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Energy Dissipation, Runoff Production, and the Three-Dimensional 
Structure of River Basins 

IGNACIO RODRfGUEZ-ITURBE,I, 2 ANDREA RINALDO, 3 RICCARDO RIGON,'* 

RAFAEL L. BRAS, 2 ALESSANDRO MARANI, 4 AND EDE IJJ/(Sz-VXSQUEZ 2 

Three principles of optimal energy expenditure are used to derive the most important structural 
characteristics observed in drainage networks: (I) the principle of minimum energy expenditure in any 
link of the network, (2) the principle of equal energy expenditure per unit area of channel anywhere in 
the network, and (3) the principle of minimum total energy expenditure in the network as a whole. 
Their joint applica,tion results in a unified picture of the most important empirical facts which have 
been observed in the dynamics of the network and its three-dimensional structure. They also link the 
process of runoff production in the basin with the characteris.tics of the network. 

INTRODUCTION' THE CONNECTIVITY ISSUE 

Well-developed river basins are made up of two interre- 

lated systems' the channel network and the hillslopes. The 

hillslopes control the production of runoff which in turn is 
transported through the channel network toward the basin 
outlet. Every branch of the network is linked to a down- 

stream branch for the transportation of water and sediment 

but it is also linked for its viability, through the hillslope 

system, to every other branch in the basin. Hillslopes are the 

runoff-producing elements which. the n. etwork connects, 

transforming the spatially distributed potential ,energy aris- 

ing from rainfall in the hillslopes to kinetic energy in the flow 

through the channel reaches. In this paper we focus on the 

drainage network as it is controlled by energy dissipation 

principles. It !s precisely the need for effective connectivity 
that leads to the treelike structure of the drainage network. 

Figure !, from Stevens [1974], illustrates this point. Assume 

one wishes to connect a set of points in a plane to a common 
outlet and for illustration pu.rposes assume that every point 
is equally distant from its nearest neighbors. Two extreme 
ways to establish the connection would be through the spiral 

and the explosion type of patterns. The explosion pattern 
has the advantage that it connects every parcel of the system 
to the outlet in the most direct manner. Nevertheless it 

.rejects any kind of interaction between the different parts 
and the total path length for the system as a whole is 
extremely large. Thus although it has the minimum average 

path connecting each parcel to the outlet, it lacks shortness 
as a whole. The spiral pattern on the other .hand is quite short 
for the systems as a whole, but it leads to an extremely large 
average path from a point to the outlet. One is tempted to say 
that from an organizational point of view the spiral repre- 
sents pure socialism and the explosion pure capitalism. In 
one case the system is supposed to operate at its best as a 
whole with a total disregard for the average individual, who 
finds himself in the worst possible condition. In the other 
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case each individual is supposed to operate at his best 
completely oblivious of his neighbors, but the system as a 
whole cannot survive. 

Branching patterns accomplish connectivity combining 
the best of the two extremes; they are short as well as direct. 
The drainage network, as well as many other natural con- 
necting pat. terns, is basically a transportation sygtem for 
which the treelike structure is a most appealing structure 

from the point of view of efficiency in the construction, 

operation and maintenance of the system. 

The drainage network accomplishes connectivity for 
transportation in three dimensions working against a resis- 
tance force derived from the friction of the flow with the 

bottom and banks of the channels, the resistance force being 
itself a function of the flow and the channel characteristics. 

This makes the analysis of the optimal connectivity a com- 

plex problem that cannot be separated from the individual 

optimal channel configuration and from .the spatial charac- 
terization of the runoff production inside the basin. The 

question is whether there are general principles that relate 
the structure of the network and its individual elements With 

the rate of energy expenditure which takes place in the 

system as a whole and in each of its elements. 

