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ABSTRACT 

Spectrum sensing is the basic and essential mechanisms of Cognitive Radio (CR) to find the unused 

spectrum. This paper presents an overview of CR architecture, discusses the characteristics and benefits 

of a CR. Energy detectionbased spectrum sensing has beenproposed and used widely because it doesn’t 

require transmitted signal properties, channel information, or even the type of modulation. In this paper, 

a surveyof energy detector over Additive White Gaussian Noise (AWGN), different fading channels for 

spectrum sensing methodologies in cognitive radio is presented.Theoretical analysis of time domain 

energy detection and threshold setting is investigated. Cooperative spectrum sensing and a multiple 

antenna processing based energy detector receptions are also discussed.  
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1. INTRODUCTION 

Currently, cognitive radio (CR) is great interest to technologists because of significantly 

increasing the overall utilization of spectrum efficiency. From the date of publishing paper by 

Mitola on CR [1], 30 special issue scientific journals and more than 60 dedicated conferences 

and workshopscustom to CR [2]. This is still a very fresh and interesting research topic, 

therefore many technical research questions still need to be answered.Energy detection uses a 

squaring device followed by an Integrator, the output of which gives the decision variable.This 

variable is then compared with a threshold and if it isabove the threshold, then the result of the 

detector is that aprimary user is present. Energy detection is very practicalsince it requires no 

information about the signal needed to detect. 

2. MOTIVATION: SPECTRUM SENSING FOR SPECTRUM SHARING 

Wireless communication systems were growth significantly over the last twodecades. However, 

there are limits to growth, because the radio spectrum used for wireless communications is a 

finite resource. In most countries, the government regulates the usage of the frequency 

spectrum by national regulatory bodies like the Federal Communications Commission (FCC) in 

the USA.FCC coordinated allocating frequency bands and issuing exclusive licenses to systems 

within a geographical area while forbidding or at least regulating other systems with respect to 

these bands. Figure 1 [3]shows the FCC’sfrequency allocation chart, from where we can 

observe that a heavily crowded spectrum with nearly all usable radio frequency bands already 
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licensed to commercial operators and government units for specific services, making spectrum 

a scarce resource. 

 

Figure 1. FCC Spectrum Allocation Chart 

According to the FCC study of the spectrum utilization shows that licensed spectrum with 

utilization ranges from 15% to 85%in the bands below 3 GHz [4], which indicates that there is 

significant scope of improving spectrum utilization. As a solution for the spectrum used 

inefficiently problem, CR and Dynamic Spectrum Access (DSA) areproposing an opportunistic 

spectrum usage approach [1]. The basic idea of DSA isin which frequency bands that are not 

being used by their licensed users, (a.k.a.Primary Users (PUs)), are utilized by CRs, 

(a.k.a.SecondaryUsers (SUs)) as long as they do not cause any harmful interference to PUs 

[5].Hence, the key enabling technology of DSA techniques is CR.  

The CR enables the usage of temporally unused frequency bands which are commonly known 

as spectrum holes.Usually spectrum holes are generally categorized into temporal 

spectrumholes and spatial spectrum holes. A temporal spectrum hole is unoccupied by the PU 

during the time of sensing. Hence, this band can be used by SUs in the current time slot. 

Spectrum sensing of this kind does not require complex signal processing.A spatial spectrum 

hole is a band which is unoccupied by the PU at some spatial areas; and therefore can be 

occupied by SUs As well asoutside this area. Spatial sensing of a PUneeds complex signal 

processing algorithms [6], [7].  

In terms of power spectra of incoming RF is classifying the spectrum holes into three broadly 

defined types [8]  

1. Black spaces, which are dominated by high-power “local”interfere some of the time.  

2. Grey spaces, which are partially dominated by low-power interference. 

3. White spaces, which are free of RF interference except for white Gaussian noise.  

Among these three, white spaces and grey spaces can be used by unlicensed operators if 

accurate sensing technique is designed, and Black spaces cannot be used because usage of this 

space will cause interference to the PU. 
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PU, the CR moves to another spectrum holeas shown in 

 

Figure 2. Spectrum Holes 
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3.DEFINITIONS 

The words cognitive have become buzzwords that are applied to many different networking and 

communications systems. From the Oxford English dictionary, one of the most used definitions 

of cognitive is: “pertained to cognition or to the action or process of knowing”the word 

cognition means:“the mental process of getting knowledge through thought, experience and the 

senses.”Thus, Term CR could be defined as a radio that is cognitive. 

