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Abstract

We compute the energy diffusion constant D, Lyapunov time τL and butterfly velocity vB

in an inhomogeneous chain of coupled Majorana Sachdev-Ye-Kitaev (SYK) models in the
large N and strong coupling limit. We find D ¶ v2

BτL from a combination of analytical and
numerical approaches. Our example necessitates the sharpening of postulated transport
bounds based on quantum chaos.
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1 Introduction

A few years ago it was noted that many experimentally realized “strange metals" seem to be
characterized by Drude “transport time" of order τ∗ ∼ ħh/kBT [1]. As this time scale was
proposed to be the “fastest possible" time scale governing quantum dynamics [2, 3], it was
conjectured by Hartnoll [4] that these strongly interacting strange metals remained metallic
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due to a fundamental bound on diffusion: D ¦ v2τ∗. In strongly interacting systems without
quasiparticles, many-body quantum chaos provides a natural velocity v and time scale τ∗ for
such a diffusion bound [5,6]. In some large-N models, it is natural to define a Lyapunov time
τL and butterfly velocity vB as [7,8]

〈V (x , t)W (0, 0)V (x , t)W (0,0)〉T ∼ 1−
1
N

exp
�

t
τL

−
x
τL vB

�

, (1)

for rather general Hermitian operators V and W . τL is an analogue of the Lyapunov time from
classical chaos: it describes the rate at which quantum coherence is lost. Similarly, vB is called
the butterfly velocity: it governs the speed of chaos propagation, and is somewhat analogous
to a state-dependent Lieb-Robinson velocity [9]. Since we now have a velocity and time scale
which can be defined in any strange metal, [5,6] noted that D was naturally related to v2

BτL in
some simple holographic settings. A natural question to ask is whether Hartnoll’s conjecture
becomes

D ¦ v2
BτL. (2)

Originally (2) was observed to hold for charge diffusion constant [5], with theory-depen-
dent O(1) prefactors, but there are now multiple known counterexamples [10–12]. It is more
compelling that (2) hold for the energy diffusion constant: as argued in [11,13,14], vB charac-
terizes the loss of quantum coherence, a process related to quantum “phase relaxation" which
should also characterize energy fluctuations and diffusion. Furthermore, additional evidence
for an energy diffusion bound of the form (2) has arisen in holographic models in the low
temperature limit [6,15], and models of Fermi surfaces coupled to gauge fields [13]: at weak
coupling, [16,17] have also proposed a relation between diffusion and chaos.

Much of the recent literature focuses on “homogeneous" models of disorder: these can
crudely be thought of as models where momentum is not a conserved quantity (hence, by
Noether’s Theorem, microscopic translation symmetry has been broken), yet the effective
equations governing transport remain spatially homogeneous. However, transport coefficients
can be sensitive to how translation symmetry has been broken [14], so it is important to test
the robustness of any transport bound in inhomogeneous models. Such a test was performed
for charge diffusion in a family of holographic models [10], and the inequality in (2) was found
to be reversed. In this paper, we test (2) for the energy diffusion constant in an inhomoge-
neous system: an inhomogeneous analogue of a Sachdev-Ye-Kitaev (SYK) chain of Majorana
fermions. We will describe this solvable model of a “strange metal" without quasiparticles in
more detail in Section 2. Our main result is that in this model the energy diffusion constant is
upper bounded by chaos:

D ¶ v2
BτL. (3)

We will prove this in the limit where the inhomogeneity is parametrically slowly varying, and
provide examples where the ratio D/v2

BτL is arbitrarily small, in Section 3.
Thus, we do not expect (2) to be generically true in disordered strange metals: holding as

a strict inequality up to a finite O(1) prefactor which may be theory-dependent1 but robust to
disorder. Furthermore, in a generic, nearly translation invariant 1+1 dimensional field theory
without a global U(1) symmetry, the natural diffusion constant is the diffusion of energy. As
noted in [6], this diffusion constant will be parametrically large due to the fact that translations
are only weakly broken [14]. Hence, we now have examples of strange metals where D is
either much larger or much smaller than v2

BτL. It is still an interesting open question whether
transport properties of strange metals are related to quantum chaos. Any such relation may

1For example, [13] found D ≈ 0.42v2
B
τL in their model, in a clean theory. In the SYK chain that we study, the

numerical prefactor is 1, and in SYK-like holographic models the constant ranges from 0.5 to 1 [15]. Examples
where the prefactor can be arbitrarily small can be found in [6].
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be restricted to particular diffusion constants and/or models. For example, it may be the case
that diffusion constants of translation invariant field theories are related to chaos [13,15]. We
hope that variational methods, related to those developed in [18–20] for hydrodynamic and
holographic models, may be useful in providing rigorous bounds on transport and chaos in
disordered strange metals.