PRINCIPLES OF ENERGY EXPENDITURE 

IN DRAINAG.E NETWORKS 

A link of a drainage network carries a wide range of 
discharges resulting from a variety of rainfall events (of 
different intensities and duration) and antecedent conditions 
of soil moisture. The individual channel characteristics are 

commonly assumed to be controlled by the bank-full dis- 

charge that the channel is capable of transporting: It is also 
true, though, that most of the work the flow performs 
throughout time takes place at discharges smaller than the 
bank-full capacity. From this point of view the mean annual 

flow may be considered a more representative discharge 
condition to characterize the work being done by the flow. 
Thus it is likely that any principles of optimal energy 
expenditure responsible for the three-dimensional structure 

of the drainage network will yield the same type of results 
when applied to the case of bank-full discharges as when the 
flow is characterized at every link by the corresponding 
mean annual value. 

Three different principles are now postulated' (1) the 
principle ,of minimum energy expenditure in any link of the 
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233.1, •-- 303,3 

L- 3.73 

Fig. 1. Different patterns of connectivity of a set of equally 
spaced points to a common outlet. L r is the total length of the paths, 
and L is the average length of the path from a point to the outlet. In 
the explosion case, L •2) refers to the case when there is a minimum 
displacement among the points so that there is a different path 
between each point and the outlet [from Stevens, 1974]. 

network; (2) the principle of equal energy expenditure per 

unit area of channel anywhere in the network; and (3) the 

principle of minimum energy expenditure in the network as 
a whole. It will be shown that the combination of these 

principles is a sufficient explanation for the treelike structure 

of the drainage network and, moreover, that they explain 

many of the most important empirical relationships observed 
in the internal organization of the network and its linkage 

with the flow characteristics. The first principle expresses a 
local optimal condition for any link of the network. The 

second principle expresses an optimal condition throughout 

the network regardless of its topological structure and later 

on in this paper will be interpreted in a probabilistic frame- 
work. It postulates that energy expenditure is the same 

everywhere in the network when normalized by the area of 

the channel on which it takes place. Thus even with the first 

principle there will be channels that spend much more 
energy per unit time than others only because of their larger 

discharge. The second principle makes all channels equally 

efficient when adjusted for size. The third principle is ad- 

dressed to the topological structure of the network and refers 

to the optimal arrangement of its elements. 
The first principle is similar to the principle of minimum 

work used in the derivation of Murray' s !aw in physiological 
vascular systems. Murray [1926] derived a relation which 

states that the cube of the radius of a parent vessel should 

equal the sum of the cubes of the radii of the daughter 
vessels (see, for example, Sherman [ 1981]). He assumed that 
two energy terms contribute to the cost of maintaining blood 
flow in any vessel: (1) the energy required to overcome 
friction as described by Poiseuille's law, and (2) the energy 
metabolically involved in the maintenance of the blood 
volume and vessel tissue. Minimization of the cost funcfi0a 
leads to the radius of the vessel being proportional to the lB 
power of the flow. Uylings [1977] has shown that when 
turbulent flow is assumed in the vessel, rather than lain'mar 
conditions, the same approach leads to the radius be'rag 
proportional to the 3/7 power of the flow. The secorot 

principle was conceptually suggested by Leopold and Lang. 
bein [1962] in their studies of landscape evolution. It is of 
interest to add that minimum rate of work principles have 
been applied in several contexts in geomorphic research. 

Optimal junction angles have been studied in this context by 
Howard [1971], Roy [1983], and Woldenberg and Horsfield 
[1986], among others. Also the concept of minimum work as 
a criterion for the development of stream networks has been 

discussed under different perspectives by Yang [1971] a•d 
Howard [1990], among others. 

ENERGY EXPENDITURE AND OPTIMAL NETWORK 

CONFIGURATION 

Consider a channel of width w, length L, slope $, and flow 

depth d. The force responsible for the flow is the downslope 
component of the weight, F1 = ptldLw sin /3 = ptIdLwS 
where sin/3 = tan/3 = S. The force resisting the movement 
is the stress per unit area times the wetted perimeter area, 