In the 1999 paper that first invented the term “cognitive radio”, Mitola defines a cognitive radio 

as [1]: “A radio that employs model based reasoning to achieve a specified level of competence 

in radio-related domains.” 

Six years after Mitola's first article on CR, Simon Haykin in his invited paper to IEEE Journal 

on Selected Areas in Communications, summarized the idea of CR as [11]: “An intelligent 

wirelesscommunication system that is aware of its surrounding environment (i.e., outside 

world),and uses the methodology of understanding-by-building to learn from the 

environmentand adapt its internal states to statistical variations in the incoming RF stimuli by 

makingcorresponding changes in certain operating parameters (e.g., transmit-power, 

carrierfrequency,and modulation strategy) in real-time, with two primary objectives in mind: 

· Highly reliable communications whenever and wherever needed; 

· Efficient utilization of the radio spectrum. 

Coming from a background where regulations focus on the operation of transmitters, theFCC 

has defined a cognitive radio as [12]: “An intelligent wirelesscommunication system capable of 

changing its transceiver parameters based oninteraction with the environment in which it 

operates.” 

IEEE USA presented thefollowing definition [13]: “A type of radio in which communication 

systems are aware of their environment and internal state and can make decisions about their 

radio operating behaviour based on that information and predefined objectives.” 

By using only these common characteristics of all these definitions we reach at the definition of 

CR given in: “Is a technology that provides a promising new way to improve the efficiency of 

the use of the electromagnetic spectrum that available, by using spectrum sensing for detection 

of spectrum holes (unused bands), and instantly move into vacant bands while avoiding 

occupied ones without harmful interference to the PU.” 

4.CHARACTERISTICS 

CR has two importantcharacteristic concepts should be featured [14]: 

4.1 Cognitive capability 

The cognitive capability of a CRis a process of observing the outside environment in order 

tofind unused radio spectrum and determine appropriate communication parametersto adapt to 

the dynamic radio environment.Metola first who explain the cognitive capability in term of the 

cognitive cycleduring which “a cognitive radio continually observes the environment, orients 

itself, creates plans, decides, and then acts”, as shown in figure 4 [15, p. 48]. 
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The process of sensing the outside world determines the presence of spectrum hole. The 

observations taken by the sensing will be supply into plan cycle processes in which further 

used, but they also supply to learn module to learn and remember.The learning allows the 

system to learn from the experiences. The analysis process is responsible for generating and 

analysingwork streams which may be taken, i.e. determines data rate, bandwidth, frequency, 

power, modulation, etc. At thedecision stage of the cycle,the CRis chosen appropriate spectrum 

band for transmission of the signal.The analysis,decisionand learnmodules compose the inner 

part of the system, the intelligence which governs the entire CR: the Cognitive Engine. We 

consider a cognitive engine (similar to a human brain) to enable intelligence in the radio device. 

Finally the decision is put into action and the operation of the cognitive radio is actually 

influenced.The sensing (or observation) and action modules represent the interfaces of the CR 

with the real world. Similar cycles are used to describe the operation of cognitive radio by [11], 

[16],[17]. 

4.2Reconfigurability 

Reconfigurabilityshows the radiocapability to change the functions accordingto enclosing i.e. 

cognitive radio can change the radio frequency, transmission power,modulation scheme, 

communication protocol in order to reach the optimal working [9], [11], [12]. 

5.EVOLVE TO BUILD COGNITIVE RADIO 

The term radio refers to the wireless transceiver device, used the RadioFrequency (RF) as a part 

of the electromagnetic spectrum to transfer of information. 