For the remainder of the paper, we set ħh= kB = 1.

2 The Inhomogeneous SYK Chain

The SYK model is a strongly interacting large-N model in 0+ 1 spacetime dimensions. It was
introduced a long time ago as a model of disordered quantum magnets [21,22]; it was revived
more recently [23] due to its possible connection to AdS2 holography [24,25], which is a toy
model for quantum gravity [26–31]. Although it has since been shown that the SYK model
does not admit a simple holographic dual [32], it does share many fascinating properties of
holographic theories, including being “maximally chaotic" [33].

The model that we introduce is a generalization of the SYK chain model developed in
[34].2 Consider a one-dimensional lattice of L sites, where on each lattice site x there ex-
ist N Majorana fermions χi,x (i = 1, . . . , N), obeying the standard commutation relationship
{χi,x ,χ j,y}= δi jδx y . The Hamiltonian of these fermions is

H =
L
∑

x=1

 

∑

i< j<k<l

Ji jkl,xχi,xχ j,xχk,xχl,x +
∑

i< j,k<l

J ′i jkl,xχi,xχ j,xχk,x+1χl,x+1

!

, (4)

where the couplings {Ji jkl,x} and {J ′i jkl,x} are all assumed to be independent Gaussian random
variables drawn from a distribution with zero mean and following variance:

Ji jkl,x Ji′ j′k′ l ′,x =
3!
N3

J2
0,xδii′δ j j′δkk′δl l ′δx y , J ′i jkl,x J ′i′ j′k′ l ′,x =

1
N3

J2
1,xδii′δ j j′δkk′δl l ′δx y , (5)

The important (and only) difference comparing to [34] is that we do not assume the variances
J2

1,x and J2
0,x take the same value for each x . We are interested in the thermodynamic limit

L→∞.
One can show that the replica-diagonal3 partition function, at the inverse temperature

β = 1/T , can be written as a path integral over two bilocal fields:

Z =

∫

DG DΣ exp [−NSeff[G,Σ]] (6)

with the Euclidean time action

Seff. =
L
∑

x=1







− logPf(∂τ −Σx) +
1
2

β
∫

0

d2τ

�

Σx Gx −
J2

0,x

4
G4

x −
J2

1,x

4
G2

x G2
x+1

�







(7)

The “Green’s function” {Gx(τ1,τ2)} and “self energy” {Σx(τ1,τ2)} are functions of two time
variables. The product Σx Gx in above formula is abbreviation for Σx(τ1,τ2)Gx(τ1,τ2); G4

x
and G2

x G2
x+1 are similar products. J2

0,x and J2
1,x show up to exactly quadratic order in (7)

because the random couplings Ji jkl,x and J ′i jkl,x were Gaussian random variables. As the ma-
nipulations in this section are essentially identical to [32, 34], we only present the few steps

2See [35,36] for another way of adding a spatial dimension to the SYK model.
3Off-diagonal sectors in replica space do not contribute at the orders in 1/N that we study.
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where they differ in an important way (due to the absence of translational invariance on av-
erage).

It is convenient to rewrite the interaction term (G4-term) into the following form:

∑

x

�

J2
0,x G4

x + J2
1,x G2

x G2
x+1

�

=
∑

x

¨�

J2
0,x +

J2
1,x + J2

1,x−1

2

�

G4
x +

1
2

G2
x

�

J2
1,x

�

G2
x+1 − G2

x

�

+ J2
1,x−1

�

G2
x−1 − G2

x

�

�

«

. (8)

If one chooses J0,x and J1,x such that for each x ,

J2 ≡ J2
0,x +

J2
1,x + J2

1,x−1

2
(9)

is a constant independent of x , then the effective on-site coupling is easily seen to be x-
independent. The saddle point equations of Seff become

G−1
x (τ1,τ2) =Σx(τ1,τ2)−δ′(τ1 −τ2), (10a)

Σx(τ1,τ2) = J2
0,x Gx(τ1,τ2)