F2 = •(2d + w)L, where a rectangular section has been 
assumed in the channel. Under conditions of no acceleration 

of the flow, F1 = F 2, and then r = p.qSR where R is the 

hydraulic radius R = Aw/Pw = wd/(2d + w), Aw and 
being the cross-sectional flow area, and the wetted perimeter 

of the section, respectively. In turbulent incompressible flow 
the boundary shear stress varies proportionally to the squa• 

of the average velocity, r = Cfpv 2, where Cf is a dimen. 
sionless resistance coefficient. Equating the two expressions 
for ,, one obtains the well-known relationship, S = Cfv2/ 
(R•/), which gives the losses due to friction per unit weight of 
flow per unit length of channel. There is also an expendi• 
of energy related to the maintenance of the channel w•ch 
may be represented by F(soil, flow)P•L where F( ) is a 
complicated function of soil and flow properties represenf• 
the work per unit time and unit area of channel involved 'm 
the removal and transportation of the sediment which 0th- 
erwise would accumulate in the channel surface. From the 

equations of bed load transport one may assume that F = 
KT m where K depends only on the soil and fluid prope•es 
and m is a constant. 

In a channel of length L and flow Q the rate of ene• 
expenditure may then be written as 

v 2 Q3 
P = Cfp •- QL + KTmpw L = CfpPw '•- L Aw 

+ KC•p mv2mpwL 

The coefficient Cf depends mainly on the channel roughness 
which tends to decrease only slightly in the downstr-.eaga 
direction; on the whole the downstream reduction in rough- 
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hess resulting from a decrease in particle size is compen- 
sated by other forms of flow resistance like that offered by 
bars and channel bends [Leopold et al., 1964]. According to 
the second principle of energy expenditure, P 1 = P/(PwL) is 
the same anywhere in the network. Substituting P from (1), 
one obtains 

P i = Cfpv 3 + KC•p mv2m = const (2) 

which implies that the velocity tends to be constant through- 
out the network. This has been corroborated by the field 
investigations of Leopold and Maddock [1953], Wolman 
[1955], and Brush [1961], who obtained values of z < 0.1 in 
the downstream relation between velocity and discharge, 
v = CQ z, this being the case for both mean annual flow 
conditions or bank-full discharges throughout the network. 
Also the field experiments of Pilgrim [ 1977] corroborate this 

finding, although as pointed out by Howard [ 1990], this may 
not be a universal kind of behavior. Substituting the width 
w = Q/(vd) in (1) one gets: 

Qœ 

P = 7 [Cfi91J2 d- gc?i9 rnv2rn - 1] 

+ dL[2Cfpv 3 + 2KC•npmv 2m] (3) 

the terms in brackets being constant throughout the network 
for a given flow condition. According to the first principle of 
energy expenditure, P should be a minimum in any link of 
the network. If the link is transporting a discharge Q, this 
means dP/d(d) = 0 which yields 

Q = (const) d 2 or d= (const) Q0.5 (4) 

Thus in any link of a network the mean annual flow or the 

bank-full discharge is proportional to the square of their 
corresponding flow depths, the constant of proportionality 
being the same everywhere in the network. The above result 
has been observed by field investigators. Leopold et al. 
[1964] found d -- Qœ with f--- 0.4 for the dependence of 
depth on flow in the downstream direction, with the same 
exponent valid both for bank-full conditions and for mean 

annual flow conditions. Using (4) in the expression for width, 
w = Q/(vd), gives 

w = (const) Q0.5 (5) 

which says that in the downstream direction the width varies 

proportionally to the square root of the discharge. Leopold 
et al. [1964] found a very good relationship between width 
and the square root of the discharge in the downstream 
direction for both bank-full and mean annual flow condi- 
tions. 

Substituting (4) in (3) we obtain the optimal power expen- 
diture at any link as 

P = kQø'SL (6) 

Adding over all links of the network we obtain the total rate 

of energy expenditure under optimal conditions: 

= = Y; (7) 
i i 

where k varies with the discharge but is constant throughout 
the network if mean annual flow or bank-full conditions are 

operating throughout the basin. In an explosion pattern like 
the one of Figure 1, the Q i are small since there is no 
aggregation of flows from tributary links; on the other hand, 
the sum of the L i is extremely large and so is E. If each node 
in Figure 1 has a constant discharge, Q, then 

E = kQø'SLr (8) 

where L r is the total path length. In the case of the spiral 
pattern with a constant discharge at every node, one has 

