
Energy-Delay Tradeoffs in Smartphone Applications∗

Moo-Ryong Ra† Jeongyeup Paek† Abhishek B. Sharma†

Ramesh Govindan† Martin H. Krieger∗ Michael J. Neely⋆

Computer Science Dept.† School of Policy, Planning, and Development∗ Electrical Engineering Dept.⋆

University of Southern California, Los Angeles, CA, USA
{mra, jpaek, absharma, ramesh, krieger, mjneely} @ usc.edu

ABSTRACT

Many applications are enabled by the ability to capture videos on
a smartphone and to have these videos uploaded to an Internet-
connected server. This capability requires the transfer of large vol-
umes of data from the phone to the infrastructure. Smartphones
have multiple wireless interfaces – 3G/EDGE and WiFi – for data
transfer, but there is considerable variability in the availability and
achievable data transfer rate for these networks. Moreover, the en-
ergy costs for transmitting a given amount of data on these wireless
interfaces can differ by an order of magnitude. On the other hand,
many of these applications are often naturally delay-tolerant, so
that it is possible to delay data transfers until a lower-energy WiFi
connection becomes available. In this paper, we present a prin-
cipled approach for designing an optimal online algorithm for this
energy-delay tradeoff using the Lyapunov optimization framework.
Our algorithm, called SALSA, can automatically adapt to channel
conditions and requires only local information to decide whether
and when to defer a transmission. We evaluate SALSA using real-
world traces as well as experiments using a prototype implementa-
tion on a modern smartphone. Our results show that SALSA can
be tuned to achieve a broad spectrum of energy-delay tradeoffs, is
closer to an empirically-determined optimal than any of the alter-
natives we compare it to, and, can save 10-40% of battery capacity
for some workloads.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Design Studies—Energy Manage-

ment on Smartphones

∗This research was sponsored by the USC/CSULB METRANS Trans-
portation Center and by the Army Research Laboratory under Cooperative
Agreement Number W911NF-09-2-0053. The views and conclusions con-
tained in this document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or implied, of
the METRANS center, the Army Research Laboratory or the U.S. Gov-
ernment. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation
hereon. In addition, the first author, Moo-Ryong Ra, was supported by An-
nenberg Graduate Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’10, June 15–18, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-985-5/10/06 ...$10.00.

Figure 1: Urban Tomography System

General Terms

Algorithms, Design, Experimentation, Measurement, Theory, Per-
formance

Keywords

WiFi, Interface Selection, Smartphone, Lyapunov Optimization

1. INTRODUCTION
As video-enabled smartphones become more prevalent, many

new and interesting applications will be enabled. Our Urban To-
mography system [25, 13] is a good example. It allows a user
to capture video clips, and then automatically uploads them in the
background to a server. The system has been operational for over
a year and has found several, qualitatively different, uses. A team
of security officials, equipped with smartphones, has been using it
for surveillance at a large transportation hub in Los Angeles. The
team is able to visually document parts of the facility not covered
by fixed cameras, is able to provide in situ views of developing sit-
uations, and, because the videos are automatically uploaded to a
server, the team’s supervisors are able to accurately assess a devel-
oping situation. A company that specializes in behavior analysis
of developmental disabilities in children has also been piloting the
system. Their mobile childcare specialists visit area schools, and
record the behavior of children for analysis by parents and medical
experts. A professor of public planning and her students have used
our system to document construction in post-Katrina Mississippi,
with the goal of evaluating zoning regulations and revising existing
ordinances.

These, and other, users have generated a corpus of over 5000

255

EDGE

3G

200 KB/s

WiFi

video 2

arrives 50 KB/s

video 1

arrives

arrives

40 KB/s

50 KB/s

10 KB/s

Minim m dela algorithm Data o er EDGEMinimum delay algorithm:

Total energy= 246 J, Total delay= 246 s

Data over EDGE

Data over 3G

Data over WiFi

Always use WiFi:

Total energy = 95 J, Total delay = 305 s

Energy optimal:

Total energy = 50 J, Total delay = 320 sTotal energy 50 J, Total delay 320 s

Figure 2: Example

videos. Figure 1 presents a screenshot of the system’s Web in-
terface, showing some user-generated video-clips from our users.
Our users report that battery lifetime is a critical usability issue,
and video uploads use a significant fraction of the energy in our
system. This paper explores robust methods for reducing this cost.
Recent smartphones have multiple wireless interfaces – 3G/EDGE

(Enhanced GPRS) and WiFi – that can be used for data transfer.
These two radios have widely different characteristics. First, their
nominal data rates differ significantly (from hundreds of Kbps for
EDGE, to a few Mbps for 3G, to ten or more Mbps for WiFi). The
achievable data rates for these radios depends upon the environ-
ment, can vary widely, and are sometimes far less than the nominal
values. Second, their energy-efficiency also differs by more than
an order of magnitude [4, 6]. While the power consumption on the
two kinds of radios can be comparable, the energy usage for trans-
mitting a fixed amount of data can differ an order of magnitude or
more because the achievable data rates on these interfaces differ
significantly. Finally, the availability characteristics of these two
kinds of networks can vary significantly. At least as of this writing,
the penetration of some form of cellular availability (EDGE or 3G)
is significantly higher than WiFi, on average. A similar observa-
tion has been made in [22] where the authors report 99% and 46%
experienced availability, respectively, in their traces for EDGE and
WiFi. Thus, uploading or downloading large data items using WiFi
can be more energy-efficient than using the cellular radio, but WiFi
may not always be available.
Fortunately, many uses of video capture are naturally delay-tolerant,

to differing degrees, so that it is possible to delay data transfers un-
til a lower-energy WiFi connection becomes available. In general,
our users would like captured videos to appear on the server “as
quickly as possible” (so that they, or their colleagues or supervisors,
can quickly review the captured video), and are willing to tolerate
some delay in upload in exchange for high-quality video capture
and extended phone lifetime. However, different users have dif-
ferent delay tolerances: surveillance experts can be, depending on
the situation being monitored, less tolerant of delay than behavioral
analysts or public policy experts.
This paper explores this energy-delay trade-off in delay-tolerant,

but data-intensive, smartphone applications. The example in Fig-
ure 1 illustrates this trade-off. The topmost plot in the figure de-
picts a scenario in an urban environment where the availability and
the achievable data transfer rate over three different wireless net-
works – EDGE, 3G, and WiFi – varies with time (each tick on the
x-axis marks a 30 seconds interval). In this example, EDGE is al-
ways available but can only support 10 KB/s data rate. WiFi APs

are available over 3 short time periods and provide 200 KB/s data
transfer rate in two of those periods but only 50 KB/s in the other.
Finally, 3G is available for the similar duration of time as WiFi but
at different times, and provides a lower data rate (40 KB/s). Ap-
plication data arrives at time t = 0 and t = 300s as video files with
size equal to 5 MB each. Suppose that the power consumption of
the 3G/EDGE and the WiFi interface on the smartphone is 1W (this
roughly matches our measurements on the Nokia N95 smartphone).

In Figure 1, we depict the data transmission decisions of three
different data upload decision strategies, and their performance in
terms of total energy consumption on the smartphone and the delay
in uploading the data. Whenever data is available for upload, the
Minimum-delay strategy selects the link with the fastest data trans-
fer rate whereas the Always-use-WiFi strategy uploads data using
only WiFi APs. For comparison, we also show the Energy-Optimal
decision strategy that would result in minimum energy consump-
tion in this scenario. We can see from Figure 1 that the Minimum-

delay algorithm achieves the smallest delay but consumes (almost)
2.5 and 5 times more energy than the Always-use-WiFi and the
Energy-optimal strategies, respectively. Hence, in this scenario,
delaying data upload to avoid using 3G/EDGE networks leads to
significant energy savings at the expense of 1-1.5 minutes of addi-
tional delay. However, reducing the energy consumed in data trans-
fer is not simply a matter of choosing WiFi over 3G/EDGE. The
Energy-optimal strategy consumes only half as much as energy as
the Always-use-WiFi strategy by not using the (poor quality) WiFi
AP with 50 KB/s rate at the expense of only slightly higher delay.

The previous example illustrates several decisions involved in
managing data intensive and delay-tolerant smartphone applica-
tions in an energy-efficient manner. How long should the system
wait before using the energy expensive but nearly ubiquitous cellu-
lar network? If several WiFi APs are available, which AP should
it choose? How can the system estimate the quality of a new WiFi
AP? At their core, all these decisions involve an energy-delay trade-
off.

The problem we consider in this paper is the design of an algo-
rithm for making this energy-delay tradeoff. More precisely, the
problem can be formulated as a link selection problem (§2): given
a set of available links (cellular, WiFi access points), determine
whether to use any of the available links to transfer data (and, if

so, which), or to defer a transmission in anticipation of a lower

energy link becoming available in the future, without increasing

delay indefinitely. Because it trades off delay for energy, the link
selection problem can be naturally formulated using an optimiza-
tion framework.

Contributions. In this paper, we present a principled approach
for designing an online algorithm for this energy-delay tradeoff us-
ing the Lyapunov optimization framework [11, 16]. We formulate
the link selection problem as an optimization formulation which
minimizes the total energy expenditure subject to keeping the av-

erage queue length finite. The Lyapunov optimization framework
enables us to design a control algorithm, called SALSA (Stable and
Adaptive Link Selection Algorithm), that is guaranteed to achieve
near-optimal power consumption while keeping the average queue
finite (§3). Specifically, we show that, in theory, SALSA can achieve
power consumption arbitrarily close to the optimal. To our knowl-
edge, prior work has not explored this link selection problem, and
our use of the Lyapunov framework for solving this problem is also
novel (§6).

