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Abstract

Energy disaggregation is the task of taking a whole-home energy signal and sep-
arating it into its component appliances. Studies have shown that having device-
level energy information can cause users to conserve significant amounts of en-
ergy, but current electricity meters only report whole-home data. Thus, developing
algorithmic methods for disaggregation presents a key technical challenge in the
effort to maximize energy conservation. In this paper, we examine a large scale
energy disaggregation task, and apply a novel extension of sparse coding to this
problem. In particular, we develop a method, based upon structured prediction,
for discriminatively training sparse coding algorithms specifically to maximize
disaggregation performance. We show that this significantly improves the perfor-
mance of sparse coding algorithms on the energy task and illustrate how these
disaggregation results can provide useful information about energy usage.

1 Introduction
Energy issues present one of the largest challenges facing our society. The world currently consumes
an average of 16 terawatts of power, 86% of which comes from fossil fuels [28]; without any effort
to curb energy consumption or use different sources of energy, most climate models predict that the
earth’s temperature will increase by at least 5 degrees Fahrenheit in the next 90 years [1], a change
that could cause ecological disasters on a global scale. While there are of course numerous facets to
the energy problem, there is a growing consensus that many energy and sustainability problems are
fundamentally informatics problems, areas where machine learning can play a significant role.

This paper looks specifically at the task of energy disaggregation, an informatics task relating to
energy efficiency. Energy disaggregation, also called non-intrusive load monitoring [11], involves
taking an aggregated energy signal, for example the total power consumption of a house as read by
an electricity meter, and separating it into the different electrical appliances being used. Numerous
studies have shown that receiving information about ones energy usage can automatically induce
energy-conserving behaviors [6, 19], and these studies also clearly indicate that receiving appliance-
specific information leads to much larger gains than whole-home data alone ([19] estimates that
appliance-level data could reduce consumption by an average of 12% in the residential sector). In
the United States, electricity constitutes 38% of all energy used, and residential and commercial
buildings together use 75% of this electricity [28]; thus, this 12% figure accounts for a sizable
amount of energy that could potentially be saved. However, the widely-available sensors that provide
electricity consumption information, namely the so-called “Smart Meters” that are already becoming
ubiquitous, collect energy information only at the whole-home level and at a very low resolution
(typically every hour or 15 minutes). Thus, energy disaggregation methods that can take this whole-
home data and use it to predict individual appliance usage present an algorithmic challenge where
advances can have a significant impact on large-scale energyefficiency issues.
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Energy disaggregation methods do have a long history in the engineering community, including
some which have applied machine learning techniques — earlyalgorithms [11, 26] typically looked
for “edges” in power signal to indicate whether a known device was turned on or off; later work
focused on computing harmonics of steady-state power or current draw to determine more complex
device signatures [16, 14, 25, 2]; recently, researchers have analyzed the transient noise of an elec-
trical circuit that occurs when a device changes state [15, 21]. However, these and all other studies
we are aware of were either conducted in artificial laboratory environments, contained a relatively
small number of devices, trained and tested on the same set ofdevices in a house, and/or used cus-
tom hardware for very high frequency electrical monitoringwith an algorithmic focus on “event
detection” (detecting when different appliances were turned on and off). In contrast, in this paper
we focus on disaggregating electricity using low-resolution, hourly data of the type that is readily
available via smart meters (but where most single-device “events” are not apparent); we specifically
look at the generalization ability of our algorithms for devices and homes unseen at training time;
and we consider a data set that is substantially larger than those previously considered, with 590
homes, 10,165 unique devices, and energy usage spanning a time period of over two years.

The algorithmic approach we present in this paper builds upon sparse coding methods and recent
work in single-channel source separation [24, 23, 22]. Specifically, we use a sparse coding algorithm
to learn a model of each device’s power consumption over a typical week, then combine these
learned models to predict the power consumption of different devices in previously unseen homes,
using their aggregate signal alone. While energy disaggregation can naturally be formulated as such
a single-channel source separation problem, we know of no previous application of these methods
to the energy disaggregation task. Indeed, the most common application of such algorithm is audio
signal separation, which typically has very high temporal resolution; thus, the low-resolution energy
disaggregation task we consider here poses a new set of challenges for such methods, and existing
approaches alone perform quite poorly.

