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Abstract

Energy disaggregation is the task of taking a whole-homeggrsgnal and sep-
arating it into its component appliances. Studies have shbat having device-
level energy information can cause users to conserve signtfiamounts of en-
ergy, but current electricity meters only report whole-teasiata. Thus, developing
algorithmic methods for disaggregation presents a keynieahchallenge in the
effort to maximize energy conservation. In this paper, wanexie a large scale
energy disaggregation task, and apply a novel extensiopaskse coding to this
problem. In particular, we develop a method, based upormtstred prediction,

for discriminatively training sparse coding algorithmsesifically to maximize

disaggregation performance. We show that this signifigantproves the perfor-
mance of sparse coding algorithms on the energy task arglrdte how these
disaggregation results can provide useful informatiorualeoergy usage.

1 Introduction

Energy issues present one of the largest challenges fagirgpoiety. The world currently consumes
an average of 16 terawatts of power, 86% of which comes frasilftuels [28]; without any effort

to curb energy consumption or use different sources of gnergst climate models predict that the
earth’s temperature will increase by at least 5 degreeshahbit in the next 90 years [1], a change
that could cause ecological disasters on a global scale eéWhgle are of course numerous facets to
the energy problem, there is a growing consensus that margyeand sustainability problems are
fundamentally informatics problems, areas where macleiaming can play a significant role.

This paper looks specifically at the task of energy disaggieq, an informatics task relating to
energy efficiency. Energy disaggregation, also calledinomsive load monitoring [11], involves
taking an aggregated energy signal, for example the toteépoonsumption of a house as read by
an electricity meter, and separating it into the differdatgical appliances being used. Numerous
studies have shown that receiving information about onesggnusage can automatically induce
energy-conserving behaviors [6, 19], and these studiescldarly indicate that receiving appliance-
specific information leads to much larger gains than whalev data alone ([19] estimates that
appliance-level data could reduce consumption by an agevb@2% in the residential sector). In
the United States, electricity constitutes 38% of all eparged, and residential and commercial
buildings together use 75% of this electricity [28]; thusist12% figure accounts for a sizable
amount of energy that could potentially be saved. Howekienidely-available sensors that provide
electricity consumption information, namely the so-cali8mart Meters” that are already becoming
ubiquitous, collect energy information only at the wholmte level and at a very low resolution
(typically every hour or 15 minutes). Thus, energy disaggtien methods that can take this whole-
home data and use it to predict individual appliance usagsemt an algorithmic challenge where
advances can have a significant impact on large-scale eaffigjgncy issues.



Energy disaggregation methods do have a long history in tiggneering community, including
some which have applied machine learning techniques — akytyithms [11, 26] typically looked
for “edges” in power signal to indicate whether a known dewvias turned on or off; later work
focused on computing harmonics of steady-state power oecudraw to determine more complex
device signatures [16, 14, 25, 2]; recently, researchears Aaalyzed the transient noise of an elec-
trical circuit that occurs when a device changes state [1p, 2owever, these and all other studies
we are aware of were either conducted in artificial laboyagmvironments, contained a relatively
small number of devices, trained and tested on the same devigles in a house, and/or used cus-
tom hardware for very high frequency electrical monitorimigh an algorithmic focus on “event
detection” (detecting when different appliances wereddron and off). In contrast, in this paper
we focus on disaggregating electricity using low-resolotihourly data of the type that is readily
available via smart meters (but where most single-devigerf&s” are not apparent); we specifically
look at the generalization ability of our algorithms for @m®ms and homes unseen at training time;
and we consider a data set that is substantially larger thasetpreviously considered, with 590
homes, 10,165 unique devices, and energy usage spanning period of over two years.

The algorithmic approach we present in this paper buildswgparse coding methods and recent
work in single-channel source separation [24, 23, 22]. Bipally, we use a sparse coding algorithm
to learn a model of each device's power consumption over gdypveek, then combine these
learned models to predict the power consumption of diffedewices in previously unseen homes,
using their aggregate signal alone. While energy disagjoegean naturally be formulated as such
a single-channel source separation problem, we know of egiqurs application of these methods
to the energy disaggregation task. Indeed, the most compitation of such algorithm is audio
signal separation, which typically has very high tempoeabitution; thus, the low-resolution energy
disaggregation task we consider here poses a new set oéieped for such methods, and existing
approaches alone perform quite poorly.