TraditionalHardware Defined Radio (HDR) can perform only a single or a very limited set of 

radio functionality, and can only be modified through physical intervention, all of modulation 

and demodulation is performed in the analog domain.This results in higher production budgets 

and smallest flexibility in supporting multiple signal standards.Over the pasttwo decades, 

Sense/Observe 

Analysis/Plan 

Decision 

Learn 

Act/stimulate 

Figure 4. Simplified Cognitive Cycle 
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analog radio systems are being substituted by digital radio systems for several radio 

applications in military, civilian and commercial spaces. As a result, Mitolainvented theidea of 

SoftwareDefined Radios (SDR) [18]-[20].SDR Forum [21] defines SDR technology as "radios 

that provide software control of a variety of modulation techniques, wideband or narrowband 

operation, communications security functions (such as hopping), and waveform requirements of 

current & evolving standards over a broad frequency range.” 

SDR technology facilitates implementation of some of the radio functionality such as 

modulation/demodulation, signal generation, coding etc. in software modules running on a 

common hardware platform. SDR contains the same basic functional blocks as any other digital 

radio, but most, if not all, are implemented in software instead of hardware (e.g. mixer, filters, 

modulators, demodulators) [14],[22]. 

SDR architecture (a.k.a. physical layer) consists of three main units, which are software tunable 

RF front end, wideband Analog to Digital Converter (ADC) andDigital to Analog Converter 

(DAC) conversionthe implementation ofthe Intermediate Frequency (IF)section and software 

reconfigurable digital baseband radio,as shown in figure 5[22],[23].  

 

 

 

 

 

 

 

 

The RF front-end is a term referring to the analog circuitry between the antenna and the data 

converters. The main functions of the RF front end are to modulate and demodulate the carrier 

with and from the data, respectively. 

The ADC and DAC are theconnection between the physical world of continuous analog signals 

and the world of discrete digital samples handled by software.Baseband signal processing 

operations are defined by programmable designs running on digital hardware.This device is 

available in various forms on single-chip custom Integrated Circuits (ICs), of which the most 

commonly used for software radio are Digital Signal Processors (DSPs), Field Programmable 

Gate Arrays (FPGAs), General-Purpose Processors (GPPs), Application Specific Integrated 

Circuits (ASICs), and System-on-Chip (SoC) with hardware accelerators [21], [24], [25].  

Since, SDR is built around software based digital signal processing along with software tunable 

radio frequency components, therefore , SDR represents a very flexible and general radio 

platform that is capable ofoperating with many different bandwidths over a wide range of 

frequencies and using many different modulation and waveform formats. As a result, SDR can 

support multiple standards, i.e., GSM, EDGE, WCDMA, CDMA2000, Wi-Fi, WiMAX and 

multiple access technologies such as Time Division Multiple Access (TDMA), Code Division 

IF section 

 

 

“ADC & 

DAC” 

RF section 

 

“Transceiver 

RF  

Front End” 

Figure 5. Block Diagram of SDR Transceiver. 
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Multiple Access (CDMA), Orthogonal Frequency Division Multiple Access (OFDMA) [24], 

[26], [27]. 

A CR transceiver is senseradio environment and capable of adapting its physical layer 

parameters according to the environment. In order to achieve the highly flexible reconfigurable 

physical layer where communication features,thus, an SDR with all the latest communication 

techniques is the core of cognitive radio.In Figure 6 is evidenced the strict relationship between 

SDR architecture and CR one: by adding an artificial intelligence module to an SDR 

architecture, is feasible to obtain an adaptive, flexible device able to learn independently and to 

react to the external stimuli in a suitable manner [28], [29]. 

 

 

 

 

 

 

 

 

Depending on the set of criteria taken into account when deciding on the changes transmission 

and reception, there are two main types of CR:  

• Full CR(Mitola radio): In which every possible parameter observable by a SUtakes 

into account [1]. 

• Spectrum Sensing CR (Haykin radio): In which only the radio frequency spectrum is 

considered [11].  

Mitola radio is not expected to be completely implemented until 2030, until the whole SDR 

hardware become available in a suitable size [30].The work presented here is for configuring 

the SDR for spectrum sensing CR. 

We can also distinguish types of CR in terms of the parts of thespectrum available as: 

• Licensed band CR:is CR used in the bands that are used and sold by license. The IEEE 

802.22 standard defines a system for a Wireless Regional Area Network (WRAN) that 

uses spectrum holes within the TVbands between 54 and 862 MHz. To achieve its 

aims, the 802.22 standard utilizes CR technology to ensure that no undue interference is 

caused to television services using the television bands. The standard is under 

development and is currently in draft form[31], [32]. 