As a second major contribution of the paper, we develop a novel approach for discriminatively train-
ing sparse coding dictionaries for disaggregation tasks, and show that this significantly improves
performance on our energy domain. Specifically, we formulate the task of maximizing disaggrega-
tion performance as a structured prediction problem, whichleads to a simple and effective algorithm
for discriminatively training such sparse representationfor disaggregation tasks. The algorithm is
similar in spirit to a number of recent approaches to discriminative training of sparse representations
[12, 17, 18]. However, these past works were interested in discriminatively training sparse cod-
ing representation specifically forclassificationtasks, whereas we focus here on discriminatively
training the representation fordisaggregationtasks, which naturally leads to substantially different
algorithmic approaches.

2 Discriminative Disaggregation via Sparse Coding

We begin by reviewing sparse coding methods and their application to disaggregation tasks. For con-
creteness we use the terminology of our energy disaggregation domain throughout this description,
but the algorithms can apply equally to other domains. Formally, assume we are givenk differ-
ent classes, which in our setting corresponds to device categories such as televisions, refrigerators,
heaters, etc. For everyi = 1, . . . , k, we have a matrixXi ∈ R

T×m where eachcolumnof Xi

contains a week of energy usage (measured every hour) for a particular house and for this particular
type of device. Thus, for example, thejth column ofX1, which we denotex(j)

1 , may contain weekly

energy consumption for a refrigerator (for a single week in asingle house) andx(j)
2 could contain

weekly energy consumption of a heater (for this same week in the same house). We denote the
aggregatepower consumption over all device types asX̄ ≡

∑k
i=1 Xi so that thejth column ofX̄,

x̄(j), contains a week of aggregated energy consumption for all devices in a given house. At training
time, we assume we have access to the individual device energy readingsX1, . . . ,Xk (obtained for
example from plug-level monitors in a small number of instrumented homes). At test time, however,
we assume that we have access only to the aggregate signal of anew set of data points̄X′ (as would
be reported by smart meter), and the goal is to separate this signal into its components,X′

1, . . . ,X
′
k.

The sparse coding approach to source separation (e.g., [24,23]), which forms for the basis for our
disaggregation approach, is to train separate models for each individual classXi, then use these
models to separate an aggregate signal. Formally, sparse coding models theith data matrix using the
approximationXi ≈ BiAi where the columns ofBi ∈ R

T×n contain a set ofn basis functions, also
called thedictionary, and the columns ofAi ∈ R

n×m contain theactivationsof these basis functions
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[20]. Sparse coding additionally imposes the the constraint that the activationsAi be sparse, i.e.,
that they contain mostly zero entries, which allows us to learn overcompleterepresentations of the
data (more basis functions than the dimensionality of the data). A common approach for achieving
this sparsity is to add anℓ1 regularization penalty to the activations.

Since energy usage is an inherently non-negative quantity,we impose the further constraint that the
activations and bases be non-negative, an extension known as non-negative sparse coding [13, 7].
Specifically, in this paper we will consider the non-negative sparse coding objective

min
Ai≥0,Bi≥0

1

2
‖Xi −BiAi‖

2
F + λ

∑

p,q

(Ai)pq subject to ‖b(j)
i ‖2 ≤ 1, j = 1, . . . , n (1)

whereXi, Ai, andBi are defined as above,λ ∈ R+ is a regularization parameter,‖Y‖F ≡
(
∑

p,q Ypq)
1/2 is the Frobenius norm, and‖y‖2 ≡ (

∑

p y
2
p)

1/2 is theℓ2 norm. This optimization
problem is not jointly convex inAi andBi, but it is convex in each optimization variable when
holding the other fixed, so a common strategy for optimizing (1) is to alternate between minimizing
the objective overAi andBi.

After using the above procedure to find representationsAi andBi for each of the classesi =

1, . . . , k, we can disaggregate a new aggregate signalX̄ ∈ R
T×m′

(without providing the algorithm
its individual components), using the following procedure(used by, e.g., [23], amongst others). We
concatenate the bases to form single joint set of basis functions and solve the optimization problem

Â1:k = arg min
A1:k≥0

∥

∥

∥

∥

∥

∥

X̄− [B1 · · ·Bk]





A1

...
Ak





∥

∥

∥

∥

∥

∥

2

F

+ λ
∑

i,p,q

(Ai)pq

≡ arg min
A1:k≥0

F (X̄,B1:k,A1:k)

