
T
HE electroencephalogram (EEG) analysis, repre-
senting the electrical activity of the brain, makes

use of different tools, specific to signal processing. The
results are used for diagnosis of diseases which involves
the function of cortical neurons. The evolution of EEG
signals, in the case of a disease, is presented under the
form of abnormal frequencies or anomalies in the ampli-
tude of EEG waves.

The signals are stored and processed using different
techniques, able to point out some links between par-
ticular frequencies or spectra, to specific characteristics
of diseases. Some expertise and software are necessary
for the interpretation of the analysis results obtained for
EEG recorded data.

The problems that occur in the functioning of the
brain produce a distinct pattern in EEG data, and this
can be estimated making use of pattern analysis. The
analysis process refers to the ability of the user to iden-
tify different patterns in data, making the object of the
analysis. It represented a fundamental tool in diagnosis
of brain diseases, in the last years.

Sometimes, the EEG analysis uses different tech-
niques for change detection in signals. The problem is
to determine if a change produced and determine the
time when it occurred. The specific techniques oper-
ate in time, frequency or time-frequency fields and use
measures of ”distance”, statistical inference, fuzzy logic,
artificial intelligence, among others. These techniques
could be applied on the original EEG data, or on the
pre-processed data. The purpose is to amplify the the
effect of the changes. Sometimes, post-processing tech-
niques are applied on the results obtained in the phase
of change detection.

The amplitude levels of the EEG signals, obtained in
the primary processing stage, can be extracted and clas-
sified, as a first step in decision process; unfortunately,
these results could be affected by the noise. The time-
frequency analysis of signals, used for energy distribution
evaluation, even it involves a more computation effort,
offers new facilities to determine change detection in-
stants, [1]. Also, the algorithms for modeling of signals,
using parametric model, prove useful in such analysis,
even with some limitations.

The time-frequency analysis [2] provides a simpler
way for analysis and evaluation of non-stationary EEG
signals; it refers to energy distribution analysis in pre-
determined time and frequency areas [1]. The mea-
sures based on entropy, make use of Kullback-Leibler
and Rényi ”distances”, as well as Jensen difference [3]
and offer new facilities in this field.

The problem of energy distribution of EEG signals
make the object of many papers: [4], where the authors
use a wavelet-neural network classifier, [5], with applica-
tion in diagnosis, based on energies of EEG subbands,
making use of discrete wavelet transform and support
vector machine, [6] with an application of entropies in
automated diagnosis of epilepsy, [7], energy feature ex-
traction of EEG signals with a case study and [8], an
application of the short-term Rényi entropy to estimate
the number of EEG signal components, among others.

The paper presents some techniques, which include
time-frequency analysis and energy distribution, as well
as the use together, assuring a framework for EEG data
analysis, resulting new information to be used for feature
extraction. Section 2 refers to time-frequency analysis,
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offering an overview of the techniques, with fundamental
principles, advantages and disadvantages. In Section 3,
we review some existing measures for energy distribution
of signals, and insist on Rényi entropy measures, able to
assure the possibility of quantitative analysis of of the
information, contained in time-frequency distribution of
EEG signals. Finally, Section 4 presents a case study
having as subject the analysis of a sample lowpass event
-related potentials (ERP) data, collected from 13 scalp
and 1 EOG electrodes.

Time-frequency analysis proves to be useful in the
analysis, processing and parameter estimation of signals,
like EEG, where the spectral content of these signals
changes in time. The basic objective of TFA is to find a
function able to describe energy density of the signal like
a function of time, t, and frequency, ω, simultaneously.

The time-frequency representations (TFRs) of a sig-
nal are classified depending of the analysis approaches
[9]. So, in one approach, the signal, making the object of
the analysis, uses time-frequency (TF) functions, result-
ing after translating, modulating and scaling of a basis
function with a definite time and frequency location. So,
the TFR, for signal x(t), is given by

TFx(t, ω) =

∫ +∞

−∞

x(τ)φ∗

t,ω(τ)dτ =< x, φt, ω >, (1)

in which φt,ω are the basis functions (the TF atoms)
and ∗ is the complex conjugate. The φt,ω functions are
square integrable, with finite energy [10]. To this cat-
egory belong short-time Fourier transform (STFT) [11],
wavelets [10], [12], and matching pursuit algorithms [10],
[13], among others.

A second category of time-frequency distributions
(TFD) is given by Cohen’s shift invariant class distribu-
tions, where the TFR is represented by a kernel function
[2]. Because such of distributions will be used in the case
study in Section 4, having as subject energy distribution
evaluation in EEG signals, we give some details in the
following.