• Unlicensed band CR:can only utilize unlicensed parts of the radio frequency spectrum. 

There is one system in the IEEE 802.15 Coexistence Task Group 2 (TG2), which 

focuses on the coexistence of WLAN and Bluetooth [33]. 

 

IF section 

 

 

“ADC & 

DAC” 

 

Baseband 

Section 
“Software Reconfigurable 

Modules” 

Up/Down Conversion 

Filtration 

Modulation/Demodulation 

Coding/Decoding 

 

 
Cognitive 

Engine 

RF section 

 

“RF  

Front End” 

 

Figure 6. Block diagram of CR transceiver. 
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6.SPECTRUM SENSING 

Spectrum sensing (a.k.a.spectrum detection technique)is the main task in cognitive cycle and the 

main challenge to the CRs. In spectrum sensing studying the spectrum and find the unused 

bands and sharing it while avoiding the spectrum that is occupied by PU. It can be defined as 

[34]“action of a radio measuring signal feature”. To enhance the detection probability 

many spectrum detection techniques can be used,as shown in Figure 7[17]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5.1 Transmitter detection (Non-cooperative Detection) 

In transmitter detection each CR must independently have the ability to determine the presence 

or absence of the PU in a specified spectrum.A hypothesized model for transmitter detection is 

defined in [17], [22], [35]-[37],that is, the signal detected by the SU is: 

���:	�(�) = �(�)																													��:	�(�) = ℎ. �(�) + �(�)										� (1) 

where�� represents the hypothesis corresponding to “no signal transmitted”, and 	�� to “signal 

transmitted”, �(�)  is received signal,  �(�) is transmitted signal, �(�) is an Additive White 

Gaussian Noise (AWGN) with zero mean and variance ���, and ℎ amplitude of channel gain 

(channel coefficient). 

Several methods have been proposed, such as, matched filter detection, energy detection, and 

cyclostationary feature detection[17], [35]-[37]. 

1.5.1.1 Matched Filter Detection 

The matched filter detector that can use as CR has been first proposed in [38].The matched 

filter (also referred to as coherent detector), it can consider as a best sensing technique if CR 

has knowledge of PU waveform. It is very accurate since it maximizes the received signal-to-

Spectrum Sensing 
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Receiver Detection 

(Cooperative) 
Interference Based 
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Energy Detection 
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Detection 
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Figure 7.Spectrum Detection Techniques 
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noise ratio (SNR).Matched filter correlates the signal with time shifted versionand compares 

between the final output of matched filter andpredetermined threshold will determine the 

PUpresence.Hence, if this information is not accurate, then the matched filter operatesweakly 

[17], [35]-[38]. 

1.5.1.2 Cyclostationary Feature Detection 

Implementation of a cyclostationary feature detector, has been first presented in [39],as 

spectrum sensing which can differentiatethe modulated signal from the additive noise.A signal 

is said to be cyclostationary if its mean and autocorrelation are a periodic function. Feature 

detection denotes to extracting features from the received signal and performing the detection 

based on the extracted features. cyclostationary feature detection can distinguish PU signal 

from noise, and used at very low Signal to Noise Ratio (SNR) detection by using the 

information embedded in the PU signal that are not present in the noise. The main drawback of 

this method is the complexity of calculation. Also, it must deal with all the frequencies in order 

to generate the spectral correlation function, which makes it a very large calculation. The 

benefit of feature detection compared to energy detection is that it typically allows different 

among dissimilar signals or waveforms[17], [35]-[37], [39]. 

1.5.1.3 Energy Detection 

Energy detection (also denoted as non-coherent detection), is the signal detection mechanism 

using an energy detector (also known as radiometer) to specify the presence or absence of 

signal in the band. The most often used approaches in the energy detection are based on the 

Neyman-Pearson (NP) lemma. The NP lemma criterion increases the probability of 

detection	(��) for a given probability of false alarm(���). 