Our second contribution is an exploration of two issues that arise
in the practical implementation of SALSA. First, although control
algorithms based on the Lyapunov framework have a single param-
eter V , the theory does not give any guidance on how to set that

256

parameter V . We design a simple but effective heuristic for a time-
varying V , which allows users to tune the energy-delay tradeoff
across a broad spectrum. Second, SALSA requires an estimate of
the potentially achievable transmission rate on available link, in or-
der to make its control decision. We devise a hybrid online-offline
estimation mechanism that learns link rates with use, but uses an
empirically derived mapping between an RSSI reading and the av-
erage achieved transfer rate during the learning phase.
Our third contribution is an extensive trace-driven evaluation of

SALSA using video arrivals from users of our Urban Tomogra-
phy system and link arrivals obtained from three different locations
in the Los Angeles area. Our trace-based simulations show that
SALSA, which makes its transmission decisions based on three
factors, transmission energy, the volume of backlogged data, and
the link quality is significantly better than other alternatives that do
not incorporate all of these factors in their decisions. Moreover,
SALSA’s energy-delay tradeoff can be tuned across a wide spec-
trum using a single parameter α . Finally, SALSA can save between
10 and 40% of the total energy capacity of a smartphone battery,
relative to a scheme that does not tradeoff increased delay, on many
of our video traces.
Finally, we validate our trace-based simulations using extensive

experiments on a SALSA implementation as part of a video transfer
application on the Nokia N95 phones. Our experimental results are
strikingly consistent with our trace-based results, suggesting that
our conclusions are likely to hold in real-world settings.

2. PROBLEM STATEMENT, MODEL AND

OBJECTIVE
To precisely describe the problem we consider in this paper, let

L[t] denote the set of links visible to a smartphone at time t. A
link denotes a cellular radio connection (EDGE, 3G or other stan-
dard, depending upon the carrier) or a connection to a visible WiFi
access point (AP). In general, current smartphone software does
not provide applications with the ability to select between differ-
ent visible cellular radio networks, or control which cell tower to
associate with, so we do not assume this capability. However, it is
possible, at least on certain smartphone operating systems, to select
a WiFi AP for data transfer. L[t] is time-varying: as the user moves,
the availability of cellular connectivity will vary, as will the set of
visible WiFi APs.
The problem we consider in this paper is the link selection prob-

lem: if at time t, the smartphone has some data to upload, which
link in L[t], if any, should it select for the data transfer so as to con-
serve energy? Our goal in the paper is to design a link selection

algorithm that solves the link selection problem. One important
feature that distinguishes our work from prior work is that the link
selection algorithm can choose to defer the transfer in anticipation

of a future lower energy transmission opportunity. Thus, our link
selection algorithm trades off increased delay for reduced energy.
Because different applications may have different delay tolerances,
our link selection algorithm must provide the ability to control the
trade-off.
The link selection problem can be naturally formulated using one

of many optimization frameworks. The formulation we choose is
based on the following intuition. Suppose that the application data
generated on the smartphone is placed in a queue. For delay toler-
ant applications, it might be acceptable to hold the data in the queue
and defer transmission in anticipation of a lower energy link be-
coming available in the future, but not indefinitely. In other words,
as the queue becomes longer, it may reach a point where it may
no longer be appropriate to trade-off additional delay for energy.

One natural optimization formulation that arises from this intuition
is to minimize the total energy expenditure subject to keeping the

average queue length finite.
It is this formulation we adopt in the paper, and we introduce

a model and associated notation to formally state the optimization
objective and constraint. Our model provides a framework for the
design and analysis of our online interface selection algorithm, dis-
cussed in §3. For ease of exposition of the model, we assume that
time is slotted; our model and algorithm can easily be generalized
to the continuous time case (indeed, our implementation, described
in §5, assumes continuous time).

Let A[t] represent the size of video data in bits generated during
time slot t. A[t] represents the arrival process, and we model it as
a discrete random variable. We denote by P[t] the power consump-
tion due to data transmission during the t-th time slot. P[t] is zero if
the link selection algorithm chooses to defer transmissions during
this time slot. If the algorithm chooses a cellular link, P[t] is PC,
and if it chooses a WiFi link, P[t] is PW . More generally, the frame-
work we discuss below is capable of incorporating transmit power
control, but since smartphones do not support that capability, we
have not incorporated it.

Let µ [t] denote the amount of data transferred during timeslot t.
This value depends on several factors. First, µ [t] > 0 only if our
interface selection algorithm decides to transmit data during slot t;
it is zero otherwise. If µ[t] > 0, then it also depends on the fol-
lowing factors: (i) the quality of the link selected for data transfer,
(ii) the transmit power, and (iii) the amount of data available for
transmission.

As we have discussed above, video data generated for uploads
are queued awaiting transmission. LetU [t] denote the queue back-
log (number of bits in queue) at the beginning of timeslot t. For
a link l ∈ L[t], let Sl [t] denote the quality of the wireless link. We
model Sl [t] as a random variable that takes values from a finite set
S according to probability distribution πs for all t. We model µ [t]
as the random output of a function as defined next.

µ [t] △
=C(I[t], l,Sl [t],U [t],P[t]) (1)

where I[t] is an indicator random variable that is equal to 1 if the
smartphone decides to transmit data during slot t and 0 otherwise.
If I[t] = 0, the smartphone does not transmit during slot t (regard-
less of the other inputs l, Sl [t],U [t], etc.). l denotes the link selected
for transmission and Sl [t] denotes the quality of link l during slot t.
SinceU [t] denotes the queue backlog at the beginning of slot t, we
have µ [t] ≤U [t] always. P[t] denotes the transmit power.

Over time, the queue backlog evolves as follows:

U [t+1] =U [t]−µ [t]+A[t] (2)

where µ [t] (defined in (1)) is the amount of data transferred during
timeslot t, and A[t] is the application data added to the queue during
slot t.

Given this notation, we are now ready to formally state the queu-
ing constraint we impose on our link selection algorithm, called
stability. We define the queueU [t] to be stable if:

U = limsup
t→∞

1

t

t−1

∑
τ=0

E{U [τ]} < ∞ (3)

The stability constraint ensures that the average queue length is
finite.

Under this constraint, we seek to design a link selection algo-
rithm that minimizes the time average transmit power expenditure,

257

defined as:

P = limsup
t→∞

1

t

t−1

∑
τ=0

E{P[τ]} < ∞ (4)

where P[τ] ∈ {0,PC,PW } depending on the link selected for trans-
mission during slot τ .

3. THE LINK SELECTION ALGORITHM
In this section, we describe our link selection algorithm. This al-

gorithm is designed using the Lyapunov optimization framework [11,
16], and has the property that it is guaranteed to be stable, and can
provide near-optimal energy consumption even with varying chan-
nel conditions, under some idealized assumptions. Accordingly,
we call our algorithm SALSA (Stable and Adaptive Link Selection
Algorithm). We first present SALSA, briefly describe its design us-
ing the Lyapunov framework and state its performance properties,
and finally discuss its practical application to a real-world system.

3.1 SALSA
SALSA decides, every timeslot t, whether to transmit data from

its queue, and which (if any) of its available links to use. To do
this, it observes the amount of new application data A[t] and its
current queue backlog U [t]. For a parameter V > 0 (we describe
later how to select this parameter), it chooses a link l̃[t] for data
transfer during timeslot t as follows:

l̃[t] = argmax
l ∈ L[t]∪ /0

(U [t]×E{µ [t] | l,Sl [t],Pl [t]}−V ×Pl [t]) (5)

where l̃[t] = /0 represents both the cases – when no link is available
or when the smartphone chooses not to use any of the available
links. E{µ [t] | l,Sl [t],Pl [t]} is an estimate of the transfer rate that
can be achieved on link l, given the current channel condition Sl [t]
and the transmit power Pl [t]. In a later section, we discuss how to
estimate this value.
To understand the intuition behind this control decision, consider

a specific WiFi link l such that Pl [t] = PW . IfV is fixed, this control
decision chooses link l only when either the queue backlog U [t]
is high or the available rate on link l is high. Thus, the algorithm
implicitly queues data for “long enough” or sends if it sees a good
quality link. When PW is higher, the bar for transmission is au-
tomatically raised. Of course, the performance of this algorithm
critically depends upon the choice of V , and we discuss this later.
SALSA may decide not to use any of the available links if and only
ifU [t]×E{µl [t] | l,Sl [t],U [t],Pl [t]}−V ×Pl [t] < 0 for all l ∈ L[t].
Such a situation will typically arise if the data transfer rate to all
the available links is small, either because the nominal rate of the
link is small, or the effective transfer rate is small as a result of poor
channel conditions.

3.2 Theoretical Properties of SALSA
We have formally derived SALSA’s control decision (5) using

the Lyapunov optimization framework [11, 16]. This framework
enables the inclusion of optimization objectives – energy expendi-
ture, fairness, throughput maximization etc. – while designing an
algorithm to ensure queue stability using Lyapunov drift analysis.
Lyapunov drift is a well-known technique for designing algorithms
that ensure queue stability. The technique involves defining a non-
negative, scalar function, called a Lyapunov function, whose value
during timeslot t depends on the queue backlogU [t]. The Lyapunov
drift is defined as the expected change in the value of the Lyapunov
function from one timeslot to the next. The Lyapunov optimiza-
tion framework guarantees that control algorithms that minimize

the Lyapunov drift over time will stabilize the queue(s) and achieve
near-optimal performance for the chosen optimization objective –
for SALSA, power consumption.

We have discussed the derivation in Appendix A. Our derivation
is similar to that of other optimization formulations that use the
framework [16], but, to our knowledge, we are the first to apply
this framework to the link selection problem defined in Section 2.

