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S.1 Device Parameters

Important parameters of the measured devices are summarized in Table S1 and described
in more details in the following sections.

S.2 Device layout

The device layout is optimized to maximize the readout sensitivity, minimize parasitic
heating and ensure compatibility with the JPA readout (Fig. S1). The device consists
of a suspended graphene drum which couples capacitively to the cavity over a circular
counter-electrode (red in Figs. S1a,b). Devices are fabricated by first structuring a Nb film
with reactive ion etching, and then transferring a graphene flake onto the Nb structure.
A detailed description of the fabrication can be found in Ref. [1]. We use a quarter-
wavelength microwave cavity (Fig. S1c). In order to reduce internal losses of the cavity
over the graphene electrodes, we fabricate capacitors with CLP ≈ 1− 2 pF to the ground
plane of the chip at the end of the electrodes. To reduce the heat dissipation of the
graphene device we evaporate 3/40 nm of Cr/Au onto the Nb lines in device I (yellow in
Fig. S1). For a JPA compatible readout, the cavity is capacitively connected to both a
weakly coupled port and a strongly coupled port. This layout prevents the saturation of
the amplifier by the strong pump tone at ωp in a transmission measurement configuration.
That is, the pump signal is attenuated by the cavity by ≈ 40 dB. The output signal of
the cavity is not deteriorated by the weakly coupled port, since the decay of the cavity
through this port is small compared to that of the strongly coupled port. The separation
between the weak port (green in Fig. S1c) and the strong port (blue) is large in order to
reduce residual coupling between the input and output ports.
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Table S1: Device parameters. The dimensions of the mechanical resonators are mea-
sured with an atomic force microscope. The initial separation of the graphene drum and
the gate electrode is estimated from the height difference between the graphene contact
electrodes and the gate electrode. The resonance frequency of the lowest mechanical mode
is ω1/2π. The effective mass meff of the few layer graphene drums is given in terms of the
effective mass of a single layer graphene drum meff,0 ≈ 1.6 fg. The cavity is characterized
by its resonance frequency ωc and its total coupling rate κtot, which is composed of the
external coupling rate κext and the internal loss rate κint. The voltage in brackets is the
DC electrode voltage Vg at which the parameter is measured. The single-photon optome-
chanical coupling g0 is calibrated from thermal motion measurements in device I and III.
For device II the coupling is calibrated from the driven motion as described in Ref. [1].

Device I Device II Device III Section

Graphene device

Drum radius 1.65 µm 1.6 µm 1.6 µm S.2
Cavity electrode radius 1.1 µm 1.1 µm 1.2 µm
Graphene cavity- 85 nm 90 nm 88 nm
electrode separation
Graphene contacts Nb and Au Nb Nb S.2
ω1/2π 46 MHz (0.6 V) 44 MHz (-3.3 V) 67 MHz (0 V)
Effective mass 6×meff,0 35×meff,0 25×meff,0 S.4.1
Cavity S.3.1
ωc/2π (0 V) 7.48788 GHz 7.43778 GHz 7.4244 GHz
κtot/2π (0 V) 2.5 MHz 3.2508 MHz 1.8 MHz
κext/2π (0 V) 1.7 MHz 1.3176 MHz 850 kHz
κint/2π (0 V) 800 kHz 1.9324 MHz 950 kHz
Coupling

g0/2π 7.3 Hz (0 V) 2.95 Hz (-3.3 V) 9.7 Hz (0 V) S.5
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Figure S1: Coupled graphene-superconducting cavity device. a, Colored scanning
electron microscopy image of device I. The graphene resonator is coupled to a supercon-
ducting niobium cavity (red). The circular graphene drum is suspended over the circular
cavity counter-electrode and clamped on the sides between gold electrodes (yellow) and
crosslinked Polymethylmethacrylate (PMMA, dark green). The graphene flake is clamped
on the two sides of its surface in order to improve the attachment to the support. b,
Cross-section of the graphene drum. c, Superconducting cavity with coupling ports and
graphene contact electrodes. On-chip capacitors CLP ≈ 1 − 2 pF between the graphene
contact electrodes and the ground reduce the internal loss of the cavity. In a reflection
measurement, the cavity is probed using the strongly coupled port. In a transmission mea-
surement, the weakly coupled port is used as the input (Cweak) and the strongly coupled
port as the output (Cstrong). In device II the purple line is used as weak port.
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S.3 Measurement setup

Figure S2 shows a detailed schematic of the measurement setup. We carry out the mea-
surements with a Triton 200 dilution refrigerator from Oxford instruments with a base
temperature of 15 mK. The RF-lines are UT85-SS-SS coaxial cables from room temper-
ature to the 700 mK stage and superconducting UT85-Nb-Nb coaxial cables at lower
temperatures. For the cavity and JPA pump tones we use two Agilent E8257D PSG
microwave sources. An Agilent N5181A microwave source is used for the low frequency
drive. As for the directional couplers, we use a 10 dB Pasternack PE2204 on the trans-
mission port, a 20 dB Arra 5191-20 on the reflection port and a 20 dB Krytar 120420 in
front of the JPA. The circulators are CTH0408KC from Quinstar. The DC voltage source
used to apply Vg is a SIM928 from Standford Research Systems. The DC line is filtered
with π-filters at room temperature and a home made RC filter at the mixing chamber. A
Bias Tee ZFBT-6GW from minicircuits connects the DC line and the low frequency drive
line.

We use a digitally variable attenuator TEA13000-12 and a variable phase shifter
TEP8000-6 from Telemakus to attenuate the pump tone by ≈ 40 dB. We do not need
to cancel the JPA pump tone as the double cavity design [2] allows to pump the JPA
with a detuning of ≈ 200 MHz from the signal. An additional SIM928 DC voltage source
is used to generate a current through a flux coil underneath the JPA and thereby tune
the frequency of the JPA amplification band (not shown). The cryogenic HEMT is an
LNF-LNC4 8A from Low Noise Factory. For spectral measurements we use an Agilent
MXA N9020A with integrated preamplifier.