It is an essential and a common approach to spectrum sensing since it has moderate 

computational complexities, and can be implemented in both time domain and frequency 

domain. To adjust the threshold of detection, energy detector requires knowledge of the power 

of noise in the band to be sensed. Compared with energy detection, matched filter detection 

andcyclostationary detection require a priori information of the PUs to operate efficiently, 

which is hard to realizepractically since PUs differ in different situation.Energy detection is not 

optimal but simple to implement, so itis widely adopted.The signal is detected by comparing the 

output of energy detector with threshold which depends on the noise floor[2], [17], [35]-[37]. 

 

1.5.2 Receiver Detection (Cooperative Detection) 

A collaborative spectrumsensing method has been first proposed by Ghasemi and Sousain [40].  

CR cooperative spectrum sensing occurs when a group or network of CRs share the sense 

information they gainfor PU detection. This provides a more accurate spectrum sensing over the 

area where the CRs are located.Cooperative spectrum sensing plays a very importantrole in the 

research of CR due to its ability inimproving sensing performance especially in the fading, 

shadowing and noiseuncertainty[41], [42].  

Figure 8illustrated multipath fading, shadowingand receiver's uncertainty. As shown in 

thefigure, CR1 and CR2 are placed inside the transmissionrange of the PU transmitter (PU TX) 

while CR3 is outsidethe range. Due to multiple attenuated copies of the PU signal and the 

blocking of a house, CR2 experiences multipath and shadow fading such that the PU’s signal 

may not be correctly detected. Moreover, CR3 suffers from the receiver uncertainty problem 
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because it is unaware of the PU’s transmission and the existence of the primary receiver (PU 

RX). As a result, the transmission from CR3 may interfere with the reception at PU RX. If CR 

users, most of which observe a strong PU signal like CR1 in the figure, can cooperate and share 

the sensing results with other users, the combined cooperative decision derived from the 

spatially collected observations can overcome the deficiency of individual observations at each 

CR user [17], [35]. 

 

 

 

There are broadly two approaches to cooperative spectrum sensing [35], [43]: 

1. Centralised approach:   In this approach to CR cooperative spectrum sensing, there is 

a centralCRcalled fusion centre (FC) within the network that collects the sensing 

information from all the sense CRs within the network.For data  cooperative, all CRs 

are tuned to a control channel where a physical point-to-point link between each 

cooperating CR and the FC for sending the sensing results is called a reporting channel 

as shown in Figure 9 (a). FC then analyses the information and determines the bands 

that can and cannot be used.  

2. Distributed approach:Unlike centralized approach, distributed cooperative sensing 

does not depend on a FC for making the cooperative decision.Using the distributed 

approach for CR cooperative spectrum sensing, no one CR takes control. Each CR 

sends its specificdata of sensing to other CRs, merges its data with the received data of 

sensing, and decides whether or not the PU is present by using a local condition as 

shown in Figure 9 (b). However this approach requires for the individual CRs to have a 

much higher level of independence, and possibly setting themselves up as an ad-hoc 

network. 

 

 

 

 

Figure 8. Receiver Uncertainty and Multipath/Shadow Fading 
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1.5.3 Interference Based Detection 

Under the assumptions that if a signal A can interfere with signal B, then signalB is within the 

communication range of signalA.Asignal can be detected by checking the interference with the 

detector’s signal[12], [17], [36]. 

From the viewpoint of detection of signals, techniques of sensing  can be categorized into two 

categories: coherent and non-coherent detection. In coherent detection, the PU signal can be 

coherently detected by comparing the received signal characteristics with a priori knowledge of 

PU signals. Another way to classify sensing techniques is based on the bandwidth of the 

spectrum of interest for sensing: narrowband and wideband as shown in Figure 10 [35].  
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7. ENERGY DETECTION UNDERAWGNCHANNELS 

Energy detection is the most popular signal detection method due to its simple circuit in 

practical implementation. The principle of energy detector is finding the energy of the received 

signal and compares that with the threshold [2].In the literature, we come across various 

algorithms indicating that energy detectioncan be implemented both in time and also frequency 

domain using Fast FourierTransform(FFT). 

7.1 Time Domain Energy Detection 

The most important preliminary work for the general analysis of energy detector in time domain 

was presented in the landmark paper [44], the Urkowitz proposed the model as shown in Figure 

11.  