As we mentioned before, in the case of this approach,
the TFR is characterized by a kernel function, which
the properties reflected by the constraints on the kernel,
assuring desirable properties [2]. These TFRs can be
described by

TFDx(t, ω) = (2)

=
1

4π2

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

x(u +
τ

2
)x∗(u−

τ

2
)×

×φ(θ, τ) exp−jθt−jτω+jθu dudτdθ

with φ(θ, τ) a two-dimensional kernel function, ensuring
the properties of the representation. In this case, the
commonly used distributions for TFDs are Wigner dis-
tribution, Choi-Williams distribution, and spectrogram
[2].

In selecting of a such distribution, to be used in prac-
tice, a great attention must be paid to its properties.
The well-known spectrogram (SP), in general a distribu-
tion free of cross-terms, raises issues concerning the un-
desirable trade-off between the time and frequency res-
olution, see [14], [15] and [16]. The Wigner-Ville distri-
bution (WVD) assures a high time-frequency resolution,
but the presence of cross-terms raises issues in practice
[14]. The problem of cross-terms removing, but keeping a
high time-frequency resolution, is solved by other TFDs.
So, the Choi-Williams distribution (CWD) [15], [17] and
the binomial distribution (BD) [18] overcomes the limi-
tation of WVD to a large extent, but it is lost the time-
frequency resolution. The BD overcomes these problems,
but some small synchronization and cross-terms could be
present. Taking into account the above remarks, the BD
appears to be a better choice in EEG signal analysis,
solution used in the case study.

The last two distributions are known as the so-called
reduced interference distribution (RID) and they also be-
long to the Cohen’s class; RID is by itself an extension
of the WVD [19].

The energy preservation and the marginals are the
most desired properties for TFDs and are given as fol-
lows; they are satisfied when φ(θ, 0) = φ(0, τ) = 1∀θ, τ
/citeCOH1.

∫ +∞

−∞

∫ +∞

−∞

TFDx(t, ω)dtdω = (3)

=

∫ +∞

−∞

|x(t)|2dt =

∫ +∞

−∞

|X(ω)|2dω

∫ +∞

−∞

TFDx(t, ω)dω = |x(t)|2, (4)

∫ +∞

−∞

TFDx(t, ω)dt = |X(ω)|2

Starting from the formulas (3) and (4), an analogy
between TFD and the probability density function (pdf)
of a two-dimensional random variable can be established
[20].

As it is know, all TFDs tend to the same goal, but
each has to be interpreted, according to its own proper-
ties: important interference terms, only positive terms,
perfectly localized on particular signals, etc. Starting
from the knowledge of these properties, information ex-
traction has to be done carefully. It is desirable to use a
distribution that can reveal the features of the signal as
clearly as possible.

One of the simplest procedure for evaluation of energy
concentration is via time-frequency analysis. The idea is
to evaluate the concentration of energy at different time
instant or frequency band, or in some particular time and
frequency region. In [9] is given an overview of recent
advances for time-frequency representation using energy
concentration, while a review of some existing measures

2. Time-frequency analysis of EEG signals 

3. Energy distribution of EEG signals 

WSEAS TRANSACTIONS on SIGNAL PROCESSING 

DOI: 10.37394/232014.2021.17.14 Theodor D. Popescu

E-ISSN: 2224-3488 100 Volume 17, 2021



with their comparison makes the object of [1]. Also,
some measures for distribution concentration for mono-
component signals are presented in [21]. Other measures
for time-frequency distribution concentration are defined
by Jones and Parks [22], for more complex signals, and
by Williams et al. [23], [24] and Flandrin [25], in the
form of the distribution norms ratio and Rényi entropy.
The distribution energy was also used for optimal kernel
distribution design [26], [27], [28]. All these measures
are based on the distribution norms, resulted as sums of
distribution values at a power greater than one.

Various and efficient modifications of energy distri-
bution have been proposed in [22] and [23]. The distri-
bution norm has been divided by a lower-order norm,
while some strict constraints were imposed on the kernel
forms in [26]. In some cases, the normalized forms of the
measures are not quite appropriate for the cases where
there are some components of approximately equal ener-
gies, whose concentration are very different. A local con-
centration measure is proposed in [22], but it increases
the computational effort. Some of these difficulties are
overcome by the measures for distributions concentra-
tion presented in [1]. A briefly review of Rényi entropy
measures, used to describe the amount of information
contained in time-frequency distribution, as an approach
for the EEG signals analysis, is given in the following.

A new entropy measure can be evaluated, to extract
the information contained in a given position of t = n,
after the local frequency content resulted after time-
frequency distributions evaluation.

The class of Rényi entropy measures has been in-
troduced in by Williams at al. [23], [24], with some
contributions of Flandrin et al. [25], which established
the properties for this measure. In [29] can be found a
study of the properties and possible application of the
Rényi measures, as well as mathematical foundations for
quadratic TFRs. Starting from these results have been
developed new measures used for signal information esti-
mation and its complexity in time-frequency plane. The
Rényi entropy measures are characterized by some inter-
esting and useful properties, that make them natural for
time-frequency analysis [29].