A detailed schematic of the energy decay measurement setup is shown in Fig. S3.
To stop the mechanical drive signal and initiate the energy decay, we use a ZASW-
2-50DR+ RF switch from Mini-Circuits. The switch is triggered with a square-wave
signal generated with a NI PXI 5451 AWG from National Instruments. Because of the
optomechanical coupling, the mechanical response is frequency up-converted to the cavity
resonance frequency ωc. At the output of the cryostat, the signal at the pump frequency is
attenuated with a tunable bandpass-filter WBCQV 7000/8000-6SSSD from Wainwright
Instruments. This is to avoid saturation during amplification of the signal with the
subsequent low-noise amplifiers AMF-4F-04000800-07-10P and AMF-3F-04000800-07-10P
from MITEQ. To damp reflections from the amplifiers, isolators D3I6012 from Ditom
are used in front of the amplifiers. The signal is down-mixed using an I-Q mixer IQ-
4509LXP from Marki Microwave to the intermediate frequency ωIF = 500 kHz. The
mixing tone is generated by a ZVB-14 from Rhode and Schwarz. The I and Q quadratures
are independently filtered with a 1.9 MHz lowpass filter BLP 1.9+ from Mini-Circuits
and amplified by a SR-560 preamplifier from Stanford Research. The preamplifier has an
additional high pass filter at 10 kHz and a low pass filter at 1 MHz. We record the two
quadratures using a two channel digitizer NI PXI 5114 from National Instruments. The
digitizer and the trigger generator are synchronized with the internal PXI bus.
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Figure S2: Measurement setup with cryogenic wiring. The detailed schematic
shows the cancellation of the cavity pump tone, the wiring of the Josephson parametric
amplifier (JPA) and the filtering of the lines. In addition to reflection measurements
over the strongly coupled cavity port (Cstrong), we measure the cavity in transmission by
coupling the pump signal using a weakly coupled port (Cweak). The asymmetric coupling
allows to attenuate the residual cavity pump tone at the output of the cavity, without
creating a significant additional loss channel for the signal. To avoid saturation of the
JPA, the pump tone is further attenuated by a cancellation tone in front of the JPA. The
JPA is operated as a non-degenerate reflection amplifier. All radio frequency input lines
are attenuated at different temperature stages to eliminate thermal noise. At the 15 mK
stage, directional couplers are used instead of attenuators to minimize the heat load. The
thermal noise entering the output line is attenuated with circulators.
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Figure S3: Detailed energy decay measurement setup.

To record energy decay measurements we pump the cavity with an electromagnetic
field with frequency ωp = ωc − ωd. Here, ωc ≈ 7.5 GHz is the cavity resonance frequency
and ωd is the mechanical drive frequency with ωd ≈ ω1. The optomechanical coupling
leads to an anti-Stokes scattered field around frequency ωc. The signal is then down-mixed
from ωc to 500 kHz using an I/Q frequency mixer. The down-mixed signal is then digitized,
digitally band-pass filtered around 500 kHz with bandwidth BW , squared and eventually
low pass filtered with bandwidth BW/2. We set BW ≈ 2 kHz for measurements with
low vibrational amplitudes (Fig. 2 of the main text), and BW = 150 − 400 kHz for
measurements with large vibrational amplitudes in order to account for changes in the
vibrational frequency of the mechanical resonator (Fig. 3 of the main text). In order
to subtract the amplifier noise contribution from the mechanical signal, we compute the
time-averaged signal at the end of each decay traces (when the vibration amplitude is
suppressed to zero). This noise subtraction has been applied for all amplitude ring-down
measurements presented throughout the paper.

S.3.1 Characterization of superconducting cavity

In Fig. S4 we plot the reflected |S11|
2 and transmitted |S12|

2 power as well as the phase
shift of the reflected signal at T = 15mK. To extract the internal loss rate κint and
the decay rate thought the external ports κext = κweak + κstrong we make use of the fact
that the external loss over the weak port is negligible κweak < 2π · 60 kHz<< κstrong. In
the reflection measurement using the strong port with κext ≈ κstrong, the line shape is
described by [3]

S11 =
κint − κext − 2i(ω − ωc)

κint + κext − 2i(ω − ωc)
. (S1)

A fit of the reflected signal to this equation yields κext/2π = 1.7MHz and κint/2π =
0.8MHz.
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Figure S4: Transmission and reflection measurement of the superconducting
cavity in device I. The measurements include the cryostat wiring and the cryogenic
HEMT amplifier. The strongly coupled port is denoted with 1 and the weakly coupled
port with 2.

S.3.2 Noise reduction with the Josephson parametric amplifier
(JPA)

The JPA significantly improves the detection efficiency of energy decay measurements, as
illustrated in Fig. S5. The red trace is recorded with the JPA turned on, while the blue
trace corresponds to the measurements with the JPA switched off. For the chosen gain
of 26 dB we observe a noise rise of 15 dB in spectral measurements when turning on the
JPA. As a result, the effective system noise is dominated by the noise of the JPA with
only a small contribution from the HEMT noise and cable losses after the JPA. The JPA
used in our setup has been demonstrated to operate close to the quantum limit [2].

S.4 Tuning of the mechanical resonance frequencies

with gate voltage

S.4.1 Effective mass of the fundamental mode of the mechanical
resonator

In order to determine the mass of the three devices, we apply different methods. For
device I we measure the mechanical resonance frequency as a function of gate voltage, see
Fig. S6, and we check that the obtained mass is consistent with the graphene thickness
estimated from optical contrast measurements. At large gate voltage, the resonant fre-
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Figure S5: Improvement of measurement quality with the Josephson parametric
amplifier (JPA). The figure shows the decay trace with the JPA turned on (red) and
the measurement with the JPA pump switched off (blue).