 

 

 
 

 

 

 

 

Figure 11.Time Domain Representation of Energy Detection 

Urkowitz classic work was based on detection of a deterministic signal in an AWGN, and exact 

noise variance is known a priori. The input signal �(�)is first passed through an ideal 

BandpassFilter (BPF) with center frequency �� and bandwidth �, with transfer function 

�(�) = � 2��� , |� − ��| ≤ �
0,														|� − ��| > � � (2) 

where�� is the one-sided noise power spectral density, this normalizes it found convenient to 

compute the false alarm and detection probabilities using the related transfer function.  After 

that the signal squared, and integrated in the observation interval % to produce a test statistic, &, 
is compared to a threshold	'. The receiver makes a decision that the target signal has been 

detected if and only if the threshold is exceeded.  

The received signal �(�)of SU under the binary hypotheses testing can represent as 

� 	��:	�(�) = �(�)	��:	�(�) = �(�) + ((�)� (3)

where�� represents the hypothesis corresponding to “no signal transmitted”, and �� to “signal 

transmitted”,	�(�) is the unknown deterministic transmitted signal, and �(�) assumed to be an 

AWGN with zero mean and variance ��� = ���is known a priori. The SNR is denoted 

as	) = *+,*-, where �.� variance of signal and ��� variance of noise. By using Shannon’s sampling 

formula, we can obtain the reconstructed noise signal 

((�) = / (0
12

0342 56(7(2�� − 6) (15) 

BPF 

f0 ,� Hz (		)� 
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Device  89	  
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where56(7(�) 	= 	 .0�	:;:;   is the normalized 56(7 function and (0 	= 	((	 0�<	) is the 6-th noise 

sample. The test statistic under hypothesis �� as follows 

 

& = 8 (((�))�=� ≈ 12� / (0�
�9<
03�

9
� . (16)

 

If we take the BPF effect and simplify, the decision rule which is employed by the energy 

detector can be obtained as 

& = 1��� / |�[6]|��9<
03� = / �′0��9<

03�
��≷��

'	. (17)

The same approach can be applied under hypothesis �� when the signal �(�) is present, by 

replacing each (0 by (0 + �0where �0 	= 	�(	 0�<	).   

The test statistic for both cases can be expressed as 

 

&~ E 	��:	F�9<�	��:	F�9<� (2))																				� (18)

 

whereF�9<�  chi-square distribution with the 2%� degree of freedom (DOF), and F�9<� (2)), 
noncentral chi-square distribution with the same number of DOF and a noncentrality parameter 

equal to 2). The probability of detection and probability of false alarm can be computed if 2%� > 250	by 

�H = 12 erfc M' − 2%� − )2√2�%� + )O (19)

�PQ = 12 erfc R' − 2%�2√2√%�S	. (20)

Based on Urkowitz’swork and some other related results,Mills and Prescott [45], presentedsix 

common radiometer models for the wideband radiometer. Comparisons with exact results 

showedthat these models touchwith the exact results for very large time-bandwidth (%�). 

In recent year, Lehtomaki [46]has done a lot of research work in signal detection based on the 

ideal energy detector. His main goal was to develop energy based detectors. Different 

possibilities for setting the detection threshold for a quantized total power energy detector are 

analysed. 

Ciftci and Torlak[47], compare energy detector models in [45] in both AWGN and Rayleigh 

channels. These models are very suitably and easily available for theoretical analysis when one 

model is utilizing the energy detector for spectrum sensing. 

Lee and Akyildiz [48], in order to solve both the interference avoidance and the spectrum 

efficiency problem, an optimal spectrum sensing framework is based on the maximum a 

posteriori probability (MAP) energy detection and its decision criterion based on the primary 

user activities. The PU activities can be assumed as a two state birth-death process, death rate Tand birth rate U. Where each transition follows the Poisson arrival process meaning that the 
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length of ON (Busy) and OFF (Idle) intervals of primary network are exponentially distributed. 

We can estimate the a posterioriprobability as follows  

�V�� = TU + T (22) 

�VW = 1 − �V�� = UU + T (23) 

where�VWis the probability of the period used by primary users and �V��is the probability of the 

idle period. From the definition of MAP detection, the ��and ���can be expressed as follows  �� = �[& > '|	��]�VW (24) ��� = �[& > '|	��]�V�� (25) 

where'is a decision threshold of MAP detection. 

