s)|2dsdx.

By inserting (3.9) and (3.10) into (3.8) and taking into account the estimates
of Lemma 2.7, the desired result (3.6) follows.
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Proof of Theorem 3.1. To finalize the proof of Theorem 3.1, we define
the Lyapunov functional L as follows:

L(t) := N [E1(t) + E2(t)] +N1I1 +N2I2 + J(t) +
ε3
K

∫ 1

0
ρ1qφtφxdx

+
1

4ε3

∫ 1

0
ρ2q(x)Ψt(̂bΨx +

∫ ∞
0

g(s)η̂tx(s)ds)dx+ µK(t) + Θ(t). (3.11)

Consequently, by taking the time derivative of L(t), we obtain

d

dt
L(t) ≤ − [Nβk − C1]

∫ 1

0
θ2
txdx+ Λ1

∫ 1

0
Ψ2
xdx+ Λ2

∫ 1

0
φ2
tdx

+Λ3

∫ 1

0
Ψ2
tdx+ Λ4

∫ 1

0
(φx + Ψ)2dx

+
[
N
γ

2
− C2

] ∫ 1

0

∫ ∞
0

g′(s)
∣∣η̂tx(s)

∣∣2 dsdx− δ ∫ 1

0
θ2
xdx

+(ρ3 +
γ2

4ε2
)
∫ 1

0
θ2
t dx+ C3

∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx
+C(ε3)

∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂ttx(s)

∣∣2 dsdx (3.12)

−Nβk
∫ 1

0
θ2
ttxdx+N

γ

2

∫ 1

0

∫ ∞
0

g
′
(s)
∣∣η̂ttx(s)

∣∣2 dsdx,
where

Λ2 = N1ε1ρ1 + 2ε3 +
2ρ1ε3
K
− µρ1.

Choosing the constants carefully as in section 2, it is easy to see that, for
σ2 > 0, we have

d

dt
L(t) ≤ −σ2

[ ∫ 1

0
(θ2
t + θ2

x + Ψ2
x + Ψ2

t + φ2
t + (φx + Ψ)2)dx (3.13)

+
∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂tx(s)

∣∣2 dsdx+
∫ 1

0

∫ ∞
0

gp(s)
∣∣η̂ttx(s)

∣∣2 dsdx].
Moreover, we can choose N so large that L(t) ≥ 0.

We distinguish two cases:
Case 1. p = 1. It is not hard to see that

d

dt
L(t) ≤ −αE(t). (3.14)
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Direct integration of (3.14) gives

α

∫ t

0
E(s)ds ≤ L(0)− L(t) ≤ L(0), ∀t ≥ 0. (3.15)

By using (3.11), one can find σ3 > 0, such that

L(0) ≤ σ3(E1(0) + E2(0)), ∀t ≥ 0. (3.16)

Hence (3.15) and (3.16) imply∫ t

0
E(s)ds ≤ C(E1(0) + E2(0)), ∀t ≥ 0. (3.17)

By noting that
d

dt
(tE(t)) = E(t) + t

d

dt
E(t) ≤ E(t),

a simple integration leads to

tE(t) ≤
∫ t

0
E(s)ds ≤ C(E1(0) + E2(0)), ∀t ≥ 0.

Consequently, we get

E(t) ≤ C

t
(E1(0) + E2(0)), ∀t ≥ 0.

Case 2. p > 1. By using (2.43), we obtain

dL
dt
≤ −cE2p−1(t)

which implies∫ t

0
E2p−1(s)ds ≤ c(L(0)− L(t)) ≤ cL(0), ∀t ≥ 0. (3.18)

On the other hand, we have

d

dt
(tE2p−1(t)) = E2p−1(t) + (2p− 1)tE2p−2 d

dt
E(t) ≤ E2p−1(t). (3.19)

Similar calculations, using (3.16), (3.18), and (3.19), yield

E(t) ≤ Ct−1/(2p−1), ∀t ≥ 0.

This completes the proof of Theorem 3.1.
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