E=kLQø'5[1 +2 ø'5+3 ø'5+ -.. +N ø'5] (9) 

where L is the constant distance between neighboring 

points. Although Lr is small for the spiral, E is again 
prohibitively large. On the other hand, the treelike pattern 

combines a piecewise aggregation of flows throughout the 
system at the same time that it keeps quite short the total 

length of the flow paths. This yields a much smaller total rate 
of energy expenditure, E. In the case of Figure 1 if the input 
flow at any node is taken as equal to 1, the corresponding 

values of E are as follows: spiral, 574k; explosion, 303k; 

and treelike, 15 l k. The explosion pattern is only relatively 
competitive when most of the points are close to the com- 

mon outlet. If one keeps adding points further away from the 

outlet, the total length of the explosion pattern increases 

dramatically and so does the total energy expenditure, E. 

The above comparison although illustrative is only correct if 

one assumes that k is the same in all cases, which implies 

that the flow velocity has remained the same in all cases, 

which is not necessarily true in natural networks. 

It is interesting to compare networks with different topo- 
logical structure which have the same total length, drain the 
same total area and carry the same total flow. One could 

think of two criteria to make this particular comparison. One 
is the criterion of minimum total energy expenditure E, and 

the other is the criterion of minimum energy expenditure per 
unit area of channel, P l, which remains constant throughout 
each network. These two criteria oppose each other in the 
sense that when P I is the same among different topological 
arrangements, then the minimum E corresponds to the 
network with the highest degree of branching; but when E is 
taken constant for the various networks, then the minimum 

P• corresponds to the network with the smallest degree of 
branching. This is the subject of the next section of this 
paper. 

HORTON'S L^ws ^ND OPTIMAL ENERGY 

EXPENDITURE 

The fantastic variety of forms and shapes of drainage 
networks embodies a deep sense of regularity in formal 
relations among the parts, an important example of which 
are the empirical laws found by Horton [ 1945]. Horton's law 
of stream numbers involves the relative arrangement of 
streams which he stated as 

the number of streams of different orders in any given drainage 
basin tends closely to approximate an inverse geometric series 
in which the first term is unity and the ratio is the bifurcation 
ratio [Horton, 1945, p. 291]. 

Mathematically it is expressed as 



1098 RODR•GUEZ-ITURBE ET AL.' STRUCTURE OF DRAINAGE NETWORKS 

•o 

Nw+l 
• = R•, (10) D = 

where No• is the number of streams of order 6o, and R •, is the 
bifurcation ratio. No, is usually estimated with the Strahler 
ordering procedure: (1) channels that originate at a source 
are defined as first-order streams; (2) when two streams of 

order •ojoin, a stream of order to + 1 is created; and (3) when 
two streams of different order join, the channel segment 

immediately downstream has the higher order of the two 
combining streams. N a -- 1, where O. is the order of the 
basin network which for a fixed number of sources, N•, is a 

measure of the degree of branching. Horton's law of stream 

lengths is expressed as 

Lo,+l 
--RL (11) 

where/70, is the average length of streams of order 6o and R L 
is the length ratio. 

Shreve [1966] provided a statistical interpretation of Hor- 
ton's law of stream numbers. He defined a topologically 

random population of channel networks as a population 
within which all topologically distinct networks with a given 
number of links, or equivalently with a given number of 

sources, are equally likely. Topologically distinct networks 

are those whose schematic map projections cannot be con- 

tinuously deformed and rotated in the plane of projection so 
as to become congruent. Shreve [1966] proposed that in the 

absence of geological controls a natural population of chan- 
nel networks will be topologically random. He noticed that 
inherent in the definition of stream order is the corollary that 

no arborescent network can depart very far from Horton's 

geometric series law. The fact that for every stream of given 

order, except the first, there must be at least two streams of 
the next lower order means that on a Horton diagram of log 

No, versus 6o, the points for any channel network with given 
order and given number of sources "will necessarily lie 

within a relatively restricted parallelogram-shaped region 

whose long diagonal is the locus of points which exactly 

satisfy Horton's law" [Shreve, 1966, p. 121]. Moreover it is 

around the diagonal of the narrow parallelogram where most 

of the networks with given order and number of sources will 
be located. Thus the fact that natural networks tend to fulfill 

Horton's law of stream numbers is really a consequence of 

the ordering system. Most intriguing is the fact that drainage 

networks tend to have a bifurcation ratio, R 0, close to 4 with 
most values lying in a small range between 3 and 5. Shreve 

showed that in a topologically random population of net- 

works with a given number of sources, the most probable 

network order D. is that which makes R•, closest to 4. 