Figure S6: Mechanical resonance frequency as a function of Vg. The blue line
corresponds to a fit of the measurement to Eq. (S2) for low |Vg|.
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quency becomes higher when increasing |Vg|, because of the variation of the mechanical
tension in the graphene flake. Near Vg = 0V, we observe the opposite behaviour, which
is attributed to capacitive softening. We quantify the effective mass meff of the resonator
by comparing these measurements to the predictions of capacitive softening for a circular
drum under tensile tension separated from the gate electrode by the distance d [1],

ω1(Vg) =

√

ω1(0)−
0.271

meff

ǫ0πR2
g

d3
V 2
g . (S2)

Here Rg is the radius of the gate electrode, and ω1(0) the frequency at Vg = 0V. The
effective mass meff = 0.27πRρ2D is further decomposed into the radius R of the circular
resonator and the two-dimensional mass density ρ2D = ngρgraphene with ng the number of
graphene layers and ρgraphene = 7.6 × 10−19 kg/µm2. Prior to cooling down the device,
we use atomic force microscopy to determine the geometrical device parameters to be
R = 1.65µm, Rg = 1.1µm, and d = 85 nm. The fit shown in Fig. S6 is obtained using
a mass that corresponds to ng = 5.5 graphene layers and a voltage offset Voffset = 0.25V
which is attributed to the work function difference between the graphene membrane and
the cavity electrode. Probing the number of graphene layers by means of optical contrast
measurements [5, 6] yields ng ≈ 6, which is in good agreement with the value obtained with
the other method. For the device II, we measure the thickness of the graphene flake by
atomic force microscopy (AFM) and divide the obtained value by 0.335 nm, the thickness
of a single graphene layer [5]. We measure a thickness of t = 12 nm and estimate ≈ 35
equivalent graphene layers. For device III we estimate ≈ 25 graphene layers, obtained as
an average from AFM measurements and a fit to the gate dependence of the mechanical
resonance frequency.

S.4.2 Gate voltage dependence of the resonant frequencies of

the mechanical modes of device II

Figure S7 shows the detectable resonant frequencies of the mechanical modes of device
II as a function of the DC voltage Vg applied between the graphene flake and the cavity.
The resonant frequencies are extracted from driven spectra recorded with a high driving
force amplitude and a high pump power (Vd = 120 µV, Ppump = 13 mW at the input
of the cryostat). The lines in the figure are parabolic guides to the eye. Since the Vg

dependencies of the resonant frequency are different for the different modes, it is possible
to set the frequency ratio of two modes to an integer by applying the appropriate Vg

values.
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Figure S7: Mode spectrum of device II. Fundamental and higher mechanical mode
spectrum are extracted from driven measurements.

S.5 Thermal motion and calibration of vibrational

amplitude

The integrated area of the thermal resonance is a direct probe of the temperature of
the mechanical mode and therefore allows for the calibration of the mechanical phonon
occupation (Fig. S8). The area is linearly proportional to the motional variance 〈z2〉
and thus directly linked to the temperature of the mode Tm through the equipartition
theorem 1/2meffω

2
m 〈z2〉 = 1/2kBTm. Here, ωm is the resonant angular frequency of the

graphene resonator. In Fig. S8b we plot the peak area of device I as a function of the
cryostat temperature Tcryo. Above Tcryo = 60 mK, the area is proportional to the cryostat
temperature in agreement with the equipartition theorem such that we assign Tm = Tcryo

and extract the resonator phonon occupation nm = kBTm

h̄ωm

. From this calibration, we obtain
an occupation of 20 phonons for the spectrum in Fig. S8a and an average of nm = 25± 5
over many spectra at base temperature. The saturation of the mode temperature below
Tbath = 60 mK is attributed to the heating induced by the pump field (see below).

Based on this measurement, we are also able to accurately calibrate the single-photon
optomechanical coupling g0 of the mechanical resonator to the cavity [4]. It is inferred
from the area of the thermal resonance measured as the output power Pout =

∫
SNdω/2π

at the level of the spectrum analyzer and the input power Pin applied at the input port of
the cryostat. Here, SN is the single sided power spectral density. The ratio Pout/Pin reads
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Figure S8: Thermal calibration of device I. Power spectral density (SN) and dis-
placement spectral density (Sz) of the thermal motion measured at base temperature
Tcryo = 15mK with a photon number np = 1.9 · 105. b, Calibration of the area of the
thermal peak as a function of cryostat temperature at a photon number np = 1.9 · 105

for Tbath < 150 mK and np = 3.8 · 105 for Tbath > 150 mK. The linear slope at high
temperature allows us to convert the peak area into the phonon number. The slope yields
the opto-mechanical coupling strength g0/2π = 7.3 Hz. The minimum mechanical phonon
occupation is nm = 25 at the base temperature of the cryostat, which is 15 mK.

Pout(ωc)

Pin(ωp)
= 4g20 · gain · loss ·

κ2
ext

κ2
tot

1

ω2
m

kB
h̄ωm

Tm, (S3)

with the total cavity decay rate κtot = κint+κext. We determine the product loss · gain =
−30.25 dB by measuring the transmitted power through the cryostat at ωc (green curve
in Fig. S4). From the data in Fig. S8b, we obtain g0 = 2π × 7.3Hz. For this calibration
to be precise, we verify that the response of the transmitted power through our input and
output lines remains constant over the frequency range between ωc and ωp. In energy
decay measurements, we use this calibration in order to convert measured power into
vibration amplitude.

