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Energy is vital for the sustainable development of China. Accurate forecasts of annual energy demand are essential to schedule
energy supply and provide valuable suggestions for developing related industries. In the existing literature on energy use prediction,
the arti�cial intelligence-based (AI-based) model has received considerable attention. However, few econometric and statistical
evidences exist that can prove the reliability of the current AI-based model, an area that still needs to be addressed. In this study, a
new energy demand forecasting framework is presented at �rst. On the basis of historical annual data of electricity usage over the
period of 1985–2015, the coe�cients of linear and quadratic forms of the AI-based model are optimized by combining an adaptive
genetic algorithm and a cointegration analysis shown as an example. Prediction results of the proposed model indicate that the
annual growth rate of electricity demand in China will slow down. However, China will continue to demand about 13 trillion
kilowatt hours in 2030 because of population growth, economic growth, and urbanization. In addition, the model has greater
accuracy and reliability compared with other single optimization methods.

1. Introduction

Energy, which is a vital input for the economic and social
development of any economy, has gained special attention.
Combined with globalization and industrialization, global
energy demand has been increasing continually for decades
and is expected to rise approximately 30% from 2015 to
2035 in accordance with the worldwide economic growth [1].

erefore, energy demand projection should be developed
because accurate energy demand forecasts aid policy makers
in improving the schedule of energy supply and providing
valuable suggestions for planning energy supply system
operations.

Given the importance of accurate energy forecasts, extant
studies using di�erent estimation methods have been under-
taken since the 1970s. In general, these early studies can
be classi�ed into two major categories: econometric [2–9]
and machine learning (ML) methods [10–23]. 
e arti�cial
intelligence (AI) energy forecasting model, which is a class
of ML method, has gained popularity in recent years because
of its superiority in time series processing and its capability
to deal with noise data. Several tools, such as arti�cial

neural networks (ANN), genetic algorithm (GA), ant colony
optimization (ACO), and particle swarm optimization, are
commonly employed in the model [10–17]. Compared with
the conventional econometric energy forecastingmethod, the
AI-based model frequently demonstrates higher prediction
accuracy in terms of mean absolute error (MAE), mean
square error (MSE),mean absolute percentage error (MAPE),
and root mean square error (RMSE) [16, 17]. According to
economic theories, the model is feasible for predicting future
energy demand by using the historical relationship when
the periodical characteristics between energy demand and
its explanatory variables will not change in the long term.
However, the current AI-based method is referred to as
the “black-box” because it predicts energy demand without
knowing the internal relationship between energy demand
and its a�ecting factors [23]. In addition, few econometric
and statistical evidences are found that can prove the relation-
ship between energy demand and its factors.
is relationship
may change in the long run based on the current AI-based
model.


is study aims to present a more scienti�c AI-based
energy demand forecasting framework that ensures the
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reliability of predicted results. 
e electricity demand of
China is forecasted as an example to show the process of
implementing this framework. In addition, the predicted
results are bene�cial for policymakers to performappropriate
measures to bridge the electricity gap and arrange the supply
of electricity demand.


e rest of the paper is organized as follows. Section 2
conducts a detailed literature review on the recent develop-
ments of energy demand forecasting. Section 3 presents the
new framework. Section 4 predicts the electricity demand in
China for 2016–2030 under three scenarios. 
e �nal section
summarizes the main conclusions and presents the policy
implications.

2. Literature Review

Energy estimation modeling has attracted wide spread inter-
est among current practitioners and academicians. 
e com-
monly used econometric techniques include cointegration
analysis, autoregressive integrated moving average (ARIMA)
model, partial least square regression (PLSR), and vector
error correction model. 
e ML method mainly refers to
the AI model, support vector regression (SVR) method, and
Grey forecasting method. 
eir details are described in the
following sections.

2.1. Econometric Method. Cointegration analysis can estab-
lish a long-run relationship among variables, and the fore-
casting results are reliably shown through tests ranging
from unit root to cointegration analysis [2, 3]. Early studies
such as Chan and Lee [24] and Lin [2] forecasted the
total energy and electricity demands in China, respectively.

ey conducted a series of tests ranging from unit root
test to cointegration test to guarantee that a cointegration
relationship exists between energy demand and its factors
(i.e., the nexus will not change in themedium and long term).