It is possible to derive an analytical bound on the time average
power consumption achieved by SALSA compared to an optimum

value. We state the following theorem, and prove it in Appendix B:

Theorem 1 Suppose the arrival process A[t] and the channel states
are i.i.d. across timeslots with distributions pA and πs, respectively.
We assume that the data arrival rate λ is strictly within the network
capacity region. For any control parameterV > 0, SALSA achieves
a time average power consumption and queue backlog satisfying
the following constraints:

P = limsup
t→∞

1

t

t−1

∑
τ=0

E{P[τ]} ≤ P∗ +
B

V
(6)

U = limsup
t→∞

1

t

t−1

∑
τ=0

E{U [τ]} ≤
B+VP∗

ε
(7)

where ε > 0 is a constant meaning the distance between arrival
pattern and the capacity region boundary, P∗ is a theoretical lower
bound on the time average power consumption, and B is an upper
bound on the sum of the variances of A[t] and µ [t] (each of which
is assumed to have finite variance).

The theorem shows that SALSA can achieve an average power
consumption P arbitrarily close to P∗ (with a corresponding delay
trade-off) while maintaining queue stability. However, this reduc-
tion in power consumption is achieved at the expense of a larger de-
lay because the average queue backlogU grows linearly in V . This
[O(1/V),O(V)] trade-off between power consumption and delay is
a fundamental aspect of all control algorithms designed using the
Lyapunov optimization techniques [11]. Moreover, this trade-off
does not assume prior knowledge of the distributions of the stochas-
tic processes A[t] (data arrival) and Sl [t] (link quality), merely that
the variances of the arrival process and the transfer rates are finite.

3.3 Practical Considerations for SALSA
The SALSA algorithm discussed above is idealized in several

respects. It uses fixed timeslots, assumes that the available rate on
a link µl [t] is known a priori, and does not specify how to select
the parameter V . When implementing it in practice, it is easy to
change the fixed timeslot assumption and invoke the control deci-
sion whenever data is inserted into the queue or a new link becomes
visible. In this section, we discuss how to deal with the other ide-
alizations.

Choosing a “good” V . In general, the Lyapunov optimization
framework is elegant because its control algorithms depend on a
single parameter V . However, the framework itself does not give
any guidance on parameter selection. Intuitively, V can be thought
of as a threshold on the queue backlog beyond which the control
algorithm decides to transmit ((5)), so V controls the energy-delay
tradeoff. Most existing work in this area chooses not to address the
parameter selection issue explicitly, and simply explores the sensi-
tivity of their results to the choice of parameters.

However, since we are interested in implementing a system based
on this framework, we need to explicitly address parameter selec-
tion. One obvious choice is to estimate the parameter V online: as
the system runs, we can adaptV (e.g., using a binary search) to find
a setting where the energy delay trade-off is optimal. This can take

258

a long time to converge, since at each step we would have to have
run the system long enough for the average queue length to have
converged.
We design a technique to determine the value ofV automatically

with two goals in mind. Our first goal is to pick a V value that
achieves good power consumption vs. delay trade-off. The second
one is to enable some degree of explicit control over the energy-
delay tradeoff — recall from §1 that different video capture appli-
cations have different delay tolerances.
To identify a good V value, observe that the upper bound on the

time average power consumption from (6) is proportional to 1/V .
Based on this, we make a simplifying assumption that the actual
time averaged power consumption P ≈ P∗ +B/V ((6)). Since P∗

is a constant, P is a hyperbolic function that exhibits diminishing
returns, beyond a point, in energy reduction with increasing V .
Thus, a good operating point would be to pick a V value where a

unit increase in V yields a very small reduction in P. At this point,
the energy gains may not be worth the delay increase resulting from
increasing V (since delay is proportional to V). More formally, we
can choose an α > 0 that satisfies the following equation (α is the
slope of P curve):

d(P∗ +B/V)

dV
=

−B

V 2
= −α

=⇒ V =

√

B

α
(8)

In setting V according to (8), we need to determine the value of the
constant B, which involves estimating the variance of the arrival
process A[t], and the transmission process µ [t]. SALSA computes
B based on all the A[t] and µ [t] values observed over some large
time window. It initializesV = 0 and then updates its value accord-
ing to (8) whenever the estimate for B is updated.
To achieve our second goal, we adapt V to the instantaneous de-

lay in data transfer using an application-specified parameter. Such
a mechanism enables a smartphone application to express its delay-
tolerance. Rather than use a fixed V during each timeslot, SALSA
modifies (8) as follows:

V [t] =

√

B[t]

α × (D[t]+1)α
(9)

whereD[t] denotes the instantaneous delay in data transfer (i.e., the
time that the bit at the head of the queue has been resident in the
queue) measured at the beginning of timeslot t. Note that the upper
bound B now becomes B[t]. However, the intuition is simple: as
data stays longer in the queue, V (t) decays (at a rate determined by
α , which can be controlled by the application) until it becomes low
enough to trigger a transmission by (5). Hence, SALSA reacts to an
increase in instantaneous delay by trying to transmit data whenever
an access point is available. While this reduces the delay in data
transfer, it can result in higher power consumption as SALSA may
select an access point for data transfer that is not energy-efficient
instead of delaying transmissions till an access point with high data
transfer rate appears. Thus, applications that can tolerate delay and
would prefer to maximize energy savings can set α close to zero,
while less delay-tolerant applications can set α to be larger at the
expense of energy usage (we explore the behavior of the algorithm
to different α values in §4).
Note that the parameter α appears twice in the denominator in

(9) – as an multiplicative term and also as the exponent of (D[t]+
1). We need α as a multiplicative term in order to get a “good”
V value when D[t] = 0 (in which case (9) reduces to (8)). Instead
of using a different parameter β as the exponent of (D[t] + 1) in

(9), we chose to use α in order to have only one free parameter
in SALSA. As we show in §4, a single parameter is sufficient to
explore a range of delay-tolerances.

The bounds on average power consumption and average queue
size in (6)-(7) hold when V [t] = V for all t. For the case of time
varying V values, it is difficult to derive similar bounds. However,
we can easily see that, compared to the case of a fixed V , SALSA
with time-varying V values achieves smaller average queue back-
log (hence, smaller average delay) at the expense of higher average
power consumption. That is because the instantaneous-delay based
term triggers transmissions earlier in SALSA with time-varying V
than in SALSA with fixed V , at the possible cost of increased en-
ergy incurred by transmitting on a less-than-optimal link.

Rate estimation. In practice, the transfer rate on link l during slot
t, µl [t], may not be known. SALSA uses a combination of offline
and online estimation.

In online rate estimation, as the smartphone uses each link l,
SALSA computes µl [t] as the average rate achieved over the last,
say, 10 uses of link l for data transfer. This windowed average,
because it is specific to a link, can be accurate but would require
several uses of a link before a reliable estimate could be found.

Until a reliable estimate is available, SALSA uses results from an
offline rate estimation technique that samples several access points
to obtain a distribution of achievable rates. There are many ways of
doing this, but the simplest (and the one we use), estimates the dis-
tribution of achievable transfer rates as a function of the Received
Signal Strength Indicator (RSSI) for a given environment. SALSA
simply derives a rate estimate from this distribution for each link,
based on its RSSI. Admittedly, this is a very coarse characteriza-
tion, since data rates are only partially dependent upon RSSI. How-
ever, as we show in this paper, even this rough estimate results in
excellent SALSA performance.

3.4 Extensions
SALSA is also flexible enough to accommodate extensions that

may be desirable for smartphone applications. We now discuss two
such extensions, but have left their evaluation to future work. In
addition to these, SALSA can be extended to accommodate priori-
tized data transmissions, or bounds on average power consumption.
We have omitted a discussion of these for lack of space.

SALSA for download. SALSA can also be extended for link selec-
tion for data downloads. Many applications can live with a delay-
tolerant download capability. Such applications download, in the
background, large volumes of data (e.g., videos, images, maps,
other databases) from one or more Internet-connected servers in
order to provide context for some computation performed on the
phone. A good example is Skyhook’s [24] WPS hybrid positioning
service, which prefetches relevant portions of precomputed hotspot
location database.

To get SALSA to work for such applications, we need to change
the definition of A[t] and U [t]. Specifically, we define A[t] as the
size of the request by an application during timeslot t, and U [t]
as the backlog of content that has not been downloaded yet. In
applying SALSA to the download scenario, we assume that it is
possible to know the size of the content requested by an application
prior to downloading the content. This is certainly feasible for static
content hosted by a server, and for dynamically generated content
for which the server is able to estimate size.

SALSA for peer-assisted uploads. In a peer-assisted upload, data
is opportunistically transferred to a peer smartphone with the ex-
pectation of reducing the latency of upload. In general, peer-assistance
will require the right kinds of incentives for peers to participate.

259

However, for certain cooperative participatory sensing campaigns,
where a group of people with a common objective collectively set
out to gather information in an area, peer-assisted uploads are a vi-
able option to increasing the effective availability of network con-
nectivity.
For the peer-assisted upload case, we can model the connection

to the peer as a link. The important change is that the achievable
rate µl [t] of this link takes into account an estimate of the upload
delay (the time when the peer expects to meet a usable link). When
a smartphone meets a peer, it queries the peer to get an estimate of
µl [t] on the link l between them. The peer computes this quantity
by estimating the time that it is likely to meet the next AP (say tm),
and the achievable rate r to that AP. It advertises µl [t] as

r
tm
, which

is an estimate of the effective data rate that would be observed by
a transfer handed-off to this peer. Recent work [17] suggests that it
might be possible to accurately forecast r, and tm can be estimated
using GPS and trajectory prediction.