3 +
J2

1,x Gx+1(τ1,τ2)2 + J2
1,x−1Gx−1(τ1,τ2)2

2
Gx(τ1,τ2), (10b)

and they admit an x-independent approximate solution: Gs
x(τ1,τ2) = Gs(τ1 −τ2), with

Gs (τ) = b∆
�

βJ
π

sin
πτ

β

�−2∆

, 0¶ τ < β (11a)

b =
1
π

�

1
2
−∆

�

tan(π∆), ∆=
1
4

,

which becomes exact at βJ →∞ (conformal) limit. The system also has a uniform specific
heat per site c ≈ 0.396

βJ . Thus, as in [34], this saddle point is identical to the 0+ 1-dimensional
SYK model of [23, 32] at coupling constant J . If the choice (9) is not made, then the saddle
point equations do not admit a homogeneous solution, and it is unclear what the effective
theory is.

In the strong coupling limit, N � βJ � 1, and long wavelength limit, the physics of in-
terest to us is governed by the fluctuations induced by reparametrization modes fx ∈ Diff(S1),
which act as G(τ1,τ2) → ( f ′x(τ1) f ′x(τ2))1/4G( fx(τ1), fx(τ2)). To quadratic order of the in-
finitesimal fluctuations, and leading order in 1/βJ expansion, the effective action for the fluc-

tuations has a simple form in Fourier space: defining fx(τ) = τ+εx(τ), εn =
∫ β

0 dτe
2πinτ
β ε(τ),

we find

Seff. =
1

256π

∑

x y

∑

n

εn,x |n|(n2 − 1)
�

α
|n|
βJ
δx y + Cx y

�

ε−n,y , (12)

where all x-dependence is contained in the tridiagonal matrix

Cx y =
1

3J2













. . . −J2
1,x−1 0 0

−J2
1,x−1 J2

1,x−1 + J2
1,x −J2

1,x 0
0 −J2

1,x J2
1,x + J2

1,x+1 −J2
1,x+1

0 0 −J2
1,x+1

. . .













, (13)

and α =
p

2αK ≈ 12.7 is a constant determined by numerics [32]. A few more steps of this
derivation are contained in Appendix A. The long wavelength limit alluded to earlier is the
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regime when the eigenvalues of Cx y are not larger than 1/βJ , which (as we will see) do exist
even for the disordered matrix. The derivation of this effective action is identical to [34]: in
this previous work, Cx y was translation invariant and so (12) was written in momentum space,
where the matrix Cx y becomes diagonal.

By writing C in the form

Cx y = DT
xzΛzwDwy

=
1

3J2











. . . −1 0 0
0 1 −1 0
0 0 1 −1

0 0 0
...











T









. . . 0 0 0
0 J2

1,x 0 0
0 0 J2

1,x+1 0

0 0 0
...





















. . . −1 0 0
0 1 −1 0
0 0 1 −1

0 0 0
...











(14)

we immediately recognize that it is positive definite and can be interpreted as the first-order
finite-difference discretized version of the differential operator

Cx y ∼
1

3J2

�

−
d

dx
J1(x)

2 d
dx

�

discretized
. (15)

The interpretation of Cx y as an approximate differential operator becomes exact when J2
1,x

varies slowly. Letting E denote spatial averages over x , suppose that

E
�

J2
1,x J2

1,y

�

∼ f
� |x − y|

M

�

(16)

with M a (large) integer, and f (x) a non-zero function for O(1) argument. To leading order
in 1/M , the low-lying spectrum of the discrete operator Cx y will be identical to the continuum
differential operator (15).

In our model, we will take J1,x to be an arbitrary function of x , simply constrained to
0 ¶ J2

1,x ¶ J2 (otherwise J2
0,x as defined in (9) would be negative). The properties of the

matrix Cx y will then depend on the inhomogeneity that we encode through x-dependent J1,x .