e ARIMA model is presented as an appropriate method
for long-term projections [4–8, 25]. 
is model depends
on three parameters, including order of moving average,
order of di�erencing, and order of autoregressive scheme.
However, ARIMA cannot be employed with missing and
nonstationary data; otherwise, the original data should be
�rst transformed by di�erencing. Recently, Cabral et al. [7]
considered the spatiotemporal dynamics in the conventional
ARIMA model. 
eir results con�rmed that the new spa-
tiotemporal model improves the electricity demand forecasts
in Brazil and is paramount to achieving the goals of the
Brazilian electricity sector for a secured electricity supply.
Contrary to the ARIMA model, PLSR is a popular statistical
tool that can deal with data, especially missing or highly
correlated data [26].However, PLSRwas recently discussed in
the �eld of energy demand estimation [26, 27]. For instance,
Zhang et al. [26] employed the PLSR model to estimate
the transportation energy demand in China on the basis
of GDP, urbanization rate, passenger turnover, and freight
turnover.
eir results demonstrate that the transport energy
demand for 2020 will reach a level of 4.3313 billion tons of
coal equivalent (BTCE) and 4.6826 BTCE under di�erent
scenarios.

2.2. MLMethod. Any optimization technique requires infor-
mation on future scenarios and a search for the best solutions
against a test criterion. In this case, ML techniques are
superior and are frequently used to solve these two problems.

e ML models include several tools, such as the AI, SVR,
and Grey forecasting methods. To motivate our research, we
focused particularly on the AI-based model.


e concept of SVR is developed from the computation
of a linear regression function in a high-dimensional feature
space where the input data are mapped via a nonlinear
function, which can be found in Vapnik [28] andVapnik et al.
[29]. Dong et al. [19] were the �rst to employ SVR to predict
themonthly energy use of buildings in tropical regions. Local
weather data, including monthly average outdoor dry-bulb
temperature, relative humidity, and global solar radiation, are
selected as the factors a�ecting energy demand. 
eir results
demonstrate that the relative error rate is less than 4%. Wang
et al. [30] applied SVR for predicting hourly electricity use
in residences and compared the results with other AI-based
methods. 
ey report that SVR improves the prediction
accuracy.

Energy Grey forecasting model adopts the essential part
of Grey system theory. In energy demand forecasting [18], the
basic Grey model (GM (1,1)) was employed. Recently, Kang
and Zhao [31] combined the moving average method and
Markov model with GM to improve the accuracy of forecast-
ing results. 
e improved Grey forecasting model demon-
strates better performance compared with the conventional
GM (1, 1). Xu et al. [32] combine GM and the Autoregressive
and moving average model. 
e result indicates that the
improved energy forecasting model has excellent accuracy
and a high level of reliability for the case study of Guangdong
Province.

AI-based prediction method predicts energy use accord-
ing to its correlated variables, such as population growth,
economic growth, and economic structure [2–6, 15–17]. For
instance, Haldenbilen and Ceylan [10] proposed an AImodel
based on GA using population, GDP, and vehicle-km as
a�ecting factors to forecast the transport energy demand in
Turkey. Recently, Günay [23] modeled an electricity demand
function for Turkey using the data on population, GDP
per capita, in�ation percentage, unemployment percentage,
average summer temperature, and average winter temper-
ature. 
en, ANN is employed to determine the optimal
weights that can maximize the accuracy of the function. 
e
aforementioned algorithms can be called the single AI-based
method. To eliminate several essential limitations in these
algorithms, researchers also propose hybrid methods that
integrate at least two AI algorithms, such as the GA-ANN
[33] and PSO-GA models [12–16], to improve the prediction
accuracy. 
e hybrid combination of a single AI algorithm
shows greater performance compared with other methods.


e current AI-based prediction method is generally
composed of four main steps: data collection, data pre-
processing, model training, and model testing. With the
superiority in time series processing, the AI-based model
displays a good performance in predicting future energy
demands. However, a spurious regression problem occurs in
a wide range of time series analysis in econometrics owing to
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its nonstationarity.
e current AI-basedmodel cannot avoid
this problem. If the selected variables do not satisfy the basic
requirements of constructing a cointegration relationship
over the sample period, the AI-based forecastingmodels can-
not be employed tomake energy demand projections because
the nexus between energy demand and its factors will change
in the medium and long term. 
erefore, the mechanism for
predicting energy demand should be reformulated.

3. Methodology

3.1. Introduction to AI-Based Energy Demand Model. In
the precedent AI-based models, the commonly employed
independent variables were around population, GDP, urban-
ization, industrialization, energy price, and energymix.
ree
forms of the estimation models, including linear, quadratic,
and exponential forms, were then adopted for data training
[10, 11, 15–17], which can be expressed as follows:

�lin = �0 + �∑
�=1
����, (1)

�qua = �0 + �∑
�=1
���� + �∑

�=1

�∑
�=�+1

������� + �∑
�=1
��+��2� , (2)

�exp = �0 + �∑
�=1
�����+�� , (3)

where models (1), (2), and (3) are the linear, quadratic, and
exponential forms, respectively. In each model, �� is the �th
energy demand-a�ecting factor, � is the number of energy
demand-a�ecting factors, and �� and ��,� are corresponding
weights.


e “�ttest” weights are �nally searched through di�erent
AI tools, such as GA, ACO, and hybrid algorithms, based
on the �tness function employed to monitor the forecasting
accuracy, which aims to minimize the sum of squared error
between the actual and estimated values shown as follows:

min	 (
) = �∑
�=1
(�actual − �predicted)2 , (4)

where �actual and �predicted denote the actual and predicted
energy demand values, respectively. � is the number of
observations.