As a second major contribution of the paper, we develop alrpgoach for discriminatively train-
ing sparse coding dictionaries for disaggregation tashd,shhow that this significantly improves
performance on our energy domain. Specifically, we forneutlaé task of maximizing disaggrega-
tion performance as a structured prediction problem, wigials to a simple and effective algorithm
for discriminatively training such sparse representafmndisaggregation tasks. The algorithm is
similar in spirit to a number of recent approaches to disitrative training of sparse representations
[12, 17, 18]. However, these past works were interested sorihinatively training sparse cod-
ing representation specifically fatassificationtasks, whereas we focus here on discriminatively
training the representation fdisaggregatiortasks, which naturally leads to substantially different
algorithmic approaches.

2 Discriminative Disaggregation via Spar se Coding

We begin by reviewing sparse coding methods and their aggficto disaggregation tasks. For con-
creteness we use the terminology of our energy disaggoegddmain throughout this description,
but the algorithms can apply equally to other domains. Fdymnassume we are giveh differ-
ent classes, which in our setting corresponds to devicgoaés such as televisions, refrigerators,
heaters, etc. For eveliy= 1,...,k, we have a matrixXX; € R”*™ where eaclcolumnof X;
contains a week of energy usage (measured every hour) fatieuypar house and for this particular

type of device. Thus, for example, thith column ofX;, which we denot&ﬁj), may contain weekly

energy consumption for a refrigerator (for a single week gingle house) andéj) could contain
weekly energy consumption of a heater (for this same weekensame house). We denote the

aggregatepower consumption over all device typesXs= Zle X; so that thejth column ofX,

%), contains a week of aggregated energy consumption forwttelein a given house. At training
time, we assume we have access to the individual deviceereadingsX,, . . . , X, (obtained for
example from plug-level monitors in a small number of instamnted homes). At test time, however,
we assume that we have access only to the aggregate signa¢wfset of data pointX’ (as would
be reported by smart meter), and the goal is to separataghisl $nto its componentsX’, ..., X, .

The sparse coding approach to source separation (e.g23P4which forms for the basis for our
disaggregation approach, is to train separate models fir isgividual classX;, then use these
models to separate an aggregate signal. Formally, spadseganodels théth data matrix using the
approximatiorX; ~ B;A; where the columns dB; € R”*" contain a set of, basis functions, also
called thddictionary, and the columns dA; € R™*™ contain theactivationsof these basis functions



[20]. Sparse coding additionally imposes the the condtthit the activationd\; be sparse, i.e.,

that they contain mostly zero entries, which allows us tonexercompleteepresentations of the
data (more basis functions than the dimensionality of tie)d& common approach for achieving
this sparsity is to add afy regularization penalty to the activations.

Since energy usage is an inherently non-negative quawitympose the further constraint that the
activations and bases be non-negative, an extension knewnranegative sparse coding [13, 7].
Specifically, in this paper we will consider the non-negasparse coding objective

o 00 >O§HX ~BiAi|3 + A (Ai),, subjectto b, <1, 5=1,....n (1)
p.q

whereX;, A,, andB, are defined as above, € R, is a regularization parametefY||r =

(> Y,,)'/? is the Frobenius norm, any||> = >, y2)/% is thel, norm. This optimization

problem is not jointly convex imA; andB;, but it is convex in each optimization variable when

holding the other fixed, so a common strategy for optimizitigg to alternate between minimizing

the objective oveA; andB;.