Shreve [1969] provided a statistical interpretation of Hor- 
ton's law of stream lengths. Taking the link lengths as 
random variables with a common distribution he showed 

that networks tend to follow Horton's law of stream lengths, 

the most probable networks giving the straightest lines in the 

plots of log/5,o versus 6o with an R z. of approximately 2. This 
agrees well with the values observed in nature which lie 
between 1.5 and 3.5. La Barbera and Rosso [1987] and 

Tarboton et al. [1988] have shown that R o and R z. are 
connected through the fact that drainage networks exhibit a 
fractal structure with fractal dimension given by 

log Rt, 

log R z. (12) 

The measurements of Tarboton et al. [1988] indicate that 
these networks are space filling with D -- 2, which in turn 

2 
implies R b -- Rœ. 

After Shreve's [1966, 1969] classical papers it has been 
commonly assumed by hydrologists and geomorphologists 
that the topological arrangement and relative sizes of the 
streams of a drainage network are just the result of a most 
probable configuration in a random environment. Thus the 

value of R t, = 4 and the implied R L = 2 are explained solely 
as being those with the highest probability of occurrence. 

We believe that in an evolutionary system like the drainage 
network both chance and necessity should be operating; 
and, moreover, that the influence of necessity is felt through 
a tendency to minimize the total rate of energy expenditure 
in the network and the rate of energy expenditure per u•t 
area of channel anywhere in the network. This will be shown 

through an example but the implications are general. 

Figure 2 shows three networks with N• = 16 which 
exactly fulfill Horton's law of stream numbers. All three 
networks will be analyzed by two different sets of conserva- 

tion rules. In case 1 they have been built with links of unit 

length and unit runoff production per link in all networks. In 
case 2 they all have the same total length and total area but 

each link is assigned an area draining directly into it equal to 

the square of its length as is commonly observed in drain•e 

networks. The runoff produced directly at every link is 

considered equal to the area draining directly to the link. In 

case 2 with R b = 4, R r is fixed at 2, and the total area is 80, 
from which all the link lengths and their respective areas are 

then deduced. For case 2 with R0 = 2 and Rt• = 16 the link 
lengths and the R r values are deduced by imposing the 
condition that the total area and total length should match 

those of the network with R t, = 4. If the rate of energy 
expenditure per unit area of channel is maintained as the 
same in the three networks, implying that the flow velocity is 
the same in all of them, then the minimum total rate of 
energy expenditure, E, corresponds to the network with t.he 
largest D. or R o = 2. The topological arrangement with 
largest total rate of energy expenditure is the one with the 
smallest f/or Rt, = 16. This is always the case regardless of 
the number of sources. If one maintains the total rate of 

energy expenditure, E, as a constant in all cases, then the 
flow velocities need to be different, the largest velocity 
corresponding to R0 = 2 and the smallest one to Rb = 16, 
This, in turn, implies a rate of energy expenditure per unit 
area of channel, P•, largest for the network with maximum 
f• and smallest for the network with the minimum 11. 

this will always be the case regardless of the number .of 
sources. For N• = 16 there is a very large number of 
topologically different networks which may have 11 values 
between 2 and 5. The networks with gl - 3 and 11 =4 
combine the best of two worlds; they try to be efficient from 
the point of view of the energy expenditure of the whole 
system but at the same time they try to maintain the rate of 
energy expenditure per unit area of channel small anywhere 
in the system. These networks are the ones with Rb in 
range of values observed in nature. 