(2)

where for ease of notation we useA1:k as shorthand forA1, . . . ,Ak, and we abbreviate the opti-
mization objective asF (X̄,B1:k,A1:k). We then predict theith component of the signal to be

X̂i = BiÂi. (3)

The intuition behind this approach is that ifBi is trained to reconstruct theith class with small
activations, then it should be better at reconstructing theith portion of the aggregate signal (i.e.,
require smaller activations) than all other basesBj for j 6= i. We can evaluate the quality of the
resulting disaggregation by what we refer to as thedisaggregation error,

E(X1:k,B1:k) ≡

k
∑

i=1

1

2
‖Xi −BiÂi‖

2
F subject to Â1:k = arg min

A1:k≥0
F

(

k
∑

i=1

Xi,B1:k,A1:k

)

,

(4)
which quantifies how accurately we reconstruct each individual class when using the activations
obtained only via the aggregated signal.

2.1 Structured Prediction for Discriminative Disaggregation Sparse Coding

An issue with using sparse coding alone for disaggregation tasks is that the bases are not trained to
minimize the disaggregation error. Instead, the method relies on the hope that learning basis func-
tions for each class individually will produce bases that are distinct enough to also produce small
disaggregation error. Furthermore, it is very difficult to optimize the disaggregation error directly
overB1:k, due to the non-differentiability (and discontinuity) of the argmin operator with a non-
negativity constraint. One could imagine an alternating procedure where we iteratively optimize
overB1:k, ignoring the the dependence ofÂ1:k on B1:k, then re-solve for the activationŝA1:k;
but ignoring howÂ1:k depends onB1:k loses much of the problem’s structure and this approach
performs very poorly in practice. Alternatively, other methods (though in a different context from
disaggregation) have been proposed that use a differentiable objective function and implicit differ-
entiation to explicitly model the derivative of the activations with respect to the basis functions [4];
however, this formulation loses some of the benefits of the standard sparse coding formulation, and
computing these derivatives is a computationally expensive procedure.
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Instead, we propose in this paper a method for optimizing disaggregation performance based upon
structured prediction methods [27]. To describe our approach, we first define theregularized disag-
gregation error, which is simply the disaggregation error plus a regularization penalty onÂ1:k,

Ereg(X1:k,B1:k) ≡ E(X1:k,B1:k) + λ
∑

i,p,q

(Âi)pq (5)

whereÂ is defined as in (2). This criterion provides a better optimization objective for our algorithm,
as we wish to obtain asparseset of coefficients that can achieve low disaggregation error. Clearly,
the best possible value of̂Ai for this objective function is given by

A⋆
i = arg min

Ai≥0

1

2
‖Xi −BiAi‖

2
F + λ

∑

p,q

(Ai)pq, (6)

which is precisely the activations obtained after an iteration of sparse coding on the data matrixXi.
Motivated by this fact, the first intuition of our algorithm is that in order to minimize disaggregation
error, we candiscriminativelyoptimize the basesB1:k that such performing the optimization (2)
produces activations that are as close toA⋆

1:k as possible. Of course, changing the basesB1:k to
optimize this criterion would also change the resulting optimal coefficientsA⋆

1:k. Thus, the second
intuition of our method is that the bases used in the optimization (2)need not be the sameas the bases
used to reconstruct the signals. We define an augmented regularized disaggregation error objective

Ẽreg(X1:k,B1:k, B̃1:k) ≡

k
∑

i=1

(

1

2
‖Xi −BiÂi‖

2
F + λ

∑

p,q

(Âi)pq

)

subject to Â1:k = arg min
A1:k≥0

F

(

k
∑

i=1

Xi, B̃1:k,A1:k

)

,

(7)

where theB1:k bases (referred to as thereconstruction bases) are the same as those learned from
sparse coding while thẽB1:k bases (refereed to as thedisaggregation bases) are discriminatively
optimized in order to movêA1:k closer toA⋆

1:k, without changing these targets.