The improved performance of the energy detector for random signals corrupted by Gaussian 

noise is derived. The derivation is based on a simple modification to the conventional energy 

detector in [44],Chen [49], by replacing the squaring operation of the signal amplitude with an 

arbitrary positive power operation. 

& = /(�[6]�� )X�9<
03� 	. (21)

Moghimi andSchober[50], propose a novel hybrid coherentenergy detection scheme for 

spectrum sensing whichdeveloped a corresponding low–complexity locally optimal decision 

metric.This hybrid metric is a linear combination of coherent and energy detection metric and 

combines the advantages of these individual metrics as it exploits both the pilot and the data 

symbols emitted by the PU. 

Dhope et al.[51], describethe hybrid detection method which takes the advantages 

oftwomethods, energy detection performs well in high SNR value and not dependent on the 

correlation of incoming signal but suffers from the noise uncertainty problem. Covariance 

Absolute Value (CAV) outperforms in high correlation environment. The simulation and 

comparison is made betweenCAV and energy detection for differenttypes of input. The 

simulation shows that the proposed hybriddetection method outperformed energy detection and 

CAV method and is more insensitive to the type ofinput data. 

Guicai YU et al. [52], a new energy detection algorithm based on dynamic threshold is 

presented. Theoretic results and simulations show that the proposed scheme removes the falling 

proportion of performance and detection sensitivity caused by the average noise power 

fluctuation with a choice threshold, and also improves the dislike of the average noise power 

fluctuation in a short time and obtains a good performance. 

7.1 FrequencyDomain Energy Detection 

In order to measure the signal energy in frequency domain, the received signal is first selects 

the interesting bandwidth by a band pass filter and sampled, then converted to frequency 

domain taking FFT followed by squaring the coefficients and then taking the average over the 

observation band. Finally, according to a comparison between the average andthreshold, the 

presence or absence of the PU can be detected as shown in figure 12. 
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The energy detection can be implemented in the frequency domain using periodograms and the 

Welch’s periodogram.The periodogram method is a Discrete Fourier Transform (DFT) based 

method to estimate Power Spectral Density(PSD).The idea of the Welch’s periodogram is to 

divide the data sequence into segmentswith windowing. In the Welch’s method these data 

segments can be overlapping andnon-overlapping.Using overlapped windows that decreases the 

noise variance compared to single periodogram estimation. 

The use ofspectrum sensing based on the frequencydomain energy detection hasbeen studied 

for cognitive radio systems in[53]-[58]. Cabric et al. [53],using a periodogram to estimate the 

spectrum viasquared magnitude of the FFT. The testbed used in the experiments is built around 

theBerkeley Emulation Engine 2 (BEE2).Mustonen et al. [54], the performance of spectrum 

sensing basedon the Welch’speriodogram was studied for cooperatingnodes in AWGN channel. 

Zayen et al. [55], the smoothing was applied to the Welch’s periodogrm based sensing, 

increasing the performance whilekeeping the complexity in relatively low level. Chen et al. 

[56], the Welch’s periodogram basedspectrum sensing algorithm called FAR is introduced. It is 

thebeauty of the algorithm that the decision variable is insensitive tonoise level. 

EIRamly et al.[57], a Modified Energy Detection (MED)technique uses for spectrum sensing of 

narrow-band FMsignal in the Wireless Microphone (WM) silent mode.Spectrum sensing using 

themodified periodogram and Welch method for different windowtypes. 

Miar and Aboulnasr [58], new methods of spectrum sensing based onsimplified DFT matrices 

are introducedfor PSD estimation for CR.The methodis less computationallycomplex than DFT 

techniques since no multiplications arerequired in the time-to-frequency domain conversion 

process. 

8. ENERGYDETECTIONUNDERFADINGCHANNELS 

Energy detection has been used widely for spectrum sensing unknown deterministic signals 

[44]. However, the performing analysis of energy detection over fading channels is heavy, 

because it is hard to derive closed-form expressions for the average probability of detection 

involving the generalized Marcum Q-function and the log-normal distribution. 