The above particular comparison among networks which 
have the same total length, drain the same total area 
carry the same total flow assumes there are no restrictions "m 
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Fig. 2. Networks analyzed according to two sets of conserva- 
tion rules. In case 1, all links have unit length in all networks. The 
discharges are as follows (where the numbers in parentheses corm- 
spond to those marked on the branches): for fl - 5: (1) 1, (2) 3, (3) 
7,(4) 15, (5) 31; forfl -- 2: (I) 1, (2) 3, (3) 5,-.-, (15) 30, (16) 31; for 
12 -- 3: (1) 1, (2) 3, (3) 5, (4) 7, (5) 13, (6) 19, (7) 21, (8) 27, (9) 29, (10) 
31. Total rates of energy expenditures are as follows: fl - 5, 
53.75k; 12 •- 2, 75.42k; 12 - 3, 63.2k. In case 2, link lengths and 
discharges are as follows: for f• = 5: (1) 1.437, 2.065, (2) 1.609, 
6.719, (3) 1.802, 16.685, (4) 2.018, 37.442, (5) 2.26, 80; for II = 2: (1) 
1.779, 3.165, (2) 1.416, 8.335, (3) 1.416, 13.505, '--, (15) 1.416, 
75.545, (16) 1.416, 80; forfl - 3: (1) 1.762, 3.105, (2) 1.566, 8.662, (3) 
1.566, 14.219, (4) 1.566, 19.776, (5) !.175, 35.376, (6) 1.175, 50.976, 
(7) 1.!75, 55.462, (8) 1.175, 71.062, (9) 1.175, 75.548, (10) 1.175, 80. 
Total rates of energy expenditure are as follows: iI = 5, 134k; f• = 
2, !87k; f• = 3, 153k. 

Fig. 3. Initial network configurations for the optimization proce- 
dure. 

mented is similar to the strategy developed by Lin [ 1965] for 
the traveling salesman problem. It starts with an initial 
configuration which is perturbed by randomly changing the 

flow direction of a randomly chosen node among its eight 
surrounding neighbors under the constraint that the network 

should drain the whole area to a common outlet, no lakes 

being allowed inside the basin. The change on E is computed 
between the new and the old configuration, and if it is 

negative, the new configuration is adopted as the base 
configuration and the process is iterated. On the other hand, 
if the change on E is positive, the old configuration is 

perturbed again. The procedure leads to a network in which 

no improvement on E appears after many perturbations. The 
entire process is repeated many times to obtain a set of 
networks with different minimal E. The configuration with 

the overall minimum 5; i P i is selected as the solution to the 
problem. Although there is no assurance that the solution 

represents a global optimum, experience shows that the 
procedure is quite effective in obtaining solutions near the 

global optimum starting from an arbitrary initial configura- 
tion. Figure 3 shows examples of the initial configurations 
that were chosen, very far indeed from the appearance of 
natural drainage networks. Figure 4 shows an example of the 
obtained optimal configurations. Throughout the whole pro- 
cedure stream channels are defined as those pixels with a 
cumulative drainage area greater than a support threshold 
which is taken as five pixels in these experiments. Although 
more research is needed in this area, it appears that the ihird 
principle of optimal energy expenditure leads to networks of 

striking Hortonian structure with R 0 and R z. values as those 
observed in natural fiver basins. Moreover, it also leads to 

power law probability distributions of the discharge and 
energy dissipation throughout the population of links which 

have the same exponents as those found by Rodrfguez- 
Iturbe e! al. [this issue] in natural basins. This topic will be 
described in detail in a different paper by the authors. 

the space in which the network will develop. This is certainly 
not the case for river networks which drain a space condi- 
tional on its shape by the very large scale features of the 
terrain. According to the third principle of optimal energy 
expenditure, the topological arrangement of the network 
elements in this space will be such as to lead to the 
minimization of the total rate of energy expenditure, E. It 
will be shown through an example that the third principle 
leads to drainage networks which obey Horton's laws of 
stream numbers and stream lengths with the values of R • 
and R L typically observed in nature. 