A�er obtaining the optimal weights, the model was
applied to forecast the future energy demand under di�er-
ent scenarios. Compared with the traditional econometric
energy demand forecasting model, the proposed AI-based
model frequently demonstrates higher prediction accuracy.
However, according to economic theory, these periodical
characteristics of economic variables will not change in
the medium and long term when an economy remains in
a consistent state. Consequently, their historical relation-
ship between energy demand and factors in the sampling
period should be entirely stable. When this relationship was
satis�ed, it could be used for forecasting energy demand.
However, the current AI-based energy demand forecasting

model does not determine this historical relationship through
econometric and statistical analysis. 
is condition can be
recognized as a “black-box” without knowing the internal
relationship between energy demand and its a�ecting fac-
tors [33]. Accordingly, this model cannot be adopted for
energy demand prediction when the historical relationship
estimated through the AI-basedmodel will change over time.

erefore, the improved AI-based model framework should
be presented to improve the reliability.

3.2. Improved AI-Based Model. As indicated in the above-
mentioned conventional AI-based model, the AI tool is
directly applied to obtain the optimal weights for the model
a�er preprocessing the original data. 
en, the model is
employed to forecast future energy demand. However, the
prediction results are not reliable when the variables cannot
build a stable and long-run relationship or when the parame-
ters will change over time.
erefore, the model stability tests
should be performed before proceeding to obtain the �ttest
weights through the AI tools. 
e cointegration analysis is
widely employed as a key econometric method to forecast
mid- and long-run energy demand because it can establish
a long-run relationship among variables [3]. Cointegration
theory and operations are employed to determine whether a
long-run relationship exists between energy demand and its
factors. To compare with the precedent AI-based model, our
new framework for energy demand forecasting is shown in
Figure 1(b) and the original framework described in previous
literature is presented in Figure 1(a). As shown in Figure 1,
if the energy demand and its factors cannot satisfy the
cointegration relationship over the sample period, then this
model cannot be adopted to predict future energy demand
based on the current AI-based model because the stable
relationship between them does not exist in the medium and
long term.

3.2.1. Cointegration Test. According to cointegration theory,
the existence of a long-run equilibrium relationship among
economic variables is based on the stationary linear combina-
tion of a time series. 
e cointegration relationship over the
sampling period can be tested when the economic variables
are integrated at �(�) at the same time or at either �(0) or �(1).
Hence, the �rst step to conduct the cointegration analysis is by
employing a unit root test approach to check the stationarity
of the variables. In empirical studies, the methods, including
augmented Dickey–Fuller (ADF) and Phillips–Perron (PP)
tests, are commonly employed to test the time series. Cointe-
gration tests such as Engle–Granger [34], Johansen–Juselius
[35], and autoregressive distributed lag (ARDL) bound test-
ing approach [36, 37] can be adopted a�er the probability
of building a cointegration relationship among the variables
is veri�ed. Engle–Granger method is feasible for testing
single equation cointegration when the economic variables
are integrated at �(�) simultaneously. Compared with the
Engle–Granger method, the Johansen–Juselius method can
determine the number of cointegration vectors and test the
existence of cointegration among variables. However, the
Johansen–Juselius method can be employed when the vari-
ables are integrated at �(�) simultaneously. Compared with
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Figure 1: 
e frameworks for the conventional and new AI-based energy demand forecasting model.

the Engle–Granger and Johansen methods, ARDL bounds
approach was recently applied to test the existence of a
long-run equilibrium among the time series because it can
establish the long- and short-run relationships among the
variables. It also extended the mandatory requirements on
the variables and can be applied even when the variables are
integrated at �(0), �(1), or fractionally cointegrated.
ird, the
ARDL procedure is a more powerful approach to determine
the cointegration relationship in small samples than the
Johansen–Juselius technique. Finally, the problems of serial
correlation and endogeneity are not di�cult to tackle within
the ARDL model.