Discriminatively training the disaggregation basesB̃1:k is naturally framed as a structured prediction
task: the input is̄X, the multi-variate desired output isA⋆

1:k, the model parameters arẽB1:k, and the
discriminant function isF (X̄, B̃1:k,A1:k).1 In other words, we seek basesB̃1:k such that (ideally)

A⋆
1:k = arg min

A1:k≥0
F (X̄, B̃1:k,A1:k). (8)

While there are many potential methods for optimizing such a prediction task, we use a simple
method based on the structured perceptron algorithm [5]. Given some value of the parametersB̃1:k,
we first computêA using (2). We then perform the perceptron update with a step sizeα,

B̃1:k ← B̃1:k − α
(

∇
B̃1:k

F (X̄, B̃1:k,A
⋆
1:k)−∇B̃1:k

F (X̄, B̃1:k, Â1:k)
)

(9)

or more explicitly, defining̃B =
[

B̃1 · · · B̃k

]

, A⋆ =
[

A⋆
1
T · · ·A⋆

1
T
]T

(and similarly forÂ),

B̃← B̃− α
(

(X̄− B̃Â)ÂT − (X̄− B̃A⋆)A⋆T
)

. (10)

To keepB̃1:k in a similar form toB1:k, we keep only the positive part of̃B1:k and we re-normalize
each column to have unit norm. One item to note is that, unliketypical structured prediction where
the discriminant is alinear function in the parameters (which guarantees convexity of the problem),
here our discriminant is aquadratic function of the parameters, and so we no longer expect to
necessarily reach a global optimum of the prediction problem; however, since sparse coding itself
is a non-convex problem, this is not overly concerning for our setting. Our complete method for
discriminative disaggregation sparse coding, which we call DDSC, is shown in Algorithm 1.

1The structured prediction task actually involvesm examples (wherem is the number of columns of̄X), and
the goal is to output the desired activations(a⋆

1:k)
(j), for thejth examplēx(j). However, since the functionF

decomposes across the columns ofX andA, the above notation is equivalent to the more explicit formulation.
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Algorithm 1 Discriminative disaggregation sparse coding

Input: data points for each individual sourceXi ∈ R
T×m, i = 1, . . . , k, regularization parameter

λ ∈ R+, gradient step sizeα ∈ R+.

Sparse coding pre-training:
1. InitializeBi andAi with positive values and scale columns ofBi such that‖b(j)

i ‖2 = 1.

2. For eachi = 1, . . . , k, iterate until convergence:

(a) Ai ← argminA≥0 ‖Xi −BiA‖
2
F + λ

∑

p,q Apq

(b) Bi ← argminB≥0,‖b(j)‖2≤1 ‖Xi −BAi‖
2
F

Discriminative disaggregation training:

3. SetA⋆
1:k ← A1:k, B̃1:k ← B1:k.

4. Iterate until convergence:

(a) Â1:k ← argminA1:k≥0 F (X̄, B̃1:k,A1:k)

(b) B̃←
[

B̃− α
(

(X̄− B̃Â)ÂT − (X̄− B̃A⋆)(A⋆)T
)]

+

(c) For alli, j, b(j)
i ← b

(j)
i /‖b

(j)
i ‖2.

Given aggregated test examples X̄′:

5. Â′
1:k ← argminA1:k≥0 F (X̄′, B̃1:k,A1:k)

6. PredictX̂′
i = BiÂ

′
i.

2.2 Extensions

Although, as we show shortly, the discriminative training procedure has made the largest difference
in terms of improving disaggregation performance in our domain, a number of other modifications
to the standard sparse coding formulation have also proven useful. Since these are typically trivial
extensions or well-known algorithms, we mention them only briefly here.

Total Energy Priors. One deficiency of the sparse coding framework for energy disaggregation
is that the optimization objective does not take into consideration the size of an energy signal for
determinining which class it belongs to, just its shape. Since total energy used is obviously a dis-
criminating factor for different device types, we consideran extension that penalizes theℓ2 deviation
between a device and its mean total energy. Formally, we augment the objectiveF with the penalty

FTEP (X̄,B1:k,A1:k) = F (X̄,B1:k,A1:k) + λTEP

k
∑

i=1

‖µi1
T − 1TBiAi‖

2
2 (11)

where1 denotes a vector of ones of the appropriate size, andµi = 1
m1TXi denotes the average

total energy of device classi.