After using the above procedure to find representatidnsand B; for each of the classes =

., k, we can disaggregate a new aggregate sinal R <™ (without providing the algorithm
its individual components), using the following proced(used by, e.g., [23], amongst others). We
concatenate the bases to form single joint set of basisimecand solve the optimization problem

A 7°
Alk:argAm:glo X —[By---By] +/\Z(A @
Ay . 4,09
= in F(X,B1.., A1
arg min (X, Bix, Arg)
where for ease of notation we uge ., as shorthand foA, ..., Ay, and we abbreviate the opti-

mization objective a$'(X, B;.x, A1.x). We then predict théh component of the signal to be
X; = B;A;. )

The intuition behind this approach is thatH; is trained to reconstruct thigh class with small
activations, then it should be better at reconstructing:theportion of the aggregate signal (i.e.,
require smaller activations) than all other baBssfor j # i. We can evaluate the quality of the
resulting disaggregation by what we refer to asdisaggregation errar

k
E(X14,Big) = Z fHX —B;A||% subjecttoA;.; = arg in P (Z X, Bi, ALk

i=1
4)
which quantifies how accurately we reconstruct each indaefictlass when using the activations
obtained only via the aggregated signal.

2.1 Structured Prediction for Discriminative Disaggregation Sparse Coding

An issue with using sparse coding alone for disaggregatiskstis that the bases are not trained to
minimize the disaggregation error. Instead, the methdds@n the hope that learning basis func-
tions for each class individually will produce bases that distinct enough to also produce small
disaggregation error. Furthermore, it is very difficult fatimize the disaggregation error directly
over By.;, due to the non- differentiability (and discontinuity) dfet argmin operator with a non-
negativity constraint. One could imagine an alternatingcpdure where we iteratively optimize
over Bi.., |gnor|ng the the dependence Af,.. on By.;, then re-solve for the activation&.,;
but ignoring howA ., depends oB;.; loses much of the problem’s structure and this approach
performs very poorly in practice. Alternatively, other ineds (though in a different context from
disaggregation) have been proposed that use a differ&tbiective function and implicit differ-
entiation to explicitly model the derivative of the activats with respect to the basis functions [4];
however, this formulation loses some of the benefits of thedsrd sparse coding formulation, and
computing these derivatives is a computationally expengirecedure.



Instead, we propose in this paper a method for optimizinggtisegation performance based upon
structured prediction methods [27]. To describe our apgrpae first define theegularized disag-

gregation error which is simply the disaggregation error plus a reguldigrepenalty onA .,

Ereg(Xl:kaBl:k’) = E(Xllk’Bllk) +/\Z(Ab)pq (5)

1,P,q

whereA is defined as in (2). This criterion provides a better optation objective for our algorithm,
as we wish to obtain gparseset of coefficients that can achieve low disaggregatiorr.e@early,

the best possible value d; for this objective function is given by

1
Aj = arg min o[1X; = BT+ A Y (A, ©)
p,q

which is precisely the activations obtained after an iteradf sparse coding on the data matKx.
Motivated by this fact, the first intuition of our algorithm that in order to minimize disaggregation
error, we cardiscriminativelyoptimize the baseB;., that such performing the optimization (2)
produces activations that are as closeAth, as possible. Of course, changing the bd3eg to
optimize this criterion would also change the resultingropt coefficientsAy,,. Thus, the second
intuition of our method is that the bases used in the optitiing2) need not be the sanas the bases
used to reconstruct the signals. We define an augmentedarezgul disaggregation error objective

k
~ ~ 1 ~ ~
Ereg(Xlzk7Bl:k; Bl:k:) = Z <2Xz - BzAzH%‘ + )\Z(Al)pq>
=1 p,q

()

A;.,>0 ‘
=1

k
subject oA, = arg min F (Z Xi7l~31:k,A1:k> ,

where theB; ., bases (referred to as tieconstruction basgsare the same as those learned from
sparse coding while thB., bases (refereed to as tdesaggregation basg¢sare discriminatively
optimized in order to move\ ., closer toAf,,, without changing these targets.

Discriminatively training the disaggregation ba®es;, is naturally framed as a structured prediction
task: the input isX, the multi-variate desired output s} ., , the model parameters &aBy.;, and the
discriminant function is"(X, By.x, A1.; ).} In other words, we seek basBs., such that (ideally)

Al = arg ATirzlo F(X, By, Avp). (8)

While there are many potential methods for optimizing suchreadigtion task, we use a simple
method based on the structured perceptron algorithm [SerGsome value of the paramet@s,
we first computeA using (2). We then perform the perceptron update with a sreps