3.2.2. Performance Test. A�er verifying the existence of a
long-run relationship among variables, the next step is to
test the prediction accuracy performance of the model and
determinewhether the estimated parameterswill changewith
time. Parameter inconsistency may result in poor conse-
quences on inferences and lead to wrong conclusions. For the
Johansen–Juselius cointegration test technique, the stability
test for the vector autoregressive model should be conducted
through the unit root analysis. Meanwhile, for the ARDL
bound approach, the cumulative (CUSUM) and cumulative
sum of squares (CUSUMSQ) are suitable for the stability test
because their statistics are updated recursively and plotted
against the break points.

4. Forecasting Electricity Demand in China

In this section, electricity demand forecasting in China is
shown as an example based on our new framework. First,
we list the electric energy demand-a�ecting factors and
the proxy variables based on existing electricity demand
prediction literature. Second, given that the AI-based model
does not require many explanatory variables, we employ
the cointegration analysis to select the variables that can be
contributed toward building a long-run relationship. 
ird,
we employ the adaptive genetic algorithm (AGA), which
is superior to conventional AI algorithms, to optimize the
model. Based on the above estimation, three scenarios for
economic growth, namely, low (ScenarioA), business as usual
(Scenario B), and high (Scenario A), are set. Finally, the
electricity demand projections for the three scenarios are
conducted.

4.1. Electricity Demand-A�ecting Factors. Electricity demand
can be viewed as a causal function of several a�ecting factors,
such as population, GDP, electricity prices, economic struc-
ture, urbanization, and life styles [15–17]. In line with Lin [2]
andYu et al. [15], the number of total populations is employed
as a re�ector of population growth on electricity demand.
Secondly, economic growth in�uences the electricity demand
mainly through various ways. Inconsistent withmost existing
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Table 1: De�nition and description for the variables.

Variables De�nition Max Min Mean Std. dev.

E ln form of total electricity energy consume (1012 KWH) 1.7393 −0.8873 0.4418 0.8381�1 ln form of total population (108) 2.6208 2.3594 2.5208 0.0769�2 ln form of gross domestic product (trillion Yuan RMB 1012) 2.6540 −0.0944 1.2919 0.8578�3 ln form of the ratio of tertiary sector to GDP (%) 3.9160 3.3810 3.6459 0.1506�4 ln form of the urban population to the total (%) 4.0271 3.1659 3.5881 0.2809�5 ln form of price index for the electricity demand 2.6623 0.0000 1.6674 0.0825

Note. KWH denotes kilowatt hour.

literature, GDP is adopted as a key factor of electric energy
demand. 
irdly, in China, the amount of energy required
to produce a unit of GDP di�ers signi�cantly among the
three industries. Numerous researchers have noted that
secondary industries are the main electricity consumers [2].

erefore, the economic structure shi�ed from the secondary
industry (e.g., heavy industry) to the tertiary industry (e.g.,
high-technology industry) may directly reduce electricity
consumption [2]. In line with Feng et al. [38] and Li et
al. [39], we take the ratio of the tertiary sector in GDP to
capture the e�ect of relative change in economic structure
on electricity demand. Fourthly, urbanization in China is
one of the key stages exerting an important but complicated
impact on electricity demand. In each year, millions of
immigrants moved from rural to big cities in search of
good job opportunities, which exerted a great in�uence on
electric energy demand. 
is study utilizes urbanization rate
to control the e�ect of urbanization on electricity demand.
Lastly, according to economic theory, the price can a�ect the
demand through income and substitution e�ects. However,
adjusting the electricity price in China is complicated because
it has been under the full control of the government for
years and is mainly determined by the production cost. In
addition, the price among the regions di�ers signi�cantly,
and no practical method can estimate the electricity price in
China [2]. 
erefore, we employ the price index for fuel and
power to denote the electricity price index.

4.2. Data Management. To forecast the electricity demand,
we use 31 years of observed data from 1985 to 2015. Electricity

consumption in each year is measured in trillion (1012)
kilowatt hours (KWH), and population is measured as 100
million (108) persons. GDP data are measured in trillion
Yuan (1012) RMB and adjusted to the constant price in 1985.
Economic structure is denoted by the ratio of output in
the tertiary industry to GDP (%). 
e share of the urban
population to the total population is used to substitute the
urbanization rate (%). To represent the price for electricity, we
use the price index for fuel and power to denote the electricity
price. 
e price index for the base year (1985) is assumed to
be 1.00, and the price index for other years is adjusted to the
constant price index of 1985. 
e de�nition of the variables
is shown in Table 1. 
e trends for electricity demand and its
factors in the period of 1985–2015 are shown in Figure 2.

4.3. AGA. As mentioned in Section 2, the conventional
AI algorithms also experience low prediction accuracy.
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Figure 2: 
e trends of electricity demand and its factors (1985–
2015).