8.1 Time Domain Energy Detection 

Kostylev [59], analysis a signal with random (Rayleigh, Rice, and Nakagami) 

amplitude.�Hand�P are derived for Rayleigh, Rice and Nakagami fading channels. Digham et 

al. [60], presents another analysisof the problem of energy detection of unknown signals over 

different fading channels. The analysis focuses on no-diversity case under Rayleigh, Rice and 

Nakagami fading channels, and quantify the improvement in the probability of detection when 

multiple antennas (diversity) methods for energy detection based systems like equal gain 

combining (EGC), selection combining (SC), and switch and stay combining (SSC) are used. 

Digham et al. [61] the focus is on different a multiple antenna processing based energy detector 

receptions such as maximal ratio combining (MRC), selection combining (SC), switch-and-stay 
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combining (SSC), square-law combining (SLC) and square-law selection (SLS) under Rayleigh 

fading channels. The average probability of detection over Rayleigh, Nakagami and Rician 

fading channels has been derived. Pandharipande and Linnartz [62], derived closed-form 

expressions for the probability of detection and expressions for the probability of false-alarm 

for each multiple antenna processing based energy detection scheme (SC and MRC) to analyse 

the detection performance gain as compared to a single antenna energy detection scheme. 

Herath andRajatheva [63], The energy detector with equal gain combining (EGC) reception 

under Nakagami-Y fading channels is analysed 

Torrieri [64], a practical energy detector (energy detector with bandpass sampling) is described 

and analysed for the AWGN and Rayleigh channels with and without diversity combining. The 

noise power at the radiometer output can be measured quite accurately if the measurement 

interval is sufficiently long. 

Li et al. [65], studies the PU signaldetection methods over Rayleigh fading channel in CR 

system. Double threshold detection proposes withchannel selector. In this method, the cognitive 

user receivessignals by selecting the maximum SNR channel, so it caneffectively detect the PU 

signal in Rayleighfading environment. 

Atapattu etal. [66], Inthis paper, the detection performance of an energy detector usedfor 

spectrum sensing in CR networks is investigatedunder such very low SNR levels. Theanalysis 

focuses on the derivation of a closed-form expression forthe average missed-detection 

probability over Rayleigh fadingand Nakagami-m fading channels.  

8.2Frequency Domain Energy Detection 

Matinmikko et al. [67], evaluated the performance of spectrum sensing using Welch’s 

periodogram in Rayleigh fading channels for CR systems. The performance measures 

considered were the receiver operating characteristics that quantify the relations of the �Hand �P. 

The energy detection method remains the most common detection mechanism currently in use 

in cooperative sensing [35].This is because some of its performance degradation due to the 

noise uncertainty can be mitigated by the diversity gain resulting from cooperation. Atapattu et al. [68], Detection performance of an energy detector used for cooperative spectrum 

sensing in a CR network is investigated over channels with both multipath fading and 

shadowing.Harjulaet. al.  [69], cooperativespectrum sensing based on the Welch 

periodogramstudies in the frequency selective fading environment. The work focused on 

OFDM signal detection. The effect of the frequency selective channel was also studied for both 

single and multicarrier signals. The cooperation impact and the differences between the 

decision-making rules of the sensing nodes were also studied for the aforementioned scenarios. 

Hekkala et al. [70], extend previous research done in [69] by focusing on the practical 

implementation-related topics. In order to reduce the computational complexity of the spectrum 

sensing, smaller FFT size uses in the Welch’speriodogram. The implementation complexity of 

the Welch’speriodogram and the required processing power are therefore estimated. 

Gismalla and Alsusa, [71], provide a performance analysis of cognitive radio systems 

employing energy detection based on PSD estimation. Mathematical expressions are derived for 

the probability of false alarm, and the probability of miss for i.i.d Rayleigh and Rician channels. 

In comparison with time-domain energy detection, find that the probability of false alarm at a 

specific frequency is not affected by changing the observations length. 
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9. CONNCLUSIONS 

In this paper a review of the CRs technology was presented. Energy Signal Detection is 

introduced as a figure of merit on which to base quantitative assessment of a radiometer’s 

design including its calibration architecture and algorithm. The problem of the spectrum 

detection schemes was formulated which include Energy detection in time and frequency 

domain. Energy detection has been adopted as an alternative spectrum sensing method for CRs 

due to its simple circuit in the practical implementation and no information requires about the 

signal needed to detect. 
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