Bl:k — Bl:k -« (VBIkF(Xv El:/m Ik) - VBlsz(X, Bl:kv Al:k)) (9)
. e _ T .
or more explicitly, defining = {Bl e Bk} JA* = {A{T e A{T} (and similarly forA),
B+B-a ((X ~BA)AT - (X - BA*)A*T) . (10)

To keepB;.; in a similar form toB;.;, we keep only the positive part &,.;, and we re-normalize
each column to have unit norm. One item to note is that, uigecal structured prediction where
the discriminant is éinear function in the parameters (which guarantees convexith@ptroblem),
here our discriminant is guadratic function of the parameters, and so we no longer expect to
necessarily reach a global optimum of the prediction probleowever, since sparse coding itself
is a non-convex problem, this is not overly concerning for setting. Our complete method for
discriminative disaggregation sparse coding, which wel@BISC, is shown in Algorithm 1.

The structured prediction task actually involvesexamples (whers: is the number of columns &), and
the goal is to output the desired activatiqas., )", for the jth examplex?). However, since the functioR
decomposes across the column&oénd A, the above notation is equivalent to the more explicit formulation.



Algorithm 1 Discriminative disaggregation sparse coding

Input: data points for each individual sourdg € RT>™, i = 1,...,k, regularization parameter
A € R,, gradient step size € R,..

Spar se coding pre-training:
1. Initialize B; and A ; with positive values and scale columnsi®f such thaﬂ|b£j) Il = 1.
2. Foreach =1,..., k, iterate until convergence:
(@) A; «+ argmina>o [|X; — B;A||% + /\Zp’q A,
(b) Bi < argming>o b0 ,<1 1% — BA;|%

Discriminative disaggregation training:
3. SetAr, « Ay, Biy ¢ Biy.
4. lterate until convergence:
@ Ay argmina,, >0 F(X, Bl:k, Aiy)
(b) B « [B —a ((X ~BA)AT — (X - BA*)(A*)T)} X
() Foralli,j, b « b /|7,
Given aggregated test examples X':
5. A’lk — argmina,, >0 F(X/, Blzk,ALk)
6. PredictX) = B;A..

2.2 Extensions

Although, as we show shortly, the discriminative trainimggedure has made the largest difference
in terms of improving disaggregation performance in our disma number of other modifications
to the standard sparse coding formulation have also prosefulu Since these are typically trivial
extensions or well-known algorithms, we mention them omlgfty here.

Total Energy Priors. One deficiency of the sparse coding framework for energygdissgation
is that the optimization objective does not take into coasition the size of an energy signal for
determinining which class it belongs to, just its shape.c&itotal energy used is obviously a dis-
criminating factor for different device types, we considarextension that penalizes thedeviation
between a device and its mean total energy. Formally, we angthe objectiveg” with the penalty

k
Frep(X,Bik, Ari) = F(X, B, Avrg) + Arep z [il” —17B;A|3 (11)
1=1
where1 denotes a vector of ones of the appropriate size,;ang ilTXi denotes the average
total energy of device class

Group Lasso. Since the data set we consider exhibits some amount of gpatghe device level
(i.e., several examples have zero energy consumed byrcdewice types, as there is either no such
device in the home or it was not being monitored), we also dibla to encourage groupingeffect

to the activations. That is, we would like a certain coeffitibeing active for a particular class to
encourage other coefficients to also be active in that cl@gsachieve this, we employ the group
Lasso algorithm [29], which adds dp norm penalty to the activations of each device

k m
Far(X, By, Avg) = F(X,Br, Ark) + Aar Y D [[af|2. (12)

i=1 j=1

Shift Invariant Sparse Coding. Shift invariant, or convolutional sparse coding is an egien

to the standard sparse coding framework where each basiéwslged over the input data, with
a separate activation for each shift position [3, 10]. Sudtl@eme may intuitively seem to be
beneficial for the energy disaggregation task, where a giesice might exhibit the same energy
signature at different times. However, as we will show in miegt section, this extension actually
perform worse in our domain; this is likely due to the factttlsnce we have ample training data



and a relatively low-dimensional domain (each energy dipaa 168 dimensions, 24 hours per
day times 7 days in the week), the standard sparse coding besable to cover all possible shift
positions for typical device usage. However, pure shifaifant basesannotcapture information
aboutwhenin the week or day each device is typically used, and suchrimtion has proven crucial
for disaggregation performance.