Group Lasso. Since the data set we consider exhibits some amount of sparsity at the device level
(i.e., several examples have zero energy consumed by certain device types, as there is either no such
device in the home or it was not being monitored), we also would like to encourage agroupingeffect
to the activations. That is, we would like a certain coefficient being active for a particular class to
encourage other coefficients to also be active in that class.To achieve this, we employ the group
Lasso algorithm [29], which adds anℓ2 norm penalty to the activations of each device

FGL(X̄,B1:k,A1:k) = F (X̄,B1:k,A1:k) + λGL

k
∑

i=1

m
∑

j=1

‖a
(j)
i ‖2. (12)

Shift Invariant Sparse Coding. Shift invariant, or convolutional sparse coding is an extension
to the standard sparse coding framework where each basis is convolved over the input data, with
a separate activation for each shift position [3, 10]. Such ascheme may intuitively seem to be
beneficial for the energy disaggregation task, where a givendevice might exhibit the same energy
signature at different times. However, as we will show in thenext section, this extension actually
perform worse in our domain; this is likely due to the fact that, since we have ample training data
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and a relatively low-dimensional domain (each energy signal has 168 dimensions, 24 hours per
day times 7 days in the week), the standard sparse coding bases are able to cover all possible shift
positions for typical device usage. However, pure shift invariant basescannotcapture information
aboutwhenin the week or day each device is typically used, and such information has proven crucial
for disaggregation performance.

2.3 Implementation

Space constraints preclude a full discussion of the implementation details of our algorithms, but for
the most part we rely on standard methods for solving the optimization problems. In particular,
most of the time spent by the algorithm involves solving sparse optimization problems to find the
activation coefficients, namely steps 2a and 4a in Algorithm1. We use a coordinate descent approach
here, both for the standard and group Lasso version of the optimization problems, as these have been
recently shown to be efficient algorithms forℓ1-type optimization problems [8, 9], and have the
added benefit that we can warm-start the optimization with the solution from previous iterations. To
solve the optimization overBi in step 2b, we use the multiplicative non-negative matrix factorization
update from [7].

3 Experimental Results
3.1 The Plugwise Energy Data Set and Experimental Setup

We conducted this work using a data set provided by Plugwise,a European manufacturer of plug-
level monitoring devices. The data set contains hourly energy readings from 10,165 different devices
in 590 homes, collected over more than two years. Each deviceis labeled with one of 52 device
types, which we further reduce to ten broad categories of electrical devices: lighting, TV, computer,
other electronics, kitchen appliances, washing machine and dryer, refrigerator and freezer, dish-
washer, heating/cooling, and a miscellaneous category. Welook at time periods in blocks of one
week, and try to predict the individual device consumption over this week given only the whole-
home signal (since the data set does not currently contain true whole-home energy readings, we
approximate the home’s overall energy usage by aggregatingthe individual devices). Crucially, we
focus on disaggregating data from homes that are absent fromthe training set (we assigned 70% of
the homes to the training set, and 30% to the test set, resulting in 17,133 total training weeks and
6846 testing weeks); thus, we are attempting to generalize over the basic category of devices, not
just over different uses of the same device in a single house.We fit the hyper-parameters of the
algorithms (number of bases and regularization parameters) using grid search over each parameter
independently on a cross validation set consisting of 20% ofthe training homes.

3.2 Qualitative Evaluation of the Disaggregation Algorithms

We first look qualitatively at the results obtained by the method. Figure 1 shows the true energy en-
ergy consumed by two different houses in the test set for two different weeks, along with the energy
consumption predicted by our algorithms. The figure shows both the predicted energy of several
devices over the whole week, as well as a pie chart that shows the relative energy consumption of
different device types over the whole week (a more intuitivedisplay of energy consumed over the
week). In many cases, certain devices like the refrigerator, washer/dryer, and computer are predicted
quite accurately, both in terms the total predicted percentage and in terms of the signals themselves.
There are also cases where certain devices are not predictedwell, such as underestimating the heat-
ing component in the example on the left, and a predicting spike in computer usage in the example
on the right when it was in fact a dishwasher. Nonetheless, despite some poor predictions at the
hourly device level, the breakdown of electric consumptionis still quite informative, determining
the approximate percentage of many devices types and demonstrating the promise of such feedback.