However, the hybrid AI algorithms (e.g., PSO-GA and ANN-
GA) are complicated. In this study, we employ AGA, which
has a more profound intelligent background and yields
good e�ciency in optimizing global coe�cients. 
e major
di�erence between traditional GA and AGA is the selection
of crossover probability �� and mutation probability ��.
In conventional GA, the two probabilities are randomly
determined or based on an inadequate reference, whereas
AGA relies on the �tness function to select the optimal ��
and ��. 
e �owchart for AGA is shown in Figure 3. In this
�gure, AGA contains major operations, including initializa-
tion, judgement and selection, crossover, and mutation. 
e
detailed descriptions of the operations are given as follows:

(A) Initialization. 
e parameters, including the num-
ber of pop sizes (Pop size) and the number of genera-
tions (Num generations) are �rst set. 
e �tness functions,
crossover probability, and mutation probability should also
be determined.

(B) Judgement and Selection. Population is determined and
ranked according to the values of �tness function. 
e indi-
vidual with a low �tness value can be selected as the optimal
solution for the problem when the number of generations is
equal to the maximal number of generations; otherwise, the
individual with a low �tness value is selected and the rest of
the individuals are replaced by the selected individuals.
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(C) Crossover. To gain good performance in AGA, the
crossover probability is determined by a function compared
with a constant in conventional GA. A high crossover prob-
ability will be set when the �tness value is less than the
average value; otherwise, a high �tness value will lead to a
low crossover probability. A crossover probability function
employed in our study is shown as follows:

�� = {{{{{
��1 − (��1 − ��2) (	

� − 	avg)	max − 	avg , 	 ≥ 	avg
��1 	 < 	avg,

(5)

where �� denotes the crossover probability function and 	max

and 	avg represent the maximum �tness and average �tness
values, respectively. ��1 = 0.9 and ��2 = 0.6 are set in step
(A).

(D) Mutation. 
e selection of mutation probability values
is the same as that for the selection of crossover probability
values. 
e mutation probability is set to 0.1 when the �tness
value is lower than the average value; otherwise, a high �tness
value will result in a high crossover probability value. 
e
corresponding mutation probability function is given as

�� = {{{{{
��1 − (��1 − ��2) (	max − 	)	max − 	avg , 	 ≥ 	avg
��1 	 < 	avg,

(6)

where �� refers to the mutation of probability function;��1 = 0.1 and ��2 = 0.01 are determined in the �rst step;
and	max and	avg represent themaximum and average �tness
degrees for each generation, respectively.

5. Estimating Results and Future Projections

5.1. Cointegration Analysis

5.1.1. Unit Root Test. A�er data collection and preprocess, the
�rst step is to perform the unit root test to determine whether
the time series satis�es the basic conditions for constructing
the cointegration relationship. Considering that ADF and PP
tests are distorted in small sample sizes, the Ng and Perron
[40] unit root test is adopted using only the intercept term
and the presence of intercept and trend terms in the unit root
estimating equation. 
e corresponding unit root tests are
shown in Table 2.


e �rst six rows in Table 2 are the unit root test results
with the presence of an intercept term, while the last six rows
are unit root test results with the presence of intercept and
trend terms. 
is result indicates that all the time series are
�rst-di�erence stationary at the 10% signi�cance level with
the presence of an intercept term, a situation that satis�es
the necessary requirements for building the cointegration
relationship of Johansen–Juselius technique [35] and ARDL
bound testing approach [36] simultaneously.

5.1.2. Cointegration Test. Next, we conducted the test to
determine the presence of a long-run relationship using the
ARDL bounds testing approach. 
e ordinary least squares
(OLS) procedure is �rst employed for the next equation,
which is expressed as

Δ�	 = �0 + 
∑
�=1
�1�Δ�	−� + 
∑

�=0
�1�Δ�1,	−� + 
∑

�=0
�1�Δ�2,	−�

+ 
∑
�=0
�1�Δ�3,	−� + 
∑

�=0
�1�Δ�4,	−� + 
∑

�=0
 1�Δ�5,	−�
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Table 3: Results of bounds testing approach based on SBC.

Electricity demand function !-statistics Lag order Cointegration�1 = 	(�1, �2, �3, �4, �5) 2.5629 1 Inconclusive�2 = 	(�1, �2, �3, �4) 4.2134∗ 2 Yes�3 = 	(�1, �2, �3, �5) 2.5507 2 Inconclusive�4 = 	(�1, �2, �4, �5) 1.8554 2 No�5 = 	(�1, �3, �4, �5) 2.5478 2 Inconclusive�6 = 	(�2, �3, �4, �5) 3.9873∗ 2 Yes

Critical values� = 5 (lower-upper) � = 4 (lower-upper)
1% level 4.134 5.761 4.280 5.840

5% level 2.910 4.193 3.058 4.223

10% level 2.407 3.517 2.525 3.560

Note. (1) � denotes the “ln” form of electricity demand; � (� = 1 ⋅ ⋅ ⋅ 5) stand for the “ln” form of population, GDP, economic structure, urbanization, and
energy price, respectively; (2) the critical values are taken from the appendix in Narayan [37]; (3) ∗ denotes signi�cance at the 10% level; (4) since there are
only thirty-one samples, the max lag order 
 is 1 for �1 and 2 for other electric energy demand functions.