A square grid is superimposed on a rectangular region of 
30 x 60 grid units, the problem being to find the network 
which minimizes the function E, The optimization irapie- 

SCALING IMPLICATIONS OF OPTIMAL ENERGY 

EXPENDITURE 

The rate of energy expenditure per unit area of channel, 
P•, may be written as 

paQS 

P1 = '(w + 2d) + Kc)np mv2rn (13) 
Substituting for w and d, the expressions obtained from the 
joint application of the two principles of energy expenditure, 
d oc Q0.5 and w • Q0.5, one obtains (with constant velocity 
throughout the network) 

Pl = c•Qø'sS + c2 (14) 
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Fig. 4. Network with near-optimal minimum E: N 1 = 83, N 2 = 16, N3 = 4, N 4 = 1; Rs = 4.36; œ1 = 2.92, 
/7,2 TM 7.02, L-'3 = 17.05, L-4 = 43.46; RL = 2.46. 
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Fig. 5. Link slopes as function of magnitude for Big Creek, Idaho [from Tarboton et al., 1989]. 

For a given flow condition, c 1 and c2 are constant through- 
out the network, and under the second principle P1 is 
constant in all links. Thus 

Qø'SS = const (15) 

implying that the product of the slope times the square root 
of the discharge is a constant throughout the network when 

mean annual flow conditions exist everywhere in the basin. 

Under bank-full discharge conditions, this will still be valid 

with a different constant on the right-hand side. 
Studies of the stable channel section of gravel rivers by 

Parker [1978] and lkeda et al. [1988] have shown that the 

product dS is only a function of the sediment characteristics; 

with d 0• Q0.5 this agrees with the previous result. Leopold 
and Wolman [1957] report a large number of rivers in the 

United States and India that show SQ 0'44 - const. Leopold 
et al. [1964] also report the values for the exponent z in the 
relation $ o• Q Z for observations in the downstream direc- 
tion. An average value of z = -0.49 was obtained for 
streams in the midwestern United States for both bank-full 

and mean annual flow conditions. Nevertheless, for ephem- 
eral streams in semiarid regions, they quote an exponent 
closer to -1.0. The above field data are probably quite 
unreliable for studying the relationship S Q z. One needs to 
measure both the discharge and the slope along individual 
links. The identification of the network itself is not a trivial 

matter, and it is only recently through digital elevation maps 
(DEMs) that the network with the slopes of its links and their 
individual contributing areas has been objectively studied. 
DEMs consist of elevations in a rectangular grid with, 
usually, 30 m spacing. In the United States, grids with 30 m 
to a side are common. Each grid block is termed a pixel and 
streams are then usually defined as those pixels with cumu- 
lative drainage area greater than a support area threshold 
[O'Callaghan and Marks, 1984; Band, 1986]. 

Discharge measurements in every link of a network are 
not available and since the mean annual flow has been 

observed to be proportional to the drainage area in many 
regions of the world, area may then be used as a surrogate 
variable for discharge and Q o.5 S = const becomes A 0.5 S = 
const. This relationship can be studied in detail using DEMs. 
The magnitude of a !ink, n, is defined as the number of 

sources upstream of the !ink. For topological reasons the 
total number of links draining through the outlet of a link of 
magnitude n is 2n - 1. The area draining directly to any 
link, A*, varies randomly from link to link but does not 

depend on the magnitude. Thus the total area, A(n), draining 
through a link of magnitude n is itself a random variable, 

2n- 1 

i=l 

(16) 

Thus rather than considering the energy expenditure per unit 

area of channel as a constant anywhere in the network, it is 

now considered as a random variable, •, whose expected 

value is the same throughout the network. This is expressed 
as 

Qø'5(n)S(n) = se(n) (17) 

where E[sqn)] = const. Using A(n) as a surrogate of Q(n), 
(17) yields in first-order analysis 

E[S(n)] = const (2n - 1) -o'5 (18) 

Thus the principles of optimal energy expenditure lead to 
the scaling of the mean link slopes as a function of areas or 

their surrogate variables, magnitudes. The basic scaling is in 
terms of discharges, but with discharges proportional to 
areas (18) is a natural consequence. The scaling of (18) is 
precisely of the type suggested by Gupta and Waymire 
[1989] and the value of-0.5 is the one found in the analysis 
of drainage networks through DEMs by Tarboton et al. 
[1989], an example of which is shown in Figure 5. From 
first-order analysis of (17) the variance of link slopes may be 
obtained as 