4. EVALUATION
In this section, we present our evaluation of SALSA using trace-

driven simulations. We motivate and describe our methodology,
then discuss our results. We have also implemented SALSA on the
Nokia N95 smartphone as part of the Urban Tomography system
(§1): in the next section, we use this implementation to validate
our simulation results.

4.1 Methodology

Overview. In our evaluation of SALSA, we are interested in two
questions: How does SALSA perform over a wide range of scenar-
ios? How does it compare to other plausible link selection algo-
rithms?
The performance of SALSA (or any other algorithm) depends

upon two characteristics: the arrival process A[t], and the time vari-
ation in link quality and availability as defined by µl [t]. To un-
derstand the performance of SALSA over a wide range of arrival
processes and link availability and quality characteristics, we use
trace-driven simulation, with arrival traces derived from users of
our urban tomography system in real-world settings, and link avail-
ability traces generated empirically by carrying a smartphone on a
walk across different environments. We describe the methodology
in detail below.
We also compare SALSA against two baseline algorithms, one

which attempts to minimize delay and the other which always uses
WiFi to conserve energy, as well as two other threshold-based al-
gorithms.
We begin a detailed discussion of the simulator and traces that

we use. Then, we discuss the alternative strategies we use for com-
parison. We conclude this section with a discussion of our metrics.

Simulator Details. We wrote a custom simulator to explore the
performance of SALSA and compare with other algorithms. Our
simulator allows us to explore the impact of different application
data arrival patterns and link availability characteristics on an algo-
rithm’s performance. It also enables us to characterize the effect of
our heuristic for determining the V value and our rate estimation
scheme on SALSA’s performance.
Our simulator takes three different inputs – (1) the power con-

sumption of the different radio interfaces on the smartphone, (2)
the application data arrival patterns, and (3) the link availability. All
our simulation results are for a timeslotted system with 20-second
time slots.
Based on our measurements on the Nokia N95 smartphones, we

set the transmit power consumption of the 3G/EDGE interface and

0 5 10 15 20 25 30 35 40 45
0

50

100

150

Dist. of the number of videos

Arrival Trace

N
u
m

b
e
r

o
f
V

id
e
o
s

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

MBytes

F
ra

c
ti
o
n

Dist. of video sizes(CDF)

Figure 3: Arrival Patterns

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Avg. Rate(KB/s)

F
ra

c
ti
o

n

WiFi

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Avg. Rate(KB/s)

F
ra

c
ti
o

n

3G/EDGE

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Failure(%)

WiFi−Failure

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Failure(%)

3G/EDGE−Failure

USC

Mall

LAX

Figure 4: (CDF) Link availability with failure probability

the WiFi interface to 1.15 W and 1.1 W, respectively. We assume
that interfaces are briefly turned on at the beginning of each times-
lot to check for availability; only the radio selected for the transfer
(if any) is kept on for the duration of the transfer. We ignore the en-
ergy cost of checking for availability (which may include the cost of
scanning for access points): relative to the large volumes of data we
transfer, this cost can be made negligible by tuning the frequency
of scanning, as we show later in this section. Furthermore, all algo-
rithms are more or less equally affected by this simplification, and
since we compare algorithms, we do not expect the relative per-
formance of these algorithms to change significantly if these costs
were taken into account.

Our simulator uses two kinds of traces: an arrival trace and a
link trace.

An arrival trace captures a data arrival pattern, and consists of a
timestamped sequence of video arrivals. We use a total of 42 arrival
patterns (consisting of a total of 935 videos), derived from actual
use of the Urban Tomography system. In that system, users can
create “events” that mark a collection of related videos (usually
representing the documentation of a real-world event, such as a
commencement ceremony, or a business trip). Each arrival trace
is generated from one event. Arrival traces have widely varying
characteristics; for example, Figure 3 shows the distribution in the
number and total size of videos across different traces.

Each link trace is a timestamped sequences of available APs
(3G/EDGE and WiFi) together with data transfer rates. We col-
lected link traces while we were experimenting (at different times
over several months) with our system at several different locations –
the USC campus, a large shopping mall near Los Angeles (Glen-
dale Galleria), and the Los Angeles International Airport (LAX).

260

We collected 38 traces on the USC campus, 24 traces at the Glen-
dale Galleria, and 4 traces at LAX. At these locations, WiFi (specif-
ically 802.11b/g) is available to different extents. On the USC cam-
pus, WiFi is deployed across most of the campus, and is freely
available to registered clients. The Glendale Galleria has a few
open WiFi hotspots. At the LAX airport, we purchased four T-
Mobile hotspot accounts and scripted the login procedure so that
association with those hotspots does not require manual interven-
tion.
Our link traces are collected by walking in the corresponding

environment for an hour or more with a smartphone which peri-
odically scans for APs, records the SSID (or cell tower ID) and the
RSSI value of the available APs, and estimates the data transfer rate
for these APs by uploading test data. The left column in Figure 4
is a CDF of the average transfer rate per 20-second window (the
timescale at which our link selection algorithm works) observed at
different locations. For each trace, we divide entire time duration
into 20-second windows, associate all available APs with the corre-
sponding windows and then compute the time average data transfer
rate per trace. Thus, in close to 20% of the 38 traces collected
on the USC campus, we encountered WiFi APs with average rate
better than 100 KB/s. From these figures, it is clear that the WiFi
environment at our three locations varied widely: the USC campus
has more dense and perhaps faster WiFis compared to LAX and
the Glendale Galleria. On the other hand, the performance of the
3G/EDGE network is roughly the same at all the three locations.
The average transfer rate alone is a little bit misleading, because

often our TCP-based data transfers fail. During our trace collection,
we also record instances of upload failure for each AP. Specifically,
for each trace, we compute the number of failed attempts and divide
it by the total number of data transfer attempts to compute the fail-
ure rate associated with each AP. Figure 4 (right column) shows the
CDF of failure rates for the traces collect at each of three locations.
Note that around 20% of the traces collected at the Glendale Galle-
ria and the LAX have a failure rate of more than 60% for WiFi APs
associated with them! Interestingly, the 3G/EDGE network traces
collected at USC contained higher instances of failures compared
to the traces from the Glendale Galleria and the LAX. Non-trivial
failure rates at these environments implies that it is important to in-
corporate such failures (and the energy cost associated with them)
in our simulations, and we do.
A single simulation run uses one arrival trace and one link trace

as input. Each simulation run lasts until either all the data is up-
loaded from the smartphone or 50,000 slots (equivalent to about
12 days) have elapsed. Overall, we have 2,772 simulation runs for
each algorithm we evaluate (see below).
The failure rate associated with each trace is used to model data

transfer failures in our simulations as follows. For a simulation run
which uses a link trace with an associated failure rate p, we assume
that data transfer failures are i.i.d. Bernoulli random variables with
parameter p. Our failure model provides a simple abstraction to
capture the variability in instantaneous data transfer µ [t] that our
analytical model allows for (refer to (1)).
Finally, depending on the number and quality of links available

in the trace as well as arrival patterns in the arrival trace, the time
needed to upload all the data can be quite large. However, our
longest link trace is close to 3 hours long. In order to complete a
simulation run that is longer than its corresponding link availability
trace, we continuously repeat the trace. In this way, an arrival pat-
tern sees the variability associated with a particular environment,
but repetitively: this methodology allows us to explore longer ar-
rival patterns, while still subjecting uploads to link availabilities
derived from real environments.

Comparison. We compare SALSA’s performance against four dif-
ferent link selection algorithms – MINIMUM-DELAY, WIFI-ONLY,
STATIC-DELAY, and KNOW-WIFI.
The MINIMUM-DELAY algorithm always transfers data when an

AP is available. It never considers the energy cost of using an AP,
and is designed to minimize the amount of time application data is
buffered on the smartphone awaiting transmission.

The WIFI-ONLY algorithm uses only WiFi APs. This algorithm
is motivated by the observation that data transfer using WiFi APs
is much more energy-efficient compared to using the 3G/EDGE
network. Hence, it aims to minimize the energy consumption, and
is oblivious to the delay in data transmission.

The STATIC-DELAY algorithm attempts to achieve an energy vs.
delay trade-off using the following heuristic: it waits for a WiFi AP
to become available for up to a (configurable) period of T timeslots
from the creation time of the corresponding file, and if it encoun-
ters a WiFi AP within this period, it uses it. In the event that it has
not seen any WiFi AP in the past T timeslots, it uses the first link
that becomes available (whether 3G/EDGE or WiFi). Thus, this
algorithm behaves like WIFI-ONLY for up to T timeslots, and then
starts behaving like MINIMUM-DELAY. The parameter T controls
the energy vs. delay trade-off. Ideally, it should depend on an appli-
cation’s delay-tolerance, and the availability of WiFi APs. Without
detailed information about WiFi availability, a big challenge in us-
ing this algorithm is to determine the parameter T .

Finally, the KNOW-WIFI algorithm assumes information about
the availability ofWiFi APs in the future. It is therefore an idealized
algorithm although it may be possible to estimate this availability
as described in [17], or determine it based on user input (for exam-
ple, when a user knows the when she is going to have access to a
good WiFi AP, such as at home, work, or a coffee shop) in advance.
It checks for the availability of a “good” WiFi AP within the next T
timeslots. We define a good WiFi AP as one that has a data trans-
fer rate at least twice the maximum achievable 3G/EDGE rate, ob-
tained from the corresponding link trace. If such an AP exists (i.e.,
the user will encounter it within the next T timeslots), the KNOW-
WIFI algorithm waits until it can use that AP, and then transfers as
much data as possible using it. It then resets the maximum wait
period for a good AP back to T timeslots. In situations where the
KNOW-WIFI algorithm knows that no good AP will appear within
the next T timeslots, it behaves like the MINIMUM-DELAY algo-
rithm, and starts using any available link. Apart from the fact that
this algorithm requires knowledge of WiFi APs available in future,
another practical challenge is determining the right value for T .