2.3 Implementation

Space constraints preclude a full discussion of the imph¢ation details of our algorithms, but for
the most part we rely on standard methods for solving thevopétion problems. In particular,
most of the time spent by the algorithm involves solving spasptimization problems to find the
activation coefficients, namely steps 2a and 4a in Algorithim/e use a coordinate descent approach
here, both for the standard and group Lasso version of theization problems, as these have been
recently shown to be efficient algorithms fér-type optimization problems [8, 9], and have the
added benefit that we can warm-start the optimization wigrstiiution from previous iterations. To
solve the optimization oveB; in step 2b, we use the multiplicative non-negative matrctdeazation
update from [7].

3 Experimental Results
3.1 ThePlugwise Energy Data Set and Experimental Setup

We conducted this work using a data set provided by Plugwiggjropean manufacturer of plug-
level monitoring devices. The data set contains hourlygneradings from 10,165 different devices
in 590 homes, collected over more than two years. Each déviedeled with one of 52 device
types, which we further reduce to ten broad categories ofrial devices: lighting, TV, computer,
other electronics, kitchen appliances, washing machimkdayer, refrigerator and freezer, dish-
washer, heating/cooling, and a miscellaneous categorylo@keat time periods in blocks of one
week, and try to predict the individual device consumptiorrahis week given only the whole-
home signal (since the data set does not currently contagnvithole-home energy readings, we
approximate the home’s overall energy usage by aggreg#tenmdividual devices). Crucially, we
focus on disaggregating data from homes that are absentfi®inaining set (we assigned 70% of
the homes to the training set, and 30% to the test set, negufti17,133 total training weeks and
6846 testing weeks); thus, we are attempting to generaliegetbe basic category of devices, not
just over different uses of the same device in a single hoWge fit the hyper-parameters of the
algorithms (number of bases and regularization paramaisisg grid search over each parameter
independently on a cross validation set consisting of 20%heftraining homes.

3.2 Qualitative Evaluation of the Disaggregation Algorithms

We first look qualitatively at the results obtained by themoelt Figure 1 shows the true energy en-
ergy consumed by two different houses in the test set for ifferdnt weeks, along with the energy
consumption predicted by our algorithms. The figure showh kbte predicted energy of several
devices over the whole week, as well as a pie chart that shHwveetative energy consumption of
different device types over the whole week (a more intuitligplay of energy consumed over the
week). In many cases, certain devices like the refrigeratasher/dryer, and computer are predicted
quite accurately, both in terms the total predicted peagmtind in terms of the signals themselves.
There are also cases where certain devices are not predieteduch as underestimating the heat-
ing component in the example on the left, and a predictinkesisi computer usage in the example
on the right when it was in fact a dishwasher. Nonethelesspittesome poor predictions at the
hourly device level, the breakdown of electric consumpimstill quite informative, determining
the approximate percentage of many devices types and démaiimg the promise of such feedback.

In addition to the disaggregation results themselves sspewding representations of the different
device types are interesting in their own right, as they gigmod intuition about how the different
devices are typically used. Figure 2 shows a graphical septation of the learned basis functions.
In each plot, the grayscale image on the right shows an iityemsip of all bases functions learned
for that device category, where each column in the imagessponds to a learned basis. The plot
on the left shows examples of seven basis functions for tfiereint device types. Notice, for
example, that the bases learned for the washer/dryer deaieenearly all heavily peaked, while
the refrigerator bases are much lower in maximum magnituttiditionally, in the basis images
devices like lighting demonstrate a clear “band” pattendjdating that these devices are likely to
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Figure 1: Example predicted energy profiles and total enpeggentages (best viewed in color).
Blue lines show the true energy usage, and red the predistakeuboth in units of kWh.
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Figure 2: Example basis functions learned from three desa¢egories (best viewed in color). The
plot of the left shows seven example bases, while the imagiemnight shows all learned basis
functions (one basis per column).

be on and off during certain times of the day (each basis savereek of energy usage, so the seven
bands represent the seven days). The plots also suggesthevitandard implementation of shift
invariance is not helpful here. There is sufficient trainitaga such that, for devices like washers and
dryers, we learn a separate basis for all possible shiftsoitrast, for devices like lighting, where
thetimeof usage is an important factor, simple shift-invariantdsasiss key information.