Var [S(n)] o• (2n- 1) -• Var [se(n)] (19) 

Flint [1974] and Tarboton et al. [1989] have found that Var 

IS(n)] scales as (2n - 1) -0'5 which then implies that 

Var [se(n)] o• (2n- 1) 0'5 (20) 

Figure 6 shows an example of the mean and variance of 

A ø'5(n)S(n) as functions of magnitude for the Racoon River 
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Fig. 6. Mean and variance of sO(n) versus (2n - 1) for the Racoon River basin in Pennsylvania. 

basin in Pennsylvania. Figure 6 is constructed grouping links 

according to magnitude so that there are at least 25 links with 

identifiable slopes in every interval of the histogram. Due to 
the 1-m vertical resolution of DEM there are links whose 

altitude drop and the corresponding slopes cannot be iden- 
tified. in these cases a random altitude drop between 0 and 1 
m is assigned to the link and the corresponding slope is then 

computed as the ratio of altitude drop and link length. The 
lines in Figure 6 were fitted by least squares through the 

whole set of points. It is observed that the mean is indepen- 
dent of magnitude, as predicted by the second principle of 

op.timal energy expenditure, and the variance is proportional 

to .(2n - 1)0.•. This is an indication of multiscaling in $(n) 
where there is not just one scaling relation determining all 

the moments of the process but rather changes of scale affect 
different moments with different scaling laws. 

The multi•caling character of S(n) points toward the fact 
that variance of the random variable whose expected value is 

the same throughout the network increases proportionally to 

the average travel time for the flow to reach any site in the 

system. The reason for this lies in the nature of the energy 

dissipation along any flow path in the network. Energy is 

spent along a succession of pools and riffles analogous to a 
diffusion of the energy along the flow path or equivalently to 

a random walk in the altitude space through which small 

drops of random height occur randomly along the flow path 

[Tarboton et al., 1989]. From the point of view of the optimal 

operation of the network, it is desirable that the expected 
value of the energy spent per unit area of channel be the 
same everywhere in the basin but the variance of such 

energy expenditure, similar to that in a diffusion process, 

will be proportional to the length of the path or equivalent to 

the average travel time for the flow to reach a particular link 

from all its tributary links. The average length of flow path at 
any point may be considered proportional to the square root 
of the total area draining at the point and thus Var [•(n)] o: 

[(2n- 1)] ø'•. 
The spatial structure of runoff production is intimately 

linked to the scaling of the drainage network. Equation (17) 

may be written as 

[iil3:A T + i2J32A • + ''' 

+ i(2n- 1)/3 (2n- :)A hn- 1)]ø'5S(n) = •(n) (21) 

where i is the mean annual rainfall input, and/3 is the mean 
annual runoff coefficient of the area draining into the indi- 

vidual links upstream of a link of magnitude n. The fact that 
E[$ (n)] cr (2n - 1) -0.• and E[ f(n)] = const indicates that 
in first-order analysis basins tend to be organized so that the 

expected value of annual runoff production per unit area, 
irj3, remains approximately the same throughout the basin. 

CONCLUSIONS 

The combination of three principles of energy expenditure 
results in a unified picture of the most important empirical 
findings related to the dynamics of the three-dimensional 
structure of drainage networks. Among them are these: (I) 
the velocity of the flow for a representative discharge tends 
to be constant throughout the network; (2) the depth of flow 
is proportional to the square root of the discharge, the 
constant of proportionality being the same everywhere in the 
network; (3) in the downstream direction the channel width 
varies proportionally to the square root of the discharge; and 
(4) the mean value of ttie slopes of links with magnitude n 
scale proportionally to (2n - 1)-0.•. The degree of bifurca- 
tion of the network and the relative length of its elements as 
measured by the bifurcation and length ratios usually found 
in nature in the narrow ranges 3 -< Rt, -< S and 1.5 -< Rz < 
3.5 may also be interpreted as consequences of the three 
principles of energy expenditure. The multiscaling charac- 
teristics observed in the three-dimensional structure of the 
network are also related to the manner that the expenditure 

of energy takes place in the drainage basin. 
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