Performance metrics. Finally, we analyze the performance of
each algorithm using a novel approach that attempts to character-
ize the macroscopic performance of each algorithm across all our
simulation runs. At the end of each simulation run, we first derive
two metrics for each link selection algorithm: (1) the average en-
ergy consumed per byte (E), and (2) the average delay per byte D.
Consider a VCAPS based application that generates N videos with
size S1, . . . ,SN bytes. Let Ei and Di denote the total energy con-
sumed and the delay, respectively, in transmitting the video of size
Si. We define the average energy consumed per byte, E, and the
(weighted) average delay per byte, D, as follows.

E =
∑N
i=1Ei

∑N
i=1 Si

, D =
∑N
i=1(Di×Si)

∑N
i=1 Si

(10)

Each simulation run results in a point on the E-D plane. The
convex hull of all the points for a given algorithm in the E-D plane
represents its envelope of performance. We present examples of en-

261

velopes and discuss desirable properties in §4.2. In that section, we
also compare the envelopes of performance of different algorithms.
We also use another metric, called dispersion, to characterize

how far off each algorithm is, on average, from an idealized op-
timal. For each pair of arrival trace and link trace, we can com-
pute the minimum achievable energy per byte (Em) and the mini-
mum achievable delay per byte (Dm), if each were separately op-
timized (instead of jointly, as SALSA does). Specifically, Em is
the energy per byte used if all data were transmitted using the
highest rate link in a trace. Similarly, Dm is the delay per byte
incurred using MINIMUM-DELAY, assuming no transmission fail-
ures. For (Em,Dm) pair, we can also obtain for each algorithm,
the Euclidean distance on the normalized E−D plane between the
achieved (E,D) and (Em,Dm). In general, the latter point may not
be achievable by any algorithm that trades-off delay for reduced
energy, but it represents a lower bound. For a given algorithm,
the average distance of each simulation run from the corresponding
“optimal”, across all simulation runs, is defined to be the dispersion
of the algorithm.

4.2 Performance Results

Performance against Baseline Algorithms. We first compare SALSA
against the two baseline algorithms, MINIMUM-DELAY and WIFI-
ONLY. Figure 5 plots the performance of each of these algorithms
on the E-D plane. For SALSA, we use an α of 0.2: we later explore
the performance of SALSA across a range of α values.
As discussed in §4.1, each point on the E-D plane corresponds to

one simulation run. One way of characterizing the overall perfor-
mance of the algorithm is to understand the shape of its envelope:
the convex hull of all the points on the E-D plane. For the class of
algorithms that make an energy delay trade-off, what characterizes
a good envelope? Intuitively, a good algorithm should be capable of
achieving a “good” balance between energy and delay: neither the
delay per byte, nor the energy per byte should be too large. In other
words, the points on the E-D plane should be clustered around the
origin, and the envelope should be compact. We use this intuition
to compare different algorithms throughout this section.
In Figure 5, MINIMUM-DELAY exhibits low average delay but,

its energy performance is spread out over a relatively wide range.
This is expected: MINIMUM-DELAY does not attempt to explicitly
trade-off delay for energy. Moreover, MINIMUM-DELAY does not
take channel capacity into account, so it can incur more transmis-
sion failures and, as a result, more energy. At the other end of
the spectrum, WIFI-ONLY exhibits an average delay spanning the
whole range of D values. WIFI-ONLY’s performance is highly de-
pendent upon the availability of high-quality WiFi APs. In some
of our traces (especially the Glendale one), good WiFi APs are few
and far between, so WIFI-ONLY can incur significantly high delay.
In some traces where there is no usable WiFi, WIFI-ONLY has in-
finite average delay values: these are omitted in the figure. WIFI-
ONLY’s energy performance is also poor: in some of our link traces,
the achievable rate with WiFi varies significantly (Figure 4), and is
sometimes less than the rate of the 3G/EDGE network. By not
discriminating based on channel conditions, WIFI-ONLY can also
exhibit high energy usage.
By contrast, SALSA, which is explicitly designed for finite aver-

age delay (and, more than that, to keep instantaneous delay bounded)
and which takes channel quality into account in its transmission de-
cisions, achieves a much better performance. Compared to WIFI-
ONLY, its envelope is much more compact. Its envelope is also
more compactly clustered around the origin than that of MINIMUM-
DELAY. As we have discussed before, some applications may want
to explicitly control the delay-energy trade-off behavior: in particu-

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

E
n

e
rg

y
 S

a
v
in

g
s
(%

)

Arrival Trace

SALSA w/ α = 0.2

Figure 6: SALSA Energy Savings.

lar, there maybe applications that would like to emulate WIFI-ONLY

or MINIMUM-DELAY. We discuss below how different parameter
settings for SALSA can be used to mimic these algorithms.

The rightmost sub-figure of Figure 5 depicts the dispersion of
these three algorithms. Recall that the dispersion measures the av-
erage distance from an empirically-determined optimal. Before we
describe these results, we briefly describe how dispersion is calcu-
lated. For calculating the distance on the E-D plane, we can use the
absolute values of delay per byte and energy per byte, but the re-
sulting distances then become very sensitive to the choice of units
for delay and energy. To avoid this, we normalize the delay and
energy by assigning a unit of 1 to the 95th-percentile values from
all the simulations for each axis.

The (normalized) dispersion of MINIMUM-DELAY is about twice
that of SALSA, and that of WIFI-ONLY (ignoring the runs where
WIFI-ONLY had infinite delay) is about 3.4 times that of SALSA!
WIFI-ONLY’s performance is, of course, significantly affected by
several large outliers from link traces which had very little WiFi
availability. That SALSA is better than these two algorithms is
not surprising, since they are relatively simple: later, we show that
SALSA outperforms other, more sophisticated, algorithms as well.
What is more interesting is that SALSA’s absolute distance from
the empirical optimal is low (0.343), leaving little room for im-
provement.

We consider the following question: does being a delay-tolerant
actually save significant energy? From Figure 5, we can see, by
considering the energy-per-byte values, that SALSA uses roughly
half the energy per byte of MINIMUM-DELAY. Thus, relative to
the most obvious implementation, SALSA is on average twice as
energy-efficient. But, does this improvement in energy-efficiency
matter in the real world, i.e., are we solving a real problem? To
understand this, we measured the total energy used in Joules, for
each of our arrival traces, both by SALSA and MINIMUM-DELAY.
Then, we computed the ratio of the difference in energy usage to
the overall battery capacity of the Nokia N95. This gives us, for
each arrival trace, the fraction of battery capacity that would have

become available for use by other applications if SALSA were used

instead of MINIMUM-DELAY. Figure 6 plots this fraction for each
arrival trace. For most traces, this number is in the 5-15% range, but
there exist some events where users could have extended their bat-
tery life by 20-40% by using SALSA instead of MINIMUM-DELAY

for uploading their videos. In one extreme case, MINIMUM-DELAY

would have required more than one complete charge of the battery
to upload the corresponding videos, but SALSA could have com-
pleted it without recharging.

This brings up another question: how much does SALSA pay
in delay for these energy savings? Figure 7 plots the average addi-
tional delay incurred by a video when using SALSA overMINIMUM-
DELAY, for each of our arrival traces, averaged over all link traces.

262

Figure 5: MINIMUM-DELAY vs WIFI-ONLY vs SALSA

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

D
e
la

y
 L

o
s
s
(H

o
u
r)

Arrival Trace

SALSA w/ α = 0.2

Figure 7: Additional Delay Incurred by SALSA.

For most videos, this additional delay is on the order of half an
hour, and the worst-case average delay is about 1.5 hours. This
tradeoff is quite encouraging: assuming that, for example, a user’s
smartphone lasts 12 hours, she can get, in most cases, between 30
mins to 90 minutes (5-15% of battery capacity) extra usage of her
smartphone, while giving up an average delay of about 30 minutes
in video upload.

SALSA Performance for different α . In §3.3, we described the
design of a time-varying V parameter that would allow users to ex-
plicitly control energy-delay trade-offs. In this section, we explore
the efficacy of our design by varying α from 0.1 to 2.0 with steps
of 0.1. Beyond α = 2.0, SALSA’s behavior converges to that of
MINIMUM-DELAY; in this range, V values approach zero and with
small values of V , SALSA never defers transmissions.
Figure 8 depicts the results for a subset of the α values. By com-

paring with Figure 5, it is clear that SALSA can span a fairly broad
range in the spectrum of energy delay trade-offs. For very small α ,
SALSA’s envelope is qualitatively similar to that of WIFI-ONLY:
for small α tending toward zero, V is high, setting a high bar (e.g.,
a very good WiFi AP) for SALSA’s transmission decision. As α
increases, the envelope becomes more compact and also flattens out
until, at alpha= 2.0, it starts to resemble MINIMUM-DELAY. Thus,
by varying α we are able to mimic both ends of the energy-delay
tradeoff spectrum, and points in between. However, it is harder
to intuitively understand the direct relationship between α and an
application’s delay tolerance. In future work, we hope to develop
rules of thumb, based on deployment experience in different envi-
ronments, for suggesting α values for our users.
The rightmost sub-figure of Figure 8 reveals a more interesting

behavior. It plots the variation in dispersion as a function of α .
From this, it appears that a value of α ≈ 0.4 is a sweet spot in the
parameter space, having low dispersion. Recall that α serves two
functions: one is to choose a good point of diminishing returns
in the energy-delay tradeoff, and the other is to control the delay

0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

D
is

p
e

rs
io

n

USC

Glendale

LAX

Figure 9: Performance across different environments.

tolerance. The sweet spot value strikes the best balance for these
objectives.