S.6 Energy decay in the low vibrational amplitude

regime

S.6.1 Comparison between γdecay and γspectral

We compare the energy decay rate γdecay obtained from ring down measurements with the
line-width γspectral of the thermal resonance of spectral measurements (Fig. S9). Ther-
mal spectra are fitted with a Lorentzian (red lines) to extract γspectral. For comparison,
the black dotted lines correspond to Lorentzian resonances with the width γdecay that is
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Figure S9: Comparison of spectral line-width and energy decay rate in device

I. a, Power spectral density at the output of the cavity (SN) and displacement spectral
density (Sz) of a typical thermal motion spectrum measured at Tcryo = 15mK (red data
point), yielding γspectral/2π = 300 Hz. Using the same np and Vg, we obtain γdecay/2π =
130 Hz from energy decay measurements. The corresponding spectrum is plotted as a
black dotted Lorentzian. We set np = 1.9 · 105 and Vg = 0 V. b, Thermal spectrum at
Tcryo = 270 mK, yielding γspectral/2π = 800 Hz . We get γdecay/2π = 760 Hz from energy
decay measurements. These measurements are recorded with np = 3.8 ·105 and Vg = 0 V.
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γ

Figure S10: Dependence of the energy decay rate on cavity pump photons.

Energy decay rate while pumping the cavity either on the red sideband (red points) or on
cavity resonance (black points) in device I. The dashed red line corresponds to γdecay =
γm0 + Γopt where γm0 is the intrinsic decay rate obtained at low np and Γopt = 4npg

2
0/κ

the optomechanical damping. The continuous red line is obtained by including the effect
of Joule heating, that is, by taking into account the np dependence of γm0 (black line).

obtained from energy decay measurements. Figure S9a shows resonances at the cryostat
base temperature, which is Tcryo = 15 mK. The spectral linewidth γspectral ≈ 2π × 300 Hz
is more than twice as large as γdecay ≈ 2π×130 Hz. Dephasing accounts for about 50% of
the spectral linewidth. Spectral measurements and energy decay measurements are both
obtained with np = 1.9 · 105 and Vg = 0 V. This value of np leads to heating as we will
discuss below in section S.6.2.

The difference between γspectral and γdecay is greatly reduced at higher temperature.
For instance, the difference is suppressed to 40 Hz at 270 mK (Fig. S9b). Dephasing
accounts for about 5% of the spectral linewidth.

S.6.2 Dependence of energy decay rate on pump field amplitude

We plot γdecay as a function of the number np of pump photons in the cavity for device I
at the cryostat temperature Tcryo = 15 mK (red data points in Fig. S10). For np < 105,
we observe that the decay rate remains constant γm0 ≈ 50 Hz over a large range of np.
Upon increasing np above 105, γdecay gets larger. We show below that the increase of
γdecay is due both to optomechanical damping and to Joule heating induced by the pump
electromagnetic field.

These data are recorded by pumping the cavity on the red detuned sideband ωp = ωc−

ωm. The resulting optomechanical damping Γopt = 4npg
2
0/κ, shown with the red dashed

line in Fig. S10, is lower than the measured γdecay. This indicates that optomechanical
damping alone cannot account for our data.
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We quantify the effect of Joule heating by pumping the cavity at ωp = ωc and recording
energy decay traces at both ωc−ωp and ωc+ωp. Pumping at ωp = ωc leads to Γopt = 0 Hz.
We observe that γdecay gets larger upon increasing np (black data points in Fig. S10). This
increase of γdecay is attributed to Joule heating. This measurement can be described by
γdecay ∝ n0.43

p (black line in Fig. S10).
By adding this np dependence of γdecay due to Joule heating together with Γopt =

4npg
2
0/κ, we quantitatively reproduce the measurement of γdecay as a function of np (red

line in Fig. S10).

S.7 Energy decay in the high vibrational amplitude

regime

S.7.1 Measurement of the instantaneous vibrational frequency

during the decay

The vibration frequency during the decay is obtained with short-time Fourier transform
(STFT). This method is suitable for the analysis of signals with time-varying frequency
spectrum. We use a Hamming apodization function to segment the signal in temporal
windows. Such a process allows us to reduce spectral components that are due to the
temporal window itself, while keeping a good frequency resolution of the analyzed signal.
For a time varying signal z(t), its STFT is expressed as

Z(t, ω) =

∫ +∞

−∞

z(t′) · Ham(t− t′) · e−j·ω·t′dt′. (S4)

We use a Hamming apodization function Ham(t) with a window width of 200 µs. The
STFT is calculated with a frequency resolution of 610 Hz. The plotted STFT at time t
is the average of the STFT of 1000 individual energy decay traces (Fig. S11a).

In addition to the smooth decay of the eigenfrequency described in the main text, we
observe a jump in frequency from ωd to ωm,max in Fig. S11a. The jump is faster than the
time resolution of the Fourier transformation. Furthermore, the jump is consistent with
the dynamics of a resonator when it undergoes the transition between the driven and the
non-driven regime (see schematic in Fig. S11b). In the driven regime, the resonator is
forced to oscillate at ωd, whereas the eigenfrequency ωm(z) of a resonator in the non-driven
regime only depends on the vibrational amplitude, as indicated by the red line in Fig. S11b.
The jump from ωd to ωm,max is expected to be quasi-instantaneous, as the motion during
the free decay has no frequency memory and depends only on the initial displacement and
velocity at t = 0. Since the total energy of the resonator Em = 1/2meffω(t)

2z(t)2 remains
constant over t ≪ 1/γdecay, the observed jump in ω should in principle be associated with
a change in z. For the observed 15 kHz jump in ω, the corresponding 50 fm change in z
is however below the resolution of our measurement.
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a b

Figure S11: Short-time Fourier transform of the vibration during the decay.

a, Vibration frequency as a function of time during the decay (same data as in the
main text). b, Schematic showing the relation between the driven spectral response
(black) and the free decay (red). The two black curves correspond to the driven spectral
response for high and low driving force amplitudes. When the driving force is stopped,
the vibration frequency switches from ωd to ωm,max and then evolves during the decay
along the amplitude dependent eigenfrequency towards ωm,0.