3 Diffusion and Chaos

From the effective action (12), we are able to extract the thermal response functions. The
procedure is identical to [34] and a diffusion pole is found in the energy density (T t t) two-
point function:

〈T t t
x ,nT t t

y,−n〉T ∼
�

|ωn|δx y +
2πJ
α

Cx y

�−1

≡
�

|ωn|δx y + eCx y

�−1
. (17)

Upon proper analytic continuation to real time, we interpret (17) as having diffusive poles (on
the negative imaginary axis) whenever iω is an eigenvalue of eCx y . eCx y is analogous to a tight-
binding-model hopping matrix. If eCx y commutes with a discrete translation operator, then we
expect plane wave eigenstates, the lowest-lying of which will have an eigenvalue ∼ L−2 in a
chain of length L. If eCx y is random, then strictly speaking all eigenstates of eCx y at fixed ω are
localized in the continuum. However, because eCx y is analogous to a discretized differential
operator (15) which has an exact delocalized zero mode, the low-lying spectrum of eCx y will
look diffusive on length scales L. In other words, the localization length grows faster than
ω−1/2 [37], and the smallest nontrivial eigenvalue scales as L−2 in this case as well. Hence,
the diffusion constant D is finite.
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In fact, the lowest-lying non-trivial eigenvectors ux of eCx y are well approximated by plane
waves:

ux ∼ eiqx , q = ±
2π
L

, (18)

which can be verified numerically. See Appendix B for more comments on this equation. The
eigenvalue of such a ux will be Dq2, with D an effective diffusion constant. In the large M
limit, we may compute D by solving the following differential equation as q→ 0:

−
d

dx

�

D(x)
du
dx

�

= Dq2u. (19)

The constant D is computed in Appendix B:

1
D
= E

�

1
D(x)

�

. (20)

This equation has a straightforward physical interpretation. Because the specific heat in our
model is x-independent to leading order [34], D is proportional to the thermal conductivity.
One can approximate our inhomogeneous chain by joining together homogeneous SYK chains
of length L′ � M . Within each of these chains, the thermal conductivity is proportional to
the diffusion constant D(x). Joining together these segments of length L′, we find a resistor
network: hence, the thermal resistivity spatially averages. This leads to (20). In Appendix
B, we argue that (20) is applicable even beyond the large M limit, under some assumptions
which work relatively well in practice numerically, so long as finite size effects are small.

Now we study the butterfly velocity, defined by out-of-time-ordered correlation functions of
spatially separated operators. In order to extract vB, we study the (properly regularized) con-
nected out-of-time-ordered correlation function. One finds [34], in the region β � t ® β log N
that

1
N2

∑

i, j




χi,x(t),χ j,y(0)χi,x(t),χ j,0(0)
�

T,connected ∼ e
2π
β t
�

2π
β
+ eCx y

�−1

. (21)

Comparing to (1), we observe that in this model, as in the usual SYK model,

τL =
β

2π
. (22)

This matrix inverse is the discrete analogue of the Green’s function

2π
β

G(x; y)−
d

dx

�

D(x)
dG(x; y)

dx

�

= δ(x − y). (23)

In the long range disorder limit, when at each point x

M �
√

√ 2π
βD(x)

, (24)

the solution of this equation is exponentially decaying [10]:

G(x; y)∼ e−|x−y|/vBτL , (25)

with
1
vB

=

√

√2π
β
E
�

1
p

D(x)

�

. (26)
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This equation can be derived by noting that, away from the points x = y , we can change
coordinates from x to s, defined by D(x)∂x ≡ ∂s. One then finds

2π
β

D(s)G =
d2G
ds2

, (27)

and when D(s) varies slowly, one can straightforwardly write

G = exp

�

−
∫

ds

√

√2πD(s)
β

�

= exp

�

−
∫

dx

√

√ 2π
D(x)β

�

. (28)

Hence, we find that D and vB are not equal. Using the Cauchy-Schwarz inequality it is
straightforward to conclude

v2
BτL = E

�

1
p

D(x)

�−2

¾ E
�

1
D(x)

�−1

= D. (29)

The physics at play here is essentially the same as in holography, where charge diffusion was
shown to obey a similar inequality, for the same reasons [10].

We have numerically computed D and vB in SYK chains of finite length L with periodic
boundary conditions. D is found by averaging the two smallest non-vanishing eigenvales of
Cx y . v−1

B is found by computing the typical value of − log G(x; y)/|x − y| for |x − y| ∼ L/2.4

So long as D(x) > Dmin > 0, we find that D agrees with the “resistor chain" prediction (20)
for any M , so long as L/M ¦ 20, to within about 0.1% residual error (which is possibly a
numerical finite size effect). Indeed, the derivation of (20) in Appendix B does not rely on the
assumption that J1 is slowly varying, so this is not surprising. As shown in Figure 1, we see that
while D agrees very well with the “hydrodynamic" theory, v2

B agrees with the hydrodynamic
theory at large M , while partly approaching D/τL from above as M → 1. This behavior is not
surprising: as M becomes shorter, the four-point function (21) begins to “self-average" over
the inhomogeneity in a manner analogous to diffusion. Nevertheless, D < v2

BτL holds as a
strict inequality in the inhomogeneous systems that we have studied numerically, even when
M = 1 (no correlations among D(x). Our violation of the relation D = v2

BτL is not limited to
the regime of long range disorder.