Finally, Figure 9 depicts the difference in SALSA’s performance
across different locations. While the sweet spot behavior is also
consistent across locations, the absolute values of the dispersion are
much higher in environments with sparse WiFi availability, such as
the Glendale mall.

Comparison with threshold-based algorithms. We now compare
SALSA’s performance against that of STATIC-DELAY and KNOW-
WIFI. This comparison presents a methodological difficulty: both
STATIC-DELAY and KNOW-WIFI have a time threshold parameter
T , but its relationship to α is not clear. Thus, it would be misleading
to compare a version of SALSA with a specific α and STATIC-
DELAY or KNOW-WIFI with a specific value of T .
So, we adopted a slightly different methodology. Empirically,

we found, for each algorithm, the most agressive (in terms of trans-
mission) and least aggressive parameters. We determined these
ends of the parameter space by manually trying different large and
small values. For SALSA, for example, α = 2 is the most aggres-
sive value; as we have discussed above, the system is not sensitive
to choices of α beyond this. Its least aggressive parameter is a value
close to zero; we chose 0.1. For STATIC-DELAY and KNOW-WIFI,
the most agressive parameter was selected as 10 mins and the least
aggressive as 16 hours. Between these parameter values, we se-
lected 10 other parameters, and then executed each simulation run
for these 12 parameters, for all three algorithms. For each algo-
rithm, we plotted all simulation runs (across all parameter values)
on the E-D plane. The resulting envelope captures the performance
of the algorithm across a large range of the parameter setting, and,
is likely a good indicator of the macroscopic performance of each
algorithm.

Figure 10 plots these envelopes. SALSA’s envelope is much
more compact than that of the other two algorithms. It uses less en-
ergy and incurs less delay in general, and it has smaller and fewer

263

Figure 8: SALSA envelopes for different α

Figure 10: STATIC-DELAY vs KNOW-WIFI vs SALSA

of outliers compared to other two algorithms. STATIC-DELAY per-
forms the worst, because it relies on a simple assumption that WiFi
is more energy-efficient than 3G/EDGE. However, that is not al-
ways the case in our traces, and STATIC-DELAY sometimes pays a
delay penalty waiting for WiFi only to find that the quality of the
WiFi link is not significantly better than the 3G/EDGE network.
Interestingly, SALSA is also able to outperform an algorithm

that has knowledge of upcoming good WiFi links. Clearly, KNOW-
WIFI is careful in that it waits only for good WiFi connections, un-
like STATIC-DELAY which indiscriminately uses the next WiFi link
to come along. So why does KNOW-WIFI not perform as well as
SALSA? The answer is that KNOW-WIFI does not take the queue

backlog into account. Simply knowing that a good WiFi link will
come along is not helpful, without knowing if that WiFi will be
available long enough to be used to upload the queue backlog!
The dispersion comparison, in Figure 10, also bears this out.

STATIC-DELAY has a dispersion 55% higher than SALSA, while
KNOW-WIFI’s dispersion is about 27% higher.

Summary of Results. In summary, our comparison with a pro-
gression of heuristics suggests the following. The comparison with
MINIMUM-DELAY suggests that significant energy benefits can be
obtained by judiciously delaying transmissions. However, indis-
criminately delaying a transmission until aWiFi link becomes avail-
able (as WIFI-ONLY does), doesn’t work well for two reasons: poor
WiFi availability, and variable WiFi quality. Both these reasons are
important: STATIC-DELAY is careful about waiting for a bounded
amount of time for a WiFi link, but thereafter uses the first WiFi
link that comes along. In our traces, there is significant WiFi vari-
ability, as a result of which STATIC-DELAY does not perform well.
Finally, taking WiFi quality into account by looking ahead into the
future, as KNOW-WIFI does, is also not sufficient for good perfor-
mance: it fails to account for the duration of that link’s availability,
so in many cases the entire backlog cannot be uploaded, resulting
in high delay.
SALSA, by explicitly or implicitly considering channel qual-

Figure 11: Energy Measurement Environment

ity, backlog, as well as the effective transmission rate of the ra-
dio, performs the best. Of course, it may be possible to design
other heuristics that take all of these factors into account, but, as
we have shown, SALSA’s absolute dispersion values are quite low,
and leave little room for improvement.

Sensitivity to the Scanning Interval. In our trace-driven sim-
ulations, we have assumed that a WiFi scan is conducted at the
beginning of every slot (i.e., every 20 seconds). Of course, WiFi
scanning every 20 seconds can incur significant energy. To under-
stand whether a larger scanning interval can be used, we explore the
sensitivity of SALSA’s performance to the choice of WiFi scanning
frequency.

To quantify the cost of scanning, we first measured the cost of a
single WiFi scan on two different platforms: the Nokia N-95 and
the Android G1. For measuring the energy consumption of a WiFi
scan operation, we used both a dedicated power monitor hardware
[15] and a software tool (the Nokia energy profiler v1.2 [18]). Our
software and hardware setup is shown in Figure 11.

Table 1 shows the result of our measurements. The N95 con-

264

20 60 120 180 240
0

1

2

3

4

5

6

7

8

9

10

E
n

e
rg

y
 C

o
s
t(

%
)

Scan Interval(Sec)

Aggregated WiFi−Scan Cost

SALSA w/ α = 0.4

Figure 12: Scanning Energy Cost

20 60 120 180 240
0

0.5

1

1.5

2

2.5

3

H
o
u
r

Scan Interval(Second)

Average Delay(Hour)

SALSA w/ α = 0.4

Figure 13: Average Delay

20 60 120 180 240
0

10

20

30

40

50

60

70

80

90

100

E
n
e
rg

y
 C

o
s
t(

%
)

Scan Interval(Second)

Energy Costs(%)

SALSA w/ α = 0.4

Figure 14: Average Energy Consumption

sumes 1.18J per scan, which lasts 2.03s. The G1 consumes less,
about 0.63J, and it lasts 1.11s. Thus, depending on how frequently
scans are invoked, scanning costs can be quite significant and re-
quire careful attention to system design.
To understand SALSA’s sensitivity to the scanning frequency,

we ran our trace-driven simulations for four additional scanning in-
tervals: 60s, 120, 180s and 240s. For each scanning interval, we
then counted the number of scans performed by the algorithm, and
then computed the fraction of total battery capacity that can be at-
tributed to scanning. To understand this graph, it is important to
realize that SALSA (or any of our other algorithms) will only scan
when the queue is nonempty. In general, one might expect SALSA
to scan slightly more often than MINIMUM-DELAY, because it de-
fers transmissions and builds up the queue.
Figure 12 plots the average scanning cost for each event in our

trace, as a fraction of the total battery capacity. Clearly, at a 20s
scan interval, SALSA’s scanning cost is a significant 3% of the
total battery capacity. For a 60s scan interval and beyond, it is
much more reasonable and decreases quickly. When compared to
the average energy consumption per event (Figure 14), we see that
SALSA’s scanning costs become a relatively small fraction for any
scanning interval greater than or equal to 60s.
Interestingly, it is not possible to increase the scanning interval

without a penalty. As Figure 13 shows, the average delay per in-
terval increases fairly dramatically with scan interval, going from
about 30 mins for a 20s interval to over an hour for a 240s in-
terval. The reason for this is that a larger scan interval increases
the burstiness of the departure process (relative to a smaller scan
interval), and this increases the SALSA thresholdV , forcing the al-
gorithm to wait longer for better quality APs. Thus, the sweet spot
for the scanning interval appears to be 60 seconds, where the cost
of scanning is a small fraction of the total energy and the delay is
comparable to a 20s scan interval.

5. EXPERIMENTAL RESULTS
In this section, we describe the implementation of SALSAwithin

a video transfer application developed in Symbian C++ for the
Nokia N95 smartphones. We then discuss the results of an exper-

Platform WiFi-Scan(J) Duration(second)

Nokia N95 1.18J 2.03s
Android G1 0.63J 1.11s

Table 1: Scan Cost Measurement

iment designed to verify the performance of SALSA under real-
world conditions, and to validate our simulation results.

Implementation Description. We have implemented the SALSA
algorithm in our Urban Tomography system. The component of
this system that runs on the smart phone and transmits videos to
the backend server is called the Video CAPture System [25], or
VCAPS. Our implementation runs on the Nokia N95 smartphone,
which has a 802.11b/g WiFi interface as well as 3G/EDGE, a 2GB
micro-SD card, and supports 640x480-resolution video recording
capability at full frame rate.

In our implementation, VCAPS periodically scans the environ-
ment and determines the set of usable APs. These scans occur every
20 seconds (which constitutes a timeslot), a time period empirically
detemined to work well, yet expend relatively low energy scanning
for APs. At this time, it also updates all relevant statistics that are
used in calculating V [t].

The videos captured by a user are placed in a designated video di-
rectory, which represents the backlog queue in our system. When-
ever this queue is non-empty, VCAPS attempts to transfer data to
an Internet-connected server using HTTP 1. For each transfer at-
tempt, VCAPS invokes SALSA’s decision algorithm (§3) to deter-
mine which link to use, among the ones available. The video up-
load process runs in the background and does not require any user
intervention.

In practice, transfer attempts may fail, for several reasons, and
SALSA has built-in robustness mechanisms to deal with such fail-
ures. For example, a transfer attempt may fail because current
achievable rate on the current chosen link is low (either because
the estimate was wrong, or because user has moved away from the
AP since the last scan). If a failure happens, VCAPS waits until
the beginning of next timeslot and retries. If more than 5 transfer
attempts through a particular AP fail, then VCAPS blacklists that
AP and waits for 20 minutes before re-using it. Re-using a black-
listed AP allows us to use a different AP that may potentially have
the same SSID but provides good performance. We have observed
several instances of different WiFi APs using the same SSID during
our trace collection, especially on the USC campus network.