S.7.2 Energy decay when the frequency ratio of two modes is

not strictly an integer

The crossover in the decay rate is also observed in device II when tuning the gate voltage
away from the 3:1 internal resonance condition at Vg = −3.3 V. (Figure S12). However,
the amplitude where the decay rate changes gets larger (blue curve). This is in agreement
with the increased energy that is required to overcome the frequency detuning and induce
mode hybridization.

S.7.3 Energy decay measurements compared to the predictions

with the dissipative force F = ηz2ż

Previous spectral measurements of nonlinear damping in nanotube and graphene res-
onators were analysed using a dissipation force F = ηz2ż with η a constant [7]. Here,
we show that this nonlinear damping force cannot account for our energy decay measure-
ments. The equation of motion is

z̈(t) + ω2
1z(t) +

[

γ1 +
η

meff

z2(t)

]

ż(t) + α1z
3(t) = Fd(ωd)/meff (S5)

with α1 the Duffing nonlinear constant and Fd(ωd) the oscillating force at frequency
ωd/2π [7, 8]. In the absence of dephasing, the value of α1 can be obtained from spectral
measurements by plotting the shift of the resonant frequency ∆ω1 as a function of the
largest vibrational amplitude zmax of the driven spectra. From Eq. (S5) this dependence
can be approximated by [8]

∆ω1 =
3

8

α1

ω1

z2max (S6)
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Figure S12: Energy decay away from the exact 3:1 internal resonance condition.

At Vg = −3.1 V (blue trace) the change of the dissipation rate occurs at a higher amplitude
compared to the energy decay at Vg = −3.3 V (red).

where ω1 is the resonant frequency at low driving force. The nonlinear dissipation constant
η can be extracted from spectral measurements as well. For this, we plot zmax divided by
the amplitude of the driving force Fd as a function of zmax. According to Eq. (S5), this
dependence scales as

Fd

zmax

=
η · ω1z

2
max

4
+

meffω
2
1

Q1

(S7)

where Q1 is the quality factor of the resonator. From Eq. (S5) the energy decay can be
approximated by [8]

z2(t) = z20 ·
exp

[

−

t−t0
τ

]

1 + 2η

8meff

· τ · z20 ·
(

1− exp
[

−

t−t0
τ

]) (S8)

with z0 = z(t = 0) and τ = Q1/ω1.
In the following, we assume that the dissipative force is given by F = ηz2ż, we extract

α1 and η from spectral measurements, and we show that the measured energy decay
cannot be described by the energy decay predicted with the dissipative force F = ηz2ż.
Figure S13a shows the driven spectra of device II recorded for different force amplitudes
Fd. We extract zmax and ∆ω1 for each spectrum. From the plots of ∆ω1 and zmax/Fd as a
function of zmax (Figs. S13b,c), we get that α1 = −8.3·1032 m−2s−2, η = 6·106 kg/m2s, and
Q1 = 55 000 using Eqs. (S6),(S7). Here we use meff = 60 fg from section S.1. Figure S13d
shows that the measurement of the energy decay is not described by Eq. (S8) using the
values of α1, η, and Q1 determined above. To conclude, this analysis indicates that
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Figure S13: Spectral measurements compared to energy decay measurements.

a, Spectral response of the driven motion for increasing drive voltage Vd with ωd swept
from high to low frequency. The measurement is recorded in device II at intermediate
vibration amplitude with Vg = −3.3 V. b, Plot of fmax as a function of zmax. From
the fit with a nonlinear Duffing restoring force, we extract α1 = −8.3 · 1032 m−2s−2 and
ω1 = 44.135 MHz. c, Plot of zmax/Fd as a function of zmax. The data can be fitted with
η = 6 · 106 kg/m2s and Q1 = 55 000. d, Comparison between energy decay measurement
(red line) and prediction with the dissipative force F = ηz2ż (blue dashed line).

spectral measurements have to be used with care when quantifying nonlinear dissipation.
While spectral measurements can be described with F = ηz2ż in a satisfactory way,
energy decay measurements show a strong deviation from such a dissipation process.

S.8 Theoretical modeling of the 3:1 internal reso-

nance

To model the dynamics which governs the 3:1 internal resonance, ω2 ≈ 3ω1, we consider
two interacting Duffing oscillators with mode coordinates q1,2 coupled via the interaction
Hamiltonian Hint = mgq31q2. This is the lowest order interaction term that can yield a
3:1 internal resonance. An important feature of this nonlinear coupling term is that the
coupling strength depends on energy in the system. The coupling can therefore initially
be strong and then shrink into the weak coupling regime, as energy decays during a ring-
down. The generalisation to the n:1 internal resonance is straightforward, and leads to
the same results, which will be shown in the last section.