So far, the discrepancies between D and v2
BτL are only on the order of a few percent in

our numerical data. Yet (29) implies that there is no possible upper bound on diffusion due to
quantum chaos. Defining a natural probability measure on D(x) as

p(X )dX ≡ E[Θ(X + dX − D(x))Θ(D(x)− X )], (30)

we estimate that if

p(X → 0)∼ X a, with −
1
2
< a ¶ 0, (31)

then vB > 0 but D = 0.5 We have looked for this parametric breakdown of the relationship
between D and v2

B in smaller chains with M = 1. As shown in Figure 2, we see qualita-
tive agreement (but quantitative disagreement) with our hydrodynamic predictions for D and
v2

BτL (accounting for finite size effects). As a ® 0, we observe that the ratio D/v2
BτL becomes

4We must also normalize the value of v−1
B

found numerically by a factor very close to unity, to account for finite
size effects. This factor depends only on L.

5Since our analytic calculation of vB requires (24), and disorder is correlated over M sites, we estimate that
in a chain of length L the minimal value of D0 scales as Dmin ∼ (M/L)1/(1+a). Requiring that DminM2 � 2π/β
requires that M3+2a � L, up to some dimensionless constant. Hence, we conclude that the inhomogeneous SYK
chain with D = 0 but vB finite only strictly exists in a somewhat subtle thermodynamic limit with M and L taken
to∞ simultaneously, making sure to obey M3+2a � L.
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0 0.05 0.1 0.15 0.2 0.25 0.3
0.91

0.92

0.93

0.94

1/M

D (numerical)

D (theoretical)

v2bτl (numerical)

v2bτl (theoretical)

0 0.2 0.4 0.6 0.8 1

0.97

0.98

0.99

1

1/M

D
/v

2 b
τ l

a1 = 0.6
a1 = 1.1

FIGURE 1: Left: the value of D and v2
BτL, predicted theoretically (from (20) and

(26)) and found numerically, in an inhomogeneous chain with J2
1 = (1 + J

2)−1, with
J = a0 + a1 cos(2πx/M) for a0 = 0.5 and a1 = 0.6. The trend of v2

BτL to decrease at smaller
M towards the “limit" set by diffusion is evident. Right: disordered profiles withJ = a0+a1X ,
with X =

∑

cn cos(φn + kn x) and cn and φn random variables chosen so that X ∼ O(1). We
take a0 = 0.5 and vary a1, and study the ratio D/v2

BτL as a function of M for different re-
alizations of disorder. Discrepancies between the two are enhanced as M becomes large, as
expected. We have set L = 6000 and βJ = 25.

−0.4−0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

a

D (L = 1000)

D (L = 2000)

v2bτl (L = 1000)

v2bτl (L = 2000)

−0.4−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

D
/v

2 b
τ l

L = 250
L = 500
L = 1000
L = 2000

FIGURE 2: Left: Comparison of D and v2
BτL as a function of a, for chains where J2

1,x are i.i.d.
random variables drawn from the distribution P(J2

1,x < X ) = X 1+aΘ(X ). The circular data
points with error bars are numerical data, and dashed lines are the mean of the hydrodynamic
predictions for each chain. Qualitative agreement is observed. Right: the numerically com-
puted ratio D/v2

BτL as a function of a. We see that this ratio rapidly drops for a ® 0, as finite
size effects become appreciable. This data is taken at βJ = 25.
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0 0.01 0.02 0.03 0.04

0.9

0.92

0.94

0.96

0.98

1

1/βJ

D
/v

2 b
τ l

S = 4
S = 40
hydrodynamic

FIGURE 3: The temperature dependence of D/v2
BτL for ‘disordered’ periodic lattices, where the

‘hydrodynamic’ prediction D/v2
BτL ≈ 0.9. In the periodic lattice, D(x) consists of a sum of S

sine waves, which are tiled over a period S × M : J = |a + bp
S

∑

cn cos(2πnx
MS + φn)|, with

b = 4a and ci and φi randomly chosen, given the constraint D/v2
BτL ≈ 0.9. Increasing S

decreases the ratio D/v2
BτL. This data is taken at L = 4000 and M = 10.

dependent on the length of the chain, and decreases for the longer chain. This provides evi-
dence that even when M = 1, this inhomogeneous SYK chain may have D = 0 but vB > 0 in
the thermodynamic limit.