+ �11�	−1 + �12�1,	−1 + �13�2,	−1 + �14�3,	−1
+ �15�4,	−1 + �16�5,	−1 + "1	,

(7)

where � denotes the “ln” form of electricity demand, and�� (� = 1 ⋅ ⋅ ⋅ 5) refers to the ln form of population, GDP,
economic structure, urbanization rate, and price of electricity,
respectively. �0 is a constant parameter, and "	 denotes
the white-noise process. Δ represents the �rst-di�erence
operator.

To obtain the optimal lag length for the equation, the

ARDL bounds approach should estimate (� + 1)� times of
regressions (� and �, resp, denote the maximum number
of lags and the number of variables). 
e Schwarz–Bayesian
criteria (SBC) or Akaike information criterion can then be
adopted to determine the optimal lag for this regression. 
e
bounds testing procedure based on the joint !-statistics and
Wald statistics is illustrated as follows.


e null hypothesis in the equation is$0 : �� = 0 against
the alternative of $1 : �� ̸= 0, � = 1, 2, . . . , 5. Two sets of
critical values are reported in Pesaran et al. [36] and Narayan
[37]. 
e bound statistics in Pesaran et al. [36] are only
applicable for a sample size with more than 80 observations;
otherwise, Narayan [37] is appropriate. Considering that our
sample size is 31 (from 1985 to 2015), the critical values
from Narayan [37] for the bounds !-test are more suitable
than those from Pesaran et al. [36] to establish the reliable
inferences on cointegration.

Null should be rejected when the calculated !-statistics
exceeds the upper bound, suggesting that cointegration
relationship exists between electricity demand and its factors.
No cointegration is found when the calculated !-statistics
is below the low critical value. However, few approximate
conclusions can be drawn without knowing the order of
integration of the underlying regressors when the statistics
are located between the bounds. 
e corresponding results
are shown in Table 3. As mentioned by Canyurt and Öztürk
[11], the AI-based model did not require many factors to
estimate future energy demands. 
e cointegration tests

(Table 3) are presented using both �ve input variables and
four variables, respectively.

As shown in Table 3, the existence of two cointegration
relationships among the variables is con�rmed. Hence, the
electricity demand functions, including �2 and �6, can be
applied to estimate future electricity demands. In the follow-
ing, we employ the electricity demand function �2 in which
population, GDP, economic structure, and urbanization are
used as the independent variables to predict future electricity
demands.

5.1.3. Stability Test. CUSUM and CUSUMSQ are applied to
show the stability of the model, as shown in Figure 4.

In the �gure, the plots of CUSUM and CUSUMSQ are
located within the critical bounds at the 5% signi�cance level,
which suggests that the model is stable. Accordingly, the
cointegration relationship between electric energy demand
and its factors is reliable.

5.2. Estimating Results. A�er the long-run equilibrium rela-
tionship among the variables is veri�ed, AGA is employed
to optimize the coe�cients of (1)-(2) (since we employ the
ln form of variables, a�er carrying out the weights of (1)-
(2), the electric energy demand can be obtained using & ='�lin or & = '�qua). 
e electricity demand function, which
uses four factors as the economic indicators, namely, GDP,
population, economic structure, and urbanization, is selected
in the model to predict the future energy demand in China.

To estimate the coe�cients for the linear and quadratic
forms, the observed data from 1985 to 2015 are used. 
e
linear form for the optimal model is written as follows (for
simplicity, we do not present the results in exponential form):

�lin = −7.1855 + 1.3754�1 + 0.3273�2 − 1.1367�3+ 2.2540�4, (8)

where � denotes the “ln” form of electricity demand and�� (� = 1, 2, 3, 4) stands for the “ln” form of population, GDP,
economic structure, and urbanization. Population growth,
economic growth, and urbanization are the leading forces
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Figure 4: Plot of CUSUM (a) and CUSUMSQ (b).

contributing to the increase of electricity demand, a �nding
that is consistent with our expectations. Elasticity coe�cients
show that a 1% increase in population, economic growth, and
urbanization will produce respective increases of 1.3754%,
0.3273%, and 2.254% in electricity consumption. By contrast,
a 1% increase in the ratio of tertiary sector to GDP will
produce a 1.1367% decline of electric energy consumption.