We implemented all the features of SALSA described in §3 on
the smartphone including the algorithm for time-varying V and the
rate estimation scheme. However, there are few minor differences
between the SALSA implementation used for simulations, and our
smartphone implementation. These differences are driven by real-
world considerations. First, unlike the simulator which treated the

1Some of these videos can be viewed at http://tomography.
usc.edu. A portion of the corpus is not publicly viewable be-
cause of privacy reasons.

265

Figure 17: Exp. Walk Route

queue as a bag of bits, our implementation uses HTTP POST and
attempts to transfer fixed size video chunks. These chunk trans-
fers may fail and need to be retried. Our simulator, on the other
hand, determines how many bits could have been transferred given
the rate estimate, and then determines, using a weighted coin toss,
whether that transfer would have resulted in a failure. This behavior
was designed to mimic the theory, more than the implementation.
Second, the implementation uses the online rate estimation, but

the simulator does not. Rather, the simulator simply uses the rate
estimates and the failure probabilities derived from the trace. The
implementation is potentially more accurate in this regard, because
it learns the actual achievable rate from successful transfers.
Finally, like the simulator, our implementation also uses a fixed

nominal value for the power expenditure PC and PW . An imple-
mentation has the potential to be more accurate if the OS were to
provide fine-grained energy usage measurements, but the Symbian
OS does not do this.

Results. We have conducted extensive experiments using our pro-
totype implementation for evaluating SALSA with five different
parameters. The goal of this experiment was two fold: first, to
demonstrate that our Urban Tomography systemwith SALSAworks
robustly for several hours; and second, to validate that the perfor-
mance of SALSA under real-world settings is consistent with our
simulation results, despite the differences between the simulation
and the implementation.
In our experiments, one volunteer carried five phones each con-

figured with different values of α , and conducted 5 walks (each
for approximately 3 hours) both on the USC campus and at the
Glendale Galleria mall. The routes through the USC campus and
Glendale Galleria are shown in Figure 17. Each phone was pro-
grammed to use the same arrival trace, obtained from one of the
events recorded by users of the Urban Tomography system (i.e., we
replayed, on the phone, the arrival of videos in the event). Each
walk completed the upload of all videos associated with the same
arrival trace. Thus, our real-world experiment corresponds to, in
the terminology of §4.1, one arrival trace, and 10 link traces.
On each phone, we recorded the transfer decisions made, the av-

erage delay from the creation to transfer completion for each video,
all WiFi scan results, the achieved rates, the size, and the duration
of each transfer. Using this, and nominal values of the energy con-
sumption of cellular and WiFi transfers, we were able to plot the
performance of the SALSA algorithm in the E-D plane.
Figure 15 and Figure 16 each depict the results from the USC

campus and the Glendale Galleria mall. On each figure, the 5 small
black crosses each correspond to one walk. For comparison, the
dots in the background on each graph depict results from our trace-
driven simulations for that particular environment and α value. We
say that an experiment is consistent with simulation if the experi-
mental results fall within the envelope obtained by the simulation.
Consistency implies that the differences between the simulation
and implementation are not significant, and that the envelope ob-

tained by simulation may be a reasonable indicator of performance
observed in the real-world.

As Figures 15 and 16 show, all experimental data points fell
within the corresponding envelopes. (In the Glendale experiment,
there are a few instances for α = 0.4 which were just on the border
of the corresponding envelope; in all other cases, the experimental
points were well within the envelope.) This result is encouraging:
we believe that, over a wide range of parameters, SALSA will per-
form well in the real-world. We intend to incorporate SALSA into
our VCAPS software distribution, so that our user base can obtain
the performance benefits it provides.

6. RELATED WORK
Two preliminary pieces of work have inspired our own. Zaharia

et al. [26] consider the same problem but assume that each network
interface knows its future availability and has a fixed rate. Seth
et al. [23] also consider supporting delay-tolerant applications, but
focus on an approach to seamlessly manage multiple network in-
terfaces of varying availability, relieving the programmer of this
burden. In their approach, users or applications specify an overall
objective, like a delay-bound, and their runtime system attempts to
achieve this objective by ensuring that the progress of data transfer
is at a rate that will satisfy the application objective, while having
the freedom to pick the appropriate link. Our problem statement
is slightly different, since we do not attempt to guarantee a fixed
delay bound, and instead focus on minimizing energy.

Next closest to our work is prior work on achieving energy effi-
ciency in smartphone applications by exploiting multiple wireless
interfaces. Context-for-Wireless [22] uses the history of context in-
formation to decide whether it is beneficial, in terms of energy, to
use 3G/EDGE or WiFi for data transfer. They attempt to intelli-
gently learn and estimate WiFi network conditions without power-
ing up the WiFi interface so as to save the energy cost of turning
on the interface and re-scanning for available APs. Armstrong et
al. [6] also discuss a similar problem. They report that there exist
a threshold message size (30KB in their application on HP iPAQ
6325 platform) for which using WiFi is more energy efficient than
3G/EDGE, due to the wake-up cost of WiFi interfaces. However,
their focus is on designing a web proxy system to reduce the size
of the updated content for efficient data downloads. CoolSpots [20]
aims to reduce the power consumption of wireless mobile devices
with multiple radio interfaces by intelligently deciding whether and
when to use WiFi and Bluetooth based on an application’s band-
width requirement. None of these pieces of work trades-off delay
for reduced energy: rather, they are interested in determining the
lowest energy link among a set of available links at a given instant.
Moreover, our work is focused on larger data traffic (our videos in
VCAPS have from a few hundreds of KBytes to a hundredMBytes)
than some of these applications, and their emphasis on WiFi wake-
up costs do not apply in our case, since the wake-up cost can be
amortized over these larger transfers.

Other pieces of work, in slightly different contexts, have attempted
to exploit multiple radio interfaces to improve energy efficiency
on smartphones. Micro-Blog [10] is an application for sharing
and querying content through mobile phones and social participa-
tion. Its localization component aims to save energy by adaptively
changing between three different localization schemes (GPS, WiFi-
based, GSM-based) considering energy cost and localization accu-
racy requirement. Cell2Notify [4] is an energy management archi-
tecture that leverages the cellular radio signal to wake-up the high-
energy consumption WiFi radio for VoIP applications. Finally,
COMBINE [5] leverages 3G/EDGE links of its wireless LAN peers
to cooperatively download data. However, it focuses on throughput

266

Figure 15: Experimental result at the USC Campus compared to simulation results

Figure 16: Experimental result at Shopping Mall compared to simulation results

enhancement rather than energy, and does not consider an intermit-
tently connected WiFi as the download/upload link.
BreadCrumbs [17] examinesWiFi connectivity changes over time

and provides mobile connectivity forecasts by building a predic-
tive mobility model. These forecasts can be used to more intelli-
gently schedule network usage. This work can be complementary
to ours: e.g. SALSA could benefit from this technique and deter-
mine relevant α settings. A similar benefit can be obtained from
WiFi databases obtained opportunistically [19, 22].
In a different context, for a networked setting with multiple nodes

transmitting data over wireless links, Neely [16] developed a joint
transmit power and transmission scheduling algorithm (EECA) that
minimizes the total system power consumption. There are two key
differences between EECA and SALSA: (i) EECA assumes that
each node has a single wireless interface whereas SALSA is de-
signed for smartphones with multiple wireless interfaces, and (ii)
EECA focuses on transmit power control while in SALSA, we as-
sume that the transmit power on each wireless interface is fixed.
Neely also discusses a variant of EECA that maximizes throughput
given average power constraint. EECA has not been evaluated in
implementation, and does not specify how to determine the value of
the control parameter V automatically. Georgiadis et al. [11] dis-
cuss several stable control algorithms for maximizing throughput
or fair rate allocation in wired and wireless networks derived using
the Lyapunov optimization framework in their book [11].
Finally, there is a large literature on smartphone applications [3,

14, 8, 10, 1, 2, 25, 7] that are data-intensive but delay-tolerant appli-
cations. Some of them (e.g., [8]) implement greedy delay-tolerant
strategies, like handing off data to the first available peer or access
point, and do not explicitly consider the energy/delay trade-off in
their designs. In that sense, they are closer to the work on delay-
tolerant networks [9]. Finally, research in sensor network energy
management has explicitly considered the energy-delay trade-off
to increase network lifetime [21, 12], but only in the context of a
single wireless interface.

7. CONCLUSIONS AND FUTURE WORK
SALSA is a near-optimal algorithm for performing the energy-

delay tradeoff in bandwidth-intensive delay-tolerant smartphone ap-
plications. Its transmission decisions take several factors into ac-
count: data backlog, power cost of the wireless interface, and chan-
nel quality. Algorithms which lack even one of these factors in
the transmission decisions perform significantly worse. Finally,
SALSA solves a real problem: many of the users of our system
have collected videos for which the total transmission cost, as well
as the savings obtained by SALSA, are a noticeable fraction of the
overall battery capacity. In future work, we hope to get more expe-
rience with SALSA deployments from our diverse user base.

Acknowledgements.

Wewould like to thank our shepherd, Robin Kravets, and the anony-
mous referees, for their insightful suggestions for improving the
technical content and presentation of the paper.

8. REFERENCES

[1] Cyclesense. http://urban.cens.ucla.edu/
projects/cyclesense/.

[2] Dietsense. http://urban.cens.ucla.edu/
projects/dietsense/.