The total Hamiltonian is H = H1 +H2 +Hint, where

Hj = m
q̇2j
2
+mω2

j

q2j
2
+

m

4
αjq

4
j , with j = 1, 2 (S9)

Hint = mgq31q2. (S10)
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The Duffing nonlinearities ∝ αjq
4

j are typically strong in graphene membrane resonators
originating from the geometric nonlinearity. In principle it results in nonlinear terms
to all orders, but for small amplitudes it usually suffices to keep only the lowest order
terms. While we have truncated the expansion at fourth order in oscillator coordinates,
we have also omitted non-resonant terms such as ∝ q1q

3

2
and ∝ q2

1
q2
2
. These terms are

typically dispersive, i.e., introducing additional energy-dependent frequency-shifts, akin
to the shifts from the Duffing terms or renormalization of the latter. As we are mainly
concerned with capturing the measured behaviors of the system (frequency saturation,
plateaus, and kinks in the ring-down traces) with a minimal set of fitting parameters,
we limit ourselves to the coupling term gq3

1
q2. The corresponding equations of motion,

introducing drive f and linear dissipation γ1,2, are

q̈1 + γ1q̇1 + ω2

1
q1 + α1q

3

1
+ 3gq2

1
q2 = f cos(Ωt) (S11)

q̈2 + γ2q̇2 + ω2

2
q2 + α2q

3

2
+ gq3

1
= 0. (S12)

The system at hand is weakly damped, and we consider the case when the system
is close to the internal resonance |ω2 − 3ω1|/Ω ≪ 1 and the external force drives the
fundamental mode |Ω−ω1|/Ω ≪ 1. We can then adopt the rotating wave approximation
(RWA) by introducing complex amplitudes aj varying slowly on the time-scale of ω−1

1
,

qj(t) = aj(t)e
iΩjt + a∗j(t)e

−iΩjt, (S13)

q̇j(t) = iΩj(aj(t)e
iΩjt − a∗j(t)e

−iΩjt), (S14)

where Ω1 = Ω and Ω2 = 3Ω. The corresponding dynamical equations in the RWA reads

ȧ1 = −i

(

[Ω− ω1]a1 −
3

2Ω
α1a1|a1|

2 +
3

2Ω
ga∗

1
a∗
1
a2

)

−
γ1
2
a1 +

f

4Ω

(S15)

ȧ2 = −i

(

[3Ω− ω2]a2 −
1

2Ω
α2a2|a2|

2 +
g

6Ω
a3
1

)

−
γ2
2
a2. (S16)

The complex amplitudes a1 and a2 describe the amplitude and phase of the periodic
oscillation which rotates with frequencies Ω and 3Ω respectively. Hence, the periodic
motion which is an orbit in coordinate {q1, q̇1, q2, q̇2}-space is described by a single point
in the quadrature-space {Re a1, Im a1,Re a2, Im a2}.

S.8.1 Bifurcation diagram and amplitude response

Changing the parameters in a nonlinear system can cause it to undergo sudden qualita-
tive changes in dynamics, so called bifurcations. For instance, the number of stationary
states may change or oscillatory motion may bifurcate (be initiated) at the boundary
between regions. The different dynamical regimes are conveniently charted out by means
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Figure S14: a, Amplitude branches of mode one at low drive. The mode basically responds
as a driven Duffing oscillator. The system is bistable in the frequency range between
bifurcation points A and B. b, Corresponding bifurcation diagram. Solid lines separate the
monostable and bistable regions. The dashed line corresponds to the amplitude response
in the left panel, with bifurcation points A and B indicated.

of bifurcation diagrams, where the locations of the bifurcations are represented by lines
separating the qualitatively different regions in parameter space.

To understand the bifurcation diagram connected to the system (S15)-(S16), it is
useful to first consider low drive voltages. The system then responds as an independent
Duffing oscillator, (see Fig. S14a), containing a region of bistability beween the points
A and B. Sweeping the frequency over this region results in hysteresis. For a downward
frequency sweep, the system will follow the higher branch until it loses stability at point
A, while an upward sweep will switch from the lower branch to the higher branch at point
B. Hence, as a consequence of the multi-stability, not all bifurcations crossed in parameter
space are observed experimentally during a single frequency sweep. For instance, point B
in Fig. S14 is passed unnoticed during the downward frequency sweep, whereas point A
is not visible in an upward sweep.

At higher drives the mode coupling becomes stronger, resulting in a more complex
bifurcation diagram (see Fig. S15). The solid blue lines correspond to saddle-node (SN)
bifurcations where two new states (fix-points) with fixed amplitudes and phases are cre-
ated. These are easily found by numerically solving for the static solutions to Eqs. (S15)-
(S16). The dashed red lines show Hopf (H) bifurcations. At a few points, the Hopf curve
undergoes a Bogdanov-Takens bifurcation and continues as a neutral saddle, which is not
a bifurcation. Hopf bifurcations involve the change of stability of a fix-point in quadrature
space and the emergence of stable or unstable oscillatory motion. Finding Hopf bifurca-
tions is technically more demanding but the Matlab software project matcont [20] offers
an efficient implementation to find the bifurcations. We will refer to the bifurcations in
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Figure S15: Bifurcation diagram for the system (S15)-(S16) as function of frequency
detuning and drive strength. The diagram is drawn using the fitted parameter values in
table S2. The lines separate regions with different qualitative dynamical behavior. Blue
solid lines correspond to saddle-node bifurcations where two new fixed states appear.
The dashed red lines correspond to Hopf bifurcations where the stability of an amplitude
branch changes and is accompanied by stable or unstable amplitude modulation of the
motion (parts of the lines are neutral saddles). The dashed black lines correspond to
frequency sweeps at constant drive voltage (see Figs. S16 and S17), i.e, they are not
bifurcation lines.

relation to the rotating frame Eqs. (S15)-(S16). While the bifurcation diagram is identi-
cal in the original {q1, q̇1, q2, q̇2}-representation, the involved bifurcations are technically
different due to the transformation into the rotating wave Eqs. (S13)-(S14).