In addition to the disaggregation results themselves, sparse coding representations of the different
device types are interesting in their own right, as they givea good intuition about how the different
devices are typically used. Figure 2 shows a graphical representation of the learned basis functions.
In each plot, the grayscale image on the right shows an intensity map of all bases functions learned
for that device category, where each column in the image corresponds to a learned basis. The plot
on the left shows examples of seven basis functions for the different device types. Notice, for
example, that the bases learned for the washer/dryer devices are nearly all heavily peaked, while
the refrigerator bases are much lower in maximum magnitude.Additionally, in the basis images
devices like lighting demonstrate a clear “band” pattern, indicating that these devices are likely to
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Figure 1: Example predicted energy profiles and total energypercentages (best viewed in color).
Blue lines show the true energy usage, and red the predicted usage, both in units of kWh.
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Figure 2: Example basis functions learned from three devicecategories (best viewed in color). The
plot of the left shows seven example bases, while the image onthe right shows all learned basis
functions (one basis per column).

be on and off during certain times of the day (each basis covers a week of energy usage, so the seven
bands represent the seven days). The plots also suggests whythe standard implementation of shift
invariance is not helpful here. There is sufficient trainingdata such that, for devices like washers and
dryers, we learn a separate basis for all possible shifts. Incontrast, for devices like lighting, where
thetimeof usage is an important factor, simple shift-invariant bases miss key information.

3.3 Quantitative Evaluation of the Disaggregation Methods

There are a number of components to the final algorithm we haveproposed, and in this section
we present quantitative results that evaluate the performance of each of these different components.
While many of the algorithmic elements improve the disaggregation performance, the results in this
section show that the discriminative training in particular is crucial for optimizing disaggregation
performance. The most natural metric for evaluating disaggregation performance is the disaggrega-
tion error in (4). However, average disaggregation error isnot a particularly intuitive metric, and so
we also evaluate a total-week accuracy of the prediction system, defined formally as

Accuracy ≡

∑

i,q min
{

∑

p(Xi)pq,
∑

p(BiÂi)pq

}

∑

p,q X̄p,q
. (13)
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Method Training Set Test Accuracy
Disagg. Err. Acc. Disagg. Err. Acc.

Predict Mean Energy 20.98 45.78% 21.72 47.41%
SISC 20.84 41.87% 24.08 41.79%

Sparse Coding 10.54 56.96% 18.69 48.00%
Sparse Coding + TEP 11.27 55.52% 16.86 50.62%
Sparse Coding + GL 10.55 54.98% 17.18 46.46%

Sparse Coding + TEP + GL 9.24 58.03% 14.05 52.52%
DDSC 7.20 64.42% 15.59 53.70%

DDSC + TEP 8.99 59.61% 15.61 53.23%
DDSC + GL 7.59 63.09% 14.58 52.20%

DDSC + TEP + GL 7.92 61.64% 13.20 55.05%

Table 1: Disaggregation results of algorithms (TEP = Total Energy Prior, GL = Group Lasso, SISC
= Shift Invariant Sparse Coding, DDSC = Discriminative Disaggregation Sparse Coding).
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Figure 3: Evolution of training and testing errors for iterations of the discriminative DDSC updates.

Despite the complex definition, this quantity simply captures the average amount of energy predicted
correctly over the week (i.e., the overlap between the true and predicted energy pie charts).

Table 1 shows the disaggregation performance obtained by many different prediction methods. The
advantage of the discriminative training procedure is clear: all the methods employing discrimina-
tive training perform nearly as well or better than all the methods without discriminative training;
furthermore, the system with all the extensions, discriminative training, a total energy prior, and
the group Lasso, outperforms all competing methods on both metrics. To put these accuracies in
context, we note that separate to the results presented herewe trained an SVM, using a variety
of hand-engineered features, toclassify individual energy signals into their device category, and
were able to achieve at most 59% classification accuracy. It therefore seems unlikely that we could
disaggregate a signal to above this accuracy and so, informally speaking, we expect the achievable
performance on this particular data set to range between 47%for the baseline of predicting mean en-
ergy (which in fact is a very reasonable method, as devices often follow their average usage patterns)
and 59% for the individual classification accuracy. It is clear, then, that the discriminative training
is crucial to improving the performance of the sparse codingdisaggregation procedure within this
range, and does provide a significant improvement over the baseline. Finally, as shown in Figure 3,
both the training and testing error decrease reliably with iterations of DDSC, and we have found that
this result holds for a wide range of parameter choices and step sizes (though, as with all gradient
methods, some care be taken to choose a step size that is not prohibitively large).

4 Conclusion

Energy disaggregation is a domain where advances in machinelearning can have a significant impact
on energy use. In this paper we presented an application of sparse coding algorithms to this task,
focusing on a large data set that contains the type of low-resolution data readily available from smart
meters. We developed the discriminative disaggregation sparse coding (DDSC) algorithm, a novel
discriminative training procedure, and show that this algorithm significantly improves the accuracy
of sparse coding for the energy disaggregation task.
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