In addition, the quadratic form for the optimal model is
expressed as

�qua = −1452.9642 + 1085.0132�1 − 161.0172�2
− 62.6839�3 + 162.8816�4 + 58.5949�1�2+ 22.8037�1�3 − 68.1260�1�4− 3.9987�2�3 + 11.0148�2�4 + 5.1778�3�4
− 196.5157�21 − 4.4961�22 − 1.2152�23
− 3.2263�24.

(9)

5.3. Performance Tests. To evaluate the performance of the
prediction model, the model must be compared with other
forecasting optimal models (GA, ACO, GM, and OLS)
using MAE, MSE, MAPE, and RMSE. 
e corresponding
de�nitions of MAE, MSE, MAPE, and RMSE are shown as
follows:

MAE = ∑��=1 -----�� − ��� -----� ,
MSE = ∑��=1 (�� − ��� )2� ,

MAPE = ∑��=1 -----(�� − ��� ) /��-----� ,
RMSE = √∑��=1 (�� − ��� )2� ,

(10)

where �� and ��� represent the actual and �tted values,
respectively, and � is the number of observations. All these
approaches use the population, GDP, industrial proportion,
and urbanization rate of China as the independent vari-
ables. 
e training data (1985–2010) are employed to �t the
historical relationship between electricity demand and its
factors, and the testing data (2011–2015) are adopted to test the
performance.
e comparison of these criteria for the testing
data among various optimal electricity demand models is
reported in Table 4.
e table demonstrates thatMAPE of the
quadratic form is the lowest compared with the linear forms
optimized by AGA and other methods (GA, ACO, GM, and
OLS). In addition, the proposed linear form of AGA achieves
better prediction accuracy than other forecasting optimal
models. 
e actual and simulated data for the optimal model
from 1985 to 2015 are also shown in Figure 5, which reveals
that the proposedmodel �ts the historical data well.
us, the
discussed AGA algorithm e�ectively enhances the estimating
precision of the model.

5.4. Future Projection. 
e abovementioned framework is
applied to forecast electricity demand from 2016 to 2030
based on three scenarios. 
e trends of the a�ecting factors
are described as follows:

GDP. A declining trend is observed for the GDP growth of
China in recent years. For instance, the annual GDP average
growth rates of China during 2005–2010 and 2010–2015 are
11.36% and 7.86%, respectively. Today, China has entered a
stage of development called “new normal,” which indicates
that signi�cant uncertainties may occur in the economic
development of China. Hence, the possible impacts of di�er-
ent economic growth rates on electricity consumption should
be considered. We set three scenarios for economic growth
similar to Lin and Ouyang [3]: high (Scenario A), business
as usual (Scenario B), and low (Scenario C). In Scenario A,
the average growth rate of GDP between 2016 and 2020 is
set as 7%. In Scenario B, the average growth rate is 6.5%
because China has to ful�ll its national goal established in the
13th Five-Year Plan. In Scenario C, the average growth rate
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Table 4: Prediction accuracy test for the optimal model.

Method Criteria MAE MSE MAPE (%) RMSE

AGA (linear) 0.3122 0.1023 2.01 0.3198

AGA (quadric) 0.2704 0.0932 1.73 0.3052

GA (linear) Canyurt and Öztürk [11] 0.4212 0.1652 2.95 0.4064

GA (quadric) 0.3408 0.1206 2.44 0.3473

ACO (Toksari [13]) 0.5874 0.3165 4.15 0.5626

GM (Hsu and Chen [18]) 0.6731 0.4239 5.83 0.6511

OLS 0.8019 0.4832 8.68 0.6951

Table 5: Hypothesis of variables for the three di�erent scenarios (unit: %).

Period
Growth rate of GDP Growth rate of

population
Growth rate of

economic structure
Growth rate of
urbanizationScenario A Scenario B Scenario C

2016–2020 7.0 6.5 6.0 0.60 2.0 1.5

2021–2025 6.5 6.0 5.5 0.70 2.2 0.8

2026–2030 6.0 5.5 5.0 0.75 2.5 0.4
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Figure 5: 
e original and prediction time series of electric energy
consumption.

is assigned as 6% in 2016–2020, the lowest among the three
scenarios. Additional details can be found in Table 5.

Population. 
e annual growth rate of population in
2010–2015 was approximately 0.5%. We assume that the
implementation of the current “two-child policy” will pro-
mote population growth. 
erefore, we hypothesize that the
annual growth rates of population for the periods 2016–2020,
2021–2025, and 2026–2030 are 0.60%, 0.70%, and 0.75%,
respectively.