3.3 Quantitative Evaluation of the Disaggregation M ethods

There are a number of components to the final algorithm we pawgosed, and in this section
we present quantitative results that evaluate the perfioceaf each of these different components.
While many of the algorithmic elements improve the disagatieg performance, the results in this
section show that the discriminative training in particutacrucial for optimizing disaggregation
performance. The most natural metric for evaluating diseggfion performance is the disaggrega-
tion error in (4). However, average disaggregation errooisa particularly intuitive metric, and so
we also evaluate a total-week accuracy of the predictiotesy,sdefined formally as

;g 0D {Zp(xi)lzq’ Zp(BiAi>PQ}

A = 13
ceuracy Zp,q X, (13)




Training Set Test Accuracy

Method Disagg. Err. Acc. | Disagg. Err. Acc.
Predict Mean Energy 20.98 45.78% 21.72 47.41%
SISC 20.84 41.87% 24.08 41.79%
Sparse Coding 10.54 56.96% 18.69 48.00%
Sparse Coding + TEP 11.27 55.52% 16.86 50.62%
Sparse Coding + GL 10.55 54.98% 17.18 46.46%
Sparse Coding + TEP +GL ~ 9.24 58.03% 14.05 52.52%
DDSC 7.20 64.42% 15.59 53.70%
DDSC + TEP 8.99 59.61% 15.61 53.23%
DDSC + GL 7.59 63.09% 14.58 52.20%

DDSC + TEP + GL 7.92 61.64% 13.20 55.05%

Table 1: Disaggregation results of algorithms (TEP = Totaéigy Prior, GL = Group Lasso, SISC
= Shift Invariant Sparse Coding, DDSC = Discriminative @jigeegation Sparse Coding).

Training Set Test Set
9.5 0.64 145 0.58

—— Disaggregation Error| —— Disaggregation Error|
— Accuracy —— Accuracy

9| 0.62

8.5 0.6

8| 0.58

.52

75 .56 1
[¢] 20 40 60 80 10% [ 20 40 60 80 10
DDSC lteration DDSC Iteration

Figure 3: Evolution of training and testing errors for itévas of the discriminative DDSC updates.

Despite the complex definition, this quantity simply capsithe average amount of energy predicted
correctly over the week (i.e., the overlap between the tneepredicted energy pie charts).

Table 1 shows the disaggregation performance obtained by diffierent prediction methods. The
advantage of the discriminative training procedure isrclal the methods employing discrimina-
tive training perform nearly as well or better than all thetinegls without discriminative training;
furthermore, the system with all the extensions, discrative training, a total energy prior, and
the group Lasso, outperforms all competing methods on beatics. To put these accuracies in
context, we note that separate to the results presentedaeeteained an SVM, using a variety
of hand-engineered features, ¢tassifyindividual energy signals into their device category, and
were able to achieve at most 59% classification accuradyetefore seems unlikely that we could
disaggregate a signal to above this accuracy and so, inflgrepeaking, we expect the achievable
performance on this particular data set to range betweenfdi7#te baseline of predicting mean en-
ergy (which in fact is a very reasonable method, as devides éfllow their average usage patterns)
and 59% for the individual classification accuracy. It isatléhen, that the discriminative training
is crucial to improving the performance of the sparse codiisgggregation procedure within this
range, and does provide a significant improvement over thelin@. Finally, as shown in Figure 3,
both the training and testing error decrease reliably wétations of DDSC, and we have found that
this result holds for a wide range of parameter choices agq szes (though, as with all gradient
methods, some care be taken to choose a step size that ihdiifively large).

4 Conclusion

Energy disaggregation is a domain where advances in malgsimeng can have a significant impact
on energy use. In this paper we presented an applicationanésoding algorithms to this task,
focusing on a large data set that contains the type of lowluigen data readily available from smart
meters. We developed the discriminative disaggregatiansspcoding (DDSC) algorithm, a novel
discriminative training procedure, and show that this athm significantly improves the accuracy
of sparse coding for the energy disaggregation task.
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