To relate the bifurcation diagram to the observed frequency response we take as ex-
amples two frequency sweeps at fixed drives corresponding to the two horizontal dotted
lines in Fig. S15. The changes in amplitude of mode one for these sweeps are shown in
Figs. S16 and S17. For strong driving the system crosses three SN bifurcations at the
points B, C and E (see Fig. S16). To understand what happens on the Hopf bifurcation,
consider the situation when the system is in the stable high-amplitude state in the top left
of Fig. S16(a). If the driving frequency is increased, the system follows the stable branch
until point A. Here the system undergoes a (supercritical) Hopf bifurcation which changes
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Figure S16: Amplitude branches of mode one (a) and two (b) corresponding to the
upper dashed line frequency sweep in Fig. S15. The bifurcation points A-E correspond
to the bifurcations crossed in Fig. S15. Hopf bifurcations take place at point A and D
which initiate and terminate an amplitude modulated solution. Note that mode 2 is not
discontinuously actuated close to the internal resonance where the plateau of mode one
(indicated by the experimental data points) is observed.

the stability of the stationary state to become unstable. At the same time, stable periodic
orbits (limit cycles) in the quadrature space bifurcate from the Hopf-point, introducing a
new frequency into the dynamics. This means that the system no longer performs motion
at stable amplitude but instead the motion is amplitude modulated. The state of the
system can then no longer be represented as a point in fig. S16. In {q1, q̇1, q2, q̇2}-space,
the amplitude modulation of the periodic orbit, also called torus state, corresponds to dy-
namics on the shell of a donut. Note that the introduction of the new frequency generally
makes the motion quasi-periodic. The system also exhibits chaotic dynamics, and the bi-
furcation diagram presented here is not complete. Other bifurcation lines such as period
doubling bifurcations are not shown, but have been observed in numerical simulation,
along with chaotic trajectories.

The plateau observed in the response of mode one is connected to the initiation of
torus dynamics and chaotic dynamics. The data points in (Fig. S16-S17) represent the

quantity A =
√

Re{ā1}2 + Im{ā1}
2, where the bar denotes time averaged quantity. If the

system is in a steady oscillatory state, a1 is time independent and A gives a measure of the
energy (amplitude squared). However, if the system is in a torus or chaotic state a1 is time
dependent, resulting in some of the energy being contained in interference terms which
are averaged out in the measurement of A. Hence, not all the energy is captured which
results in the observed plateau. Note that for the ring-down experiments, the bandwidth
of the measurement is larger than the bandwidth during the frequency sweeps. Hence, in
the ring-down experiments also the energy in the interference term is measured.
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Figure S17: Amplitude branches of mode one corresponding to the lower dashed line
frequency sweep in Fig. S15. The bifurcation points a-i correspond to the bifurcations
crossed in Fig. S15.

A consequence of the large fluctuations in the chaotic state is that the system hits
the SN-point B and drops to the low stable amplitude branch also for downward sweep,
(Fig. S16). The strength of fluctuations and basin of attraction for different states de-
termine where the system ends up when there are more than one stable state to switch
to (Fig. S17). No stochastic fluctuations were taken into account when simulating the
frequency responses.

S.8.2 Determination of the system parameters

The resonance frequency ω1, the damping rate γ1 and the Duffing constant α1 of mode 1
are obtained from the spectral measurements of mode 1 at low drive, as it is usually
done with Duffing oscillators. The signal of the spectral measurements of mode 2 is
weak, because the resonance frequency ω2 is much larger than the cavity linewidth. As
a result, the resonance of mode 2 can be detected only by applying a large driving force,
which drives mode 2 deep into the nonlinear regime. The poor quality of these spectral
measurements prevent us from quantifying the damping rate γ2 and the Duffing constant
α2 of mode 2. Instead, we estimate these parameters as well as the coupling strength g

using an iterative process where our model is compared to the measurements of (i) the
bifurcations (in Fig. S18a), (ii) the shape of the plateau in the response (Fig. 4b of the

http://dx.doi.org/10.1038/nnano.2017.86


© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE NANOTECHNOLOGY | www.nature.com/naturenanotechnology 23

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NNANO.2017.86

-80 -60 -40 -20 0 20 40

Frequency ( ω- ω
1
)/2 π (kHz)

0

20

40

60

80

100
D

ri
v
e
 V

d
 (

m
V

)

a

-60 -40 -20 0 20

Frequency ( ω- ω
1
)/2 π (kHz)

0

0.1

0.2

0.3

0.4

0.5

0.6

A
m

p
lit

u
d

e
 (

n
m

)

b

Figure S18: a, Experimental data (circles) for the bifurcations in comparison with the
theoretically predicted bifurcations. The bifurcation lines that are not observed exper-
imentally are faded. b, Measured response. The bifurcation points are experimentally
observed as drops in amplitude, see arrows. The data correspond to a downward frequency
sweep at Vd = 63.1 mV.

main text), (iii) the amplitude response close to the internal resonance (Fig. 4a-b in the
main text, as well as Fig. S17) and (iv) the ring-down trace (Fig. 4d of the main text).
The resulting parameters are displayed in Table S2. These parameters reproduce the
ring-down. The frequency responses are reproduced with identical parameters with the
exception of γ1. As the frequency response is measured using a larger pump power, the
damping γ1 must be increased accordingly (see Fig. S10).

Table S2: System parameters.