[3] Peir: Personal environmental impact report.
http://peir.cens.ucla.edu/.

[4] Y. Agarwal, R. Chandra, A. Wolman, P. Bahl, K. Chin, and
R. Gupta. "Wireless Wakeups Revisited: Energy
Management for VoIP over Wi-Fi Smartphones". In
MobiSys’07, 2007.

[5] G. Ananthanarayanan, V. N. Padmanabhan, L. Ravindranath,
and C. A. Thekkath. "COMBINE: Leveraging the Power of
Wireless Peers through Collaborative Downloading". In
MobiSys’07, 2007.

267

[6] T. Armstrong, O. Trescases, C. Amza, and E. de Lara.
"Efficient and Transparent Dynamic Content Updates for
Mobile Clients". In MobiSys’06, 2006.

[7] X. Bao and R. R. Choudhury. "VUPoints: Collaborative
Sensing and Video Recording through Mobile Phones". In
Mobiheld ’09, 2009.

[8] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson,
G.-S. Ahn, and A. T. Campbell. "The BikeNet mobile
sensing system for cyclist experience mapping". In
SenSys’07, 2007.

[9] K. Fall. "A Delay-Tolerant Network Architecture for
Challenged Internets". In SIGCOMM ’03, 2003.

[10] S. Gaonkar, J. Li, R. R. Choudhury, L. Cox, and A. Schmidt.
"Micro-Blog: Sharing and Querying Content Through
Mobile Phones and Social Participation". InMobiSys’08,
2008.

[11] L. Georgiadis, M. J. Neely, and L. Tassiulas. "Resource
Allocation and Cross-Layer Control in Wireless Networks".
Foundations and Trends in Networking, 2006.

[12] O. Gnawali, J. Na, and R. Govindan. "Application-Informed
Radio Duty-Cycling in a Re-Taskable Multi-User Sensing
System". In IPSN’09, 2009.

[13] M. H. Krieger, R. Govindan, M.-R. Ra, and J. Paek.
Commentary: Pervasive urban media documentation.
Journal of Planning Education and Research (JPER),
29(1):114–116, 2009.

[14] P. Mohan, V. N. Padmanabhan, and R. Ramjee. "Nericell:
rich monitoring of road and traffic conditions using mobile
smartphones". In SenSys’08, Nov. 2008.

[15] Monsoon Solutions Inc. Power Monitor. http://www.
msoon.com/LabEquipment/PowerMonitor/.

[16] M. J. Neely. "Energy Optimal Control for Time Varying
Wireless Networks". IEEE Transactions on Information

Theory, 52(7):2915–2934, 2006.

[17] A. J. Nicholson and B. D. Noble. "BreadCrumbs:
Forecasting Mobile Connectivity". InMobiCom’08, 2008.

[18] Nokia Corp. Nokia Energy Profiler.
http://www.forum.nokia.com/Tools_Docs_

and_Code/Tools/Plug-ins/Enablers/Nokia_

Energy_Profiler/.

[19] J. Pang, B. Greenstein, M. Kaminsky, D. McCoy, and
S. Seshan. "Wifi-Reports: Improving Wireless Network
Selection with Collaboration". InMobisys ’09, 2009.

[20] T. Pering, Y. Agarwal, R. Gupta, and R. Want. "CoolSpots:
reducing the power consumption of wireless mobile devices
with multiple radio interfaces". InMobiSys’06, 2006.

[21] J. Polastre, J. Hill, and D. Culler. "Versatile Low Power
Media Access for Wireless Sensor Networks". In SenSys’04,
2004.

[22] A. Rahmati and L. Zhong. "Context-for-Wireless:
Context-Sensitive Energy-Efficient Wireless Data Transfer".
In MobiSys’07, 2007.

[23] A. Seth, M. Zaharia, S. Keshav, and S. Bhattacharyya. A
policy oriented architecture for opportunistic communication
on multiple wireless networks, 2006.

[24] Skyhook Wireless.
http://www.skyhookwireless.com/.

[25] USC/ENL. VCAPS: Urban Tomography Project.
http://tomography.usc.edu/.

[26] M. Zaharia and S. Keshav. Fast and optimal scheduling over

multiple network interfaces. Technical Report CS-2007-36,
University of Waterloo, Oct. 2007.

APPENDIX

A. DERIVATIONOF SALSACONTROLDE-

CISION
In this section, we describe the derivation of SALSA’s control

decision (5). Following standard practice, we define the Lyapunov
function as:

L(U [t]) △
=

1

2
(U [t])2 (11)

and the one-step Lyapunov drift ∆(U [t]) as:

∆(U [t]) △
= E{L(U [t+1])−L(U [t]) |U [t]} (12)

The Lyapunov drift for the queue backlogU [t] is specified by the
following lemma.

Lemma 1 Suppose the data arrivals A[t] and the wireless link qual-

ity ~S[t] are i.i.d. over timeslots. For the queue dynamics in (2) and
the Lyapunov function in (11), the one-step Lyapunov drift satisfies
the following constraint for all t andU [t]:

∆(U [t]) ≤ B[t]−U [t]E{µ [t] |U [t]}+U [t]λ (13)

with B[t] equal to:

B[t] △
=

1

2

(

E

{

A2[t]
}

+E

{

µ2[t] |U [t]
})

(14)

PROOF. From (2) we have:

1

2
U [t+1]2 =

1

2
(U [t]−µ [t]+A[t])2

≤
1

2

(

U [t]2 + µ [t]2 +A[t]2
)

−U [t] (µ [t]−A[t])

and we take conditional expectations givenU [t]:

∆(U [t])≤
1

2
E

{

µ [t]2 +A[t]2 |U [t]
}

−U [t]E{µ [t]−A[t] |U [t]}

Now, using (14) and E{A[t] |U [t]} = E{A[t]} = λ , we obtain
(13).

Power Constraint. To include the minimum power consumption
objective into the Lyapunov drift, following the Lyapunov opti-
mization framework [11, 16] , we add a weighted cost (power con-
sumption during slot t) to (13) to get:

∆(U [t])+VE{P[t] |U [t]}

≤ B[t]−U [t]E{µ [t] |U [t]}+U [t]λ +VE{P[t] |U [t]} (15)

= B[t]−U [t]E{E{µ [t] |U [t], l,Sl [t],P[t]}}

+U [t]λ +VE{P[t] |U [t]} (16)

= B[t]−E{(U [t]E{µ [t] | l,Sl [t],P[t]}−VP[t]) |U [t]}

+U [t]λ (17)

where (16) follows from (15) and (1) using iterated expectations,
and (17) is derived by switching the order of expectations in (16).

We assume that the data arrival process A[t], and the transmis-
sion process µ [t] have finite variance; implying that there exist con-
stants,A 2 and µ2, such thatE

{

A2[t]
}

<A 2 andE
{

µ2[t] |U [t]
}

<

µ2. Hence, from (14), we have

B[t] < B ∀t, B = A
2 + µ2 (18)

268

Minimizing the RHS of (17) will guarantee queue stability with
minimal power consumption, as per the Lyapunov framework. How-
ever, since we have no control over the application data arrival pro-
cess, and hence cannot do much about the term U [t]λ . SALSA
does not directly minimize the entire expression on the RHS of
(17). Rather, in order to minimize the RHS of (17), it maximizes
the negative term on the RHS of (17); hence explanation for the
control decision in (5).

B. PROOF OF THEOREM 1

PROOF. Our proof is similar to the proof of an analogous re-
sult proved by Neely in the context of energy efficient transmission
scheduling in wireless networks [16]. It builds upon the properties
of stationary randomized policies for making control decisions. In
our context, such a policy would make (randomized) link selection
decisions based only on the current arrivals A[t] and link quality~S[t]
that are i.i.d. over slots and independent of the current queue back-
log U [t]. In practice, a stationary randomized link selection policy
cannot be defined without prior knowledge of the probability distri-
butions pA and πs for the arrival process A[t] and the wireless link
quality S[t], respectively.
Since we assume that the arrival process is strictly within the

network capacity region, there exists at least one stationary ran-
domized control policy that can stabilize the queue [16], which has
following features:

E{P[t]} = P∗ (19)

E{µ [t] |U [t]} ≥ λ

⇒ E{µ [t] |U [t]} = λ + ε, ε ≥ 0 (20)

where we define P∗ as minimum achievable power expenditure
using any control policy that achieves queue stability. Then, by
applying (19)-(20) to (15), we obtain:

∆(U [t])+VE{P[t] |U [t]} ≤ B[t]−U [t](λ + ε)+U [t]λ +VP∗ (21)

(21) holds for all timeslot t. Taking an expection for (21) with
respect to the distribution of U [t] and using iterative expectation
law results in:

E{L(U [t+1])−L(U [t])}+VE{P[t]} ≤ B− εE{U [t]}+VP∗

Then, summing over all timeslots t ∈ {0,1, ...,T −1} and dividing
by T yields:

E{L(U [T])−L(U [0])}

T
+
V

T

T−1

∑
τ=0

E{P[τ]} ≤

B−
ε

T

T−1

∑
τ=0

E{U [τ]}+VP∗ (22)

Since Lyapunov function is non-negative by definition and so is
P[t], a simple manipulation of (22) yields:

1

T

T−1

∑
τ=0

E{U [τ]} ≤
B+VP∗ +E{L(U [0])}/T

ε

Taking limits as T → ∞ results in the time average backlog bound
(6).

By similarly manipulating (22) we obtain:

1

T

T−1

∑
τ=0

E{P[τ]} ≤ P∗ +
B

V
+

E{L(U [0])}

VT
(23)

Again taking limits as T → ∞ yields equation (7).

269