Economic Structure. According to the 13th Five-Year Plan
of China, the share of tertiary industries to GDP will be
over 56% in 2020, indicating that the annual growth rate
of tertiary industries to GDP will be at least 2.09% during
2016–2020. Currently, the economy of China is transitioning

from primary to secondary to tertiary industries. 
erefore,
the annual growth rates of tertiary industries to GDP for the
periods of 2021–2025 and 2026–2030 are assumed to be 2.2%
and 2.5%, respectively.

Urbanization. 
e rapid urbanization process of China is
expected to end in 2020 [41]. Additionally, the urbanization
process of China will follow an s-curve track, which is similar
to the historical experience of most developed countries
[3]. We assume that the average annual growth rate for
urbanization will decelerate in 2020 and will further decrease
to 1.5% in 2016–2020, 0.8% in 2021–2025, and 0.4% in
2026–2030. In summary, the projected GDP growth rates,
population, economic structure, and urbanization for the
three scenarios are shown in Table 5.


e electricity demand of China can be forecasted a�er
the assumptions of the factors are established. In Figures 6, 7,
and 8, the national electricity demand estimates under three
scenarios with the linear and quadratic forms are shown,
respectively.


e electricity demand of China will continue growing in
the medium and long term regardless of the adjustments in
economic structure. Under the high-growth scenario (Sce-
narios A), the electricity demand will still increase rapidly
because of the economic growth, urbanization process, and
population growth of China. However, the annual growth
rate of electricity demand will decrease to 5.8% during the
2016–2030 period in Scenario A owing to the decline in
annual growth rate of economic growth and the adjustment
in economic structure. 
is value is much lower compared
with that in the period of 2000–2015. In 2020, 2025, and 2030,
the electricity demand of China will be 8.2585, 11.139, and
13.821 trillion KWH according to the quadratic form of this
model (Figure 6). 
e minimum predicted values for 2020,
combined with 2025 and 2030, were obtained by using the
linear form of the optimal model, which result in 8.0322,
10.758, and 13.302 trillion KWH, respectively, under Scenario
A. 
e maximal predicted electricity demand in Scenario
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Figure 6: Electricity demand in Scenario A.
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Figure 7: Electricity demand in Scenario B.

B in 2020 is about 8 trillion KWH (Figure 7), whereas the
minimum is 7.8806 trillionKWHaccording to the linear form
of the model. By 2025, the electricity demand consumption
in Scenario B will save about 0.4 trillion KWH compared
with Scenario A due to the lower growth rates in GDP. In
2030, the electricity demand in Scenario B will consume
less than 0.6 trillion KWH compared with Scenario A. As
shown in Figure 8, the electricity demands of China are small
under Scenario C. In this scenario, the electricity demandwill
consume about 7.9, 10.3, and 12.4 trillion KWH in 2020, 2025,
and 2030, respectively.

6. Results and Policy Conclusions

In this study, we develop a new framework to predict energy
demand based on the conventional AI models and cointe-
gration theory. To develop energy forecasts, we emphasize
the use of appropriate data and econometric techniques
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Figure 8: Electricity demand in Scenario C.

rather than several computer packages for demand estima-
tion techniques provided by previous studies. In this new
framework, the energy demand-a�ecting factors, which are
used as the independent variables in the prediction model,
are determined based on theoretical analysis and selected
by statistical and econometric analysis or tests. Finally, the
future electricity demands of China from 2016 to 2030 are
predicted as an example for the new model by using the
modi�ed AI-based model. Compared with several previous
AI-based literatures, we prove that the present forecasting
model demonstrates exceptional performance in forecasting
electric energy demand.


e prediction results of electricity demand indicate that
population growth, economic growth, and urbanization are
the leading forces contributing to the increase of electricity
demand, whereas economic structure adjustment is responsi-
ble for the decline of electricity consumption. Several speci�c
results are listed below: an electricity demand growth is
observed in China in the following years (i.e., 2016–2030).
However, the future annual growth rate is lower compared
with the last decades. Based on our analysis, electricity
demand will still continue to increase at an annual average
rate of about 5.5% and will be about 13 trillion KWH in 2030.

is value corresponds to nearly two times comparedwith the
2015 level. 
e forecasts would be valuable for policy makers
in China in planning future energy policies.
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[9] L. Fŕıas-Paredes, F. Mallor, M. Gastón-Romeo, and T. León,
“Assessing energy forecasting inaccuracy by simultaneously
considering temporal and absolute errors,” Energy Conversion
and Management, vol. 142, pp. 533–546, 2017.

[10] S. Haldenbilen and H. Ceylan, “Genetic algorithm approach to
estimate transport energy demand inTurkey,”Energy Policy, vol.
33, no. 1, pp. 89–98, 2005.

[11] O. E. Canyurt and H. K. Öztürk, “
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