Quantity Value Quantity Value
ω1/2π 44.132 MHz γ1/2π 993 Hz
ω2/2π 132.25 MHz γ2/2π 1.9 kHz
α1 −8.3 · 1032 s−2m−2 g 1.25 · 1033 s−2m−2

α2 5.25 · 1034 s−2m−2

S.8.3 Ring-down with 1:1 internal resonance and linear coupling

In order to understand the energy decay of the coupled system it is instructive to start
with a simplified scenario of two linearly coupled and nearly resonant harmonic oscillators.
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The equations of motion in RWA are given by

ȧ1 = −
i

2
ga2 −

γ1
2
a1 (S17)

ȧ2 = −i
(

δa2 +
g

2
a1

)

−
γ2
2
a2, (S18)

where δ = ω1 − ω2 is the frequency detuning. The system, being linear, has solutions in
terms of decaying eigenmodes u±(t) obeying u±(t) = u

(0)
± (t)e−λ±t. The eigenvalues λ± are

given by

λ± =
1

2





γ1 + γ2
2

+ iδ ±

√

(

γ1 − γ2
2

− iδ

)2

− g2



 (S19)

We can clearly distinguish two cases. Firstly, when g2 ≫ (Γ−/2)
2 + δ2, λ± ≈ 1

2
(Γ+/2 +

i[δ ± |g|]), where Γ± = γ2 ± γ1. The system is hybridized and both modes decay with
the same rate Γ+/2. In the other limit, g2 ≪ (Γ−/2)

2 + δ2, the two modes are effectively
decoupled and ring down with rates γ1/2 and γ2/2 respectively. Hence, the criterion for
observing hybridization during the ring-down is that g2 > (Γ−/2)

2 + δ2.

S.8.4 Ring-down with 3:1 internal resonance and nonlinear cou-

pling, energy-phase representation

When the drive is switched off, the reference phase provided by the drive vanishes and
the system becomes gauge invariant. This implies that the number of dynamical variables
can be reduced from four to three. For the discussion of the transient behavior during
the ring-down it is then convenient to work with energy and phase-variables. Defining
the variables Ej and φj such that aj =

√

Eje
iφj/Ωj, (recall that Ω1 = 1 and Ω2 = 3) we

can formulate the dynamical equations (S15)-(S16) in terms of the mode energies E1, E2

and the relative phase ϑ = 3φ1 − φ2. The corresponding equations for the mode energies
and relative phase are

Ė1 = −gE1

√

E1E2 sinϑ− γ1E1 (S20)

Ė2 = gE1

√

E1E2 sinϑ− γ2E2 (S21)

ϑ̇ =

[

δ +
9

2
α1E1 −

1

18
α2E2

]

+
g

2
(E1 − 3E2)

√

E1

E2

cosϑ. (S22)

Here, we have introduced the relative mode detuning δ = (ω2 − 3ω1)/Ω.
When the modes are strongly hybridized, their mode energies E1,2 oscillate around a

common mean. It is then convenient to switch to yet another representation where we use
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one variable to denote total mode energy and the other variable to represent the relative
energy of the two modes. Let E denote the total mode energy, E(t) = E1(t) + E2(t).
The distribution of energy between the two modes we represent by the variable ∆(t) =
[E1(t)−E2(t)]/[E1(t)+E2(t)]. Changing the time scale to τ = gt we obtain the dynamical
system

Ė = −EΓ+ − E∆Γ− (S23)

∆̇ = −E
1 + ∆

2

√
1−∆2 sinϑ− (1−∆2)Γ− (S24)

ϑ̇ = δ + E

(

α− +∆α+ +

(

∆−
1

2

)

√

1 + ∆

1−∆
cosϑ

)

.

(S25)

Here we have introduced the rescaled dissipation rates Γ± ≡ (γ1 ± γ2)/g and the rescaled
detuning δ = (3ω1 − ω2)/g, and Duffing parameters α± = (9α1 ± α2/9)/4g.

At high energies, the hybridized state is characterized by oscillations in ∆ correspond-
ing to energy switching back and forth between the two modes. In this regime, we can
crudely estimate the time average ∆̄ ≈ 0 and compare with the weakly damped linearly
coupled system. We can then identify the energy dependent detuning δeff ≈ δ+Eα− and
the effective energy dependent coupling geff ≈ gE. From the results on the linearly coupled
system above (see sec. S.8.3) we thus expect an average exponential like decay with rate
of the order of Γ+ and, the hybridization to be maintained as long as g2eff > δ2eff +(Γ−/2)2,
However, as the system energy approaches this value, the above argument breaks down.
In particular, we have found that at the energy where the modes decouple, the system
may enter a regime of slow dynamics which is not susceptible to this simple estimate.
Still, the estimate g2eff ≈ δ2eff + (Γ−/2)2 provides a crude upper estimate on the location
of the transition.

S.8.5 Ring-down with n:1 internal resonance and nonlinear cou-

pling

In the more general situation of an n:1 internal resonance case, n > 1, the frequencies are
assumed to be close to the internal resonance ω2 ≈ nω1. The Hamiltonian coupling term
(2) is replaces with gqn1 q2 but still gives very similar physics as the 3:1 internal resonance.
The coupling term is energy dependent which allows the system to enter different coupling
regions as it rings down.
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The equations for the complex amplitudes are in the n:1 case given by

ȧ1 = −i

(

δ1a1 −
3

2
α1a1|a1|2 +

n

2
ga∗1

n−1a2

)

− γ1
2
a1 +

f

2

(S26)

ȧ2 = −i

(

δ2a2 −
3

2n
α2a2|a2|2 +

g

2n
an1

)

− γ2
2
a2. (S27)

Transforming to energy and phase variables where the energy of the higher mode takes the
form E2 = n2|a2|2, the amplitude a2 =

√
E2 exp(iφv)/n and relative phase ϑ = nφ1 − φ2

result in

Ė = −EΓ+ − E∆Γ− (S28)

∆̇ = −
(

E
1 + ∆

2

)
n−1

2 √
1−∆2 sinϑ− (1−∆2)Γ− (S29)

ϑ̇ = δ + E
(

α− +∆α+
)

+

(

E
1 + ∆

2

)
n−1

2 1− n+∆(n+ 1)

2
√
1−∆2

cosϑ.

(S30)

The energy-dependent coupling becomes stronger with increasing energy to the power
(n − 1)/2 and is constant for n = 1. Hence, abrupt variations of the energy decay rates
are expected for couplings with n > 1 and not just for the 3 : 1 internal resonance.
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