Finally, let us comment on the low temperature limit β → ∞ (while, of course, taking
N →∞ as well such that βJ � N). At small enough temperature, keeping the inhomogeneity
fixed, (24) will break down. Figure 2 suggests that the large M limit is not required to obtain
substantial deviations from D = v2

BτL. A more interesting subtlety that arises at very low
temperature is the difference between periodic inhomogeneity and random inhomogeneity.
For periodic inhomogeneity, one can diagonalize the matrix Cx y as a periodic tight-binding
hopping matrix in a larger unit cell, and at low enough temperatures, the solution to (23)
can be well-approximated by considering only the physics of the lowest band. In this regime,
one will recover D = v2

BτL. As the period of the periodic inhomogeneity grows longer, the
temperature above which D = v2

BτL decreases. We expect that for random inhomogeneity
(where the eigenstates do not form bands, but are in fact localized) one finds D < v2

BτL at all
finite temperatures, and provide some numerical evidence for this in Figure 3.

4 Outlook

We have presented a modification of the SYK chain model of [34], in which there is an upper
bound on the diffusion constant: D ¶ v2

BτL. As we pointed out in the introduction, this suggests
that there is no (simple) generic bound relating transport and quantum chaos in all strange
metals.

One might ask whether our violation of (2) could be found in a “homogeneous" model that
does not rely on explicit translation symmetry breaking in the low energy effective description.
In the SYK chains that we have studied, this is easy to accomplish at leading order in 1/N ,
because there is no difference betwen averages over annealed disorder vs. quenched disorder.
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Hence, consider the partition function

Z =

∫

DJ2
1,x P[J

2
1,x]ZSYK[J

2
1,x], (32)

with ZSYK the partition function defined in (6), and P[J2
1,x] a translation invariant function

where J2
1,x have support on some finite domain. We may think of P[J2

1,x] as either a partition
function for the “slow" dynamical variables J2

1,x , or as accounting for certain correlated non-
Gaussian fluctuations in the random variables Ji jkl,x and J ′i jkl,x of the microscopic Hamiltonian

(4).6 So long as D ¶ v2
BτL for each choice of J2

1,x , by linearity, this inequality will remain true
even in the homogeneous model (32) after averaging over the ensemble P[J2

1,x] of random
couplings.
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A Derivation of Effective Action

It is convenient to expand about the saddle using renormalized variables gx ,σx defined by

Gx(τ1,τ2) = Gs(τ1,τ2) + |Gs(τ1,τ2)|−1 gx(τ1,τ2),

Σx(τ1,τ2) =Σ
s(τ1,τ2) + |Gs(τ1,τ2)|σx(τ1,τ2), (33)

where we have rescaled the fluctuation fields gx ,σx by prefactors |Gs|−1 and |Gs|. It should be
noticed that although the saddle point is uniform in space and translation invariant in time,
the fluctuation fields have generic space-time dependence.

Now we expand the effective action to second order in the fluctuation fields g,σ, which
leads to

Seff.[g,σ]≈ Ss
eff −

1
4

∫

d4τ
∑

x

σx(τ1,τ2)G
s(τ13) · |Gs(τ34)| · Gs(τ42) · |Gs(τ21)|σx(τ3,τ4)

+

∫

d2τ

�

∑

x

1
2
σx(τ1,τ2)gx(τ1,τ2)−

3J2

4

∑

x ,y

gx(τ1,τ2)Sx y g y(τ1,τ2)

�

.

(34)

The spatial kernel Sx y is a tight-binding hopping matrix

Sx y = δx y +
1

3J2

�

(−J2
1,x − J2

1,x−1)δx y +δx ,y−1J2
1,x +δx ,y+1J2

1,x−1

�

= δx y − Cx y , , (35)

6In this latter case, Ji jkl,x and J ′i jkl,x are no longer completely independent random variables.
The reason for this is that after integrating over P[J1,x] on a single site, we generically find
∫

dJ1P(J1)exp[−N 3
∑

J ′2i jkl/2J2
1 ] 6=

∏

i jklF (J
′
i jkl). Since the joint probability distribution of the J ′i jkl does not

factorize, we conclude that these random variables are no longer independent. Hence, integrating over fluctua-
tions in P[J1] restores translation invariance, but necessarily introduces non-trivial correlations between the Ji jkl,x

and J ′i jkl,x .
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with Cx y defined in (13). Next we integrate out σx and obtain a quadratic action for gx alone.
We define eK as the (symmetrized) four-point function kernel of the SYK model:

eK
�

τ1,τ2;τ3,τ4

�

= 3J2Gs(τ13) · |Gs(τ34)| · Gs(τ42) · |Gs(τ21)|. (36)

We have defined τi j ≡ τi −τ j . The effective action of gx is therefore

Seff.[g] = Ss
eff +

3J2

4

∫

d4τ
∑

x ,y

gx(τ1,τ2)×

�

eK−1
�

τ1,τ2;τ3,τ4

�

δx y − Sx yδ(τ13)δ(τ24)
�

g y(τ3,τ4), (37)

The leading contribution comes from the soft modes which can be identified as induced by
reparametrization fx ∈ Diff(S1). They can be interpreted as energy fluctuations. We can lin-

earize these modes and write them in Fourier space: fx(τ) = τ+εx(τ), εn =
∫ β

0 dτe
2πinτ
β ε(τ).

For such modes, we know from [32] that the kernel obeys

�

eK−1 − 1
�

εn,x =
α|n|
βJ
εn,x (38)

Following [32], we now find the following effective action for the linearized modes given in
(12). The additional numerical prefactors in (12), including |n|(n2 − 1), come from properly
normalizing the eigenvector εn,x .

B Eigenvalues of Inhomogeneous Diffusion Matrix

The following argument is reminiscent of [10]. Let us define the matrix

Q x y = δx yeiqx , (39)

and consider the limit q → 0. We postulate that the lowest lying eigenvalues of eCx y are
proportional to Deffq

2:
eCx yuy = Deffq

2ux . (40)

Multiplying on both sides by Q we obtain

Q xz(D
TSDQ−1)zw(Qu)wy = Deffq

2(Qu)x . (41)

We now look for a series solution to this equation of the form

Qu= u0 + iqu1 − q2u2 + · · · . (42)

Such a series expansion is reasonable – we expect in any finite chain that the lowest few
eigenvectors are delocalized, and have confirmed this numerically. At O(q0), the Q matrix is
simply the identity, and so we must take

(u0)x = 1. (43)

At O(q1), we find the equation

Q xz

�

(DTSDQ−1)zw(u0 + iqu1)w
�

= 0. (44)

Q is invertible, and hence we conclude that if u1 is non-trivial, the left-most D must act on a
non-trivial vector. Because D has a one-dimensional kernel we conclude

c(u0)z = (SDQ−1)zw(u0 + iqu1)w (45)
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We may fix the constant c as follows. First left-multiply by S−1, and keep only first order terms
in q, to obtain

cS−1
zw (u0)w = (DQ−1)zw(u0)w + iqDzw(u1)w ≈ −iqQ−1

zw(u0)w + iqDzw(u1)w. (46)

In the second equality, we have exploited the fact that Q−1u0 is an eigenvector of D of eigen-
value 1− eiq. Now, we perform a non-rigorous sleight-of-hand: at leading order in q, we may
treat qQ−1

zw(u0)w = q(u0)w. We may then left-multiply by u0, to remove only the second term
of (46), and obtain

c = −iq
u0 · u0

u0 · S−1u0
. (47)

On physical grounds, this is the statement that the eigenvector looks a lot like a plane wave,
and this seems to be true numerically. We now have the O(q) corrections to the eigenvector uy ,
and to leading order q use the variational principle to ‘exactly’ compute the effective diffusion
constant. We find

(u0 + iqu1) · DTSD · (u0 + iqu1) = q2c2u0 · S−1u0 = Deffq
2u0 · u0 (48)

which gives us, for a periodic chain of L sites:

1
Deff
=

1
L

∑ 1
Dx

. (49)

One way to rigorously obtain (46) is to extend a chain of length L into an infinite chain by tiling
the same Sx repeatedly: Sx+L = Sx . Using the discrete translation symmetry and choosing
the appropriate definition of q, one can demand ux = ux+L , and then sum over only L sites in
(46), killing the right-most term. In practice, we have often found this tiling to be unnecessary
numerically.
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