The Rényi information measures make the object of
many papers. So, in [30] is described an application of
Rényi information measures for spectral change detec-
tion without any assumption about the input; they are
based on the evaluation of information measures in time-
frequency plane, in particular the spectrogram. The
Rényi entropy measures resulted as an extension of Shan-
non entropy and are well-suited as a support for anal-
ysis, segmentation and classification algorithms. Some
entropy functionals resulted from Rényi information di-
vergence are given in [31].

For a time-frequency distribution, Px(n, k), the Rényi
entropy measure has the form:

Rα =
1

1− α
log2

(

∑

n

∑

k

Pα
x (n, k)

)

(5)

where n is the time variable and k the frequency variable,

with α ≥ 2 recommended for distribution time-frequency
measures, [25]; n and k are discrete values. For α = 2,
oscillatory cross-terms would increase the energy, lead-
ing to false conclusion. In the case α = 3 the detection
fails to point out the presence of oscillatory cross-terms.
Starting from these remarks have been introduced the
normalized Rényi entropy measures. This normalization
is done in various ways, resulting different measure defi-
nitions. [25] and [1] propose some normalization schemes
for Rényi entropy, described below:

• Normalization with the signal energy produces

REα =
1

1− α
log2

(∑

n

∑

k P
α
x (n, k)

∑

n

∑

k Px(n, k)

)

with α ≥ 2

(6)

This measure is quite similar with the non-
normalized measure form, excepting its magnitude.
This normalization offers the possibility for compar-
ison of different distributions.

• Normalization with the distribution volume,

RV3 = −
1

2
log2

( ∑

n

∑

k P
3
x (n, k)

∑

n

∑

k |Px(n, k)|

)

(7)

If the distribution includes oscillatory terms, after
summing them, in absolute value, the large cross-
terms will decrease measure RVα. This highlights
smaller concentration, due to cross-terms appear-
ance. The volume-normalized form of measure has
been used in [23]. Other ways of normalization are
presented in [25].

• Quantum normalization

In this case, the time-frequency distribution, at a
given instant t = n, is assimilated to a wave function
and in the general case, α = 3 [32], results

R3 = −
1

2
log2

(

∑

n

∑

k

P 3
x (n, k)

)

(8)

The normalizing process affects exclusively to index
k, when the operation is restricted to a single posi-
tion n to satisfy the condition

∑

k Px(n, k) = 1 in
such position.

The measure (8), for a given n, is rewritten as fol-
lows:

R3(n) = −
1

2
log2

(

∑

k

P 3
x (n, k)

)

(9)

The normalization proposed in [32] resulted to be
most suitable in signal analysis. The values of R3(n)
depend upon the size N of the window in (9) and
it can be shown that they are within the interval
0 ≤ R3(n) ≤ log2 N . Hence, the measure can be
normalized by applying R̂3(n) = R3(n)/ log2 N .
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Concerning the selection of Rényi entropy order α it
depends to a great extend on the statistical distribution
of the analyzed data. The order α = 3 offers a good sensi-
tivity for a great diversity of distributions, experimental
proven, without need to remove some data, especially
in complex optimization problems. This choice proved
good results in the investigated case studies. Also, in
[33], it is recommended and used with good results, the
order 3 of Rényi entropy. Some authors use and inves-
tigate Rényi entropy of order 2, which in this case, is
reduced to Shannon entropy.

The data used in this case study represent an EEG
time series collected from 13 scalp and 1 EOG elec-
trodes. For artifact removing from data, has been used
Independent Component Analysis (ICA) with high-order
statistics [34], applied to sample lowpass ERP data for
2 epochs and 312 frames per data epoch, at 312.5 Hz
sampling rate. The data are used in many case studies
(see [35], among others).

The ”corected” EEG data for 2 conditions, after ar-
tifact removing, are shown in Fig. 1 and Fig. 2 for the
channels 1-7 (Fz, Cz, Pz, Oz, F3, F4, C3) and for the
channels 8-14 (C4, T3, T4, P3, P4, Fpz, EOG), respec-
tively.

The time-frequency analysis of the ”corrected” EEG
signals has been performed using the reduced interfer-
ence distribution (RID) [19]; see Fig. 3 and Fig. 4,
for channels 1-7 and channels 8-14, respectively. As we
mentioned in Section 2, RID represents an extension of
the Wigner-Wille distribution [2], belonging to the Co-
hen’s class of distribution. It was computed with a kernel
based on the Hanning window, for the number of fre-
quency bins, Nf = 624, identical with the time instants,
time smoothing window, Lg = 204, frequency smoothing
window, Lh = 512, and a threshold of 2%.

The time-frequency analysis results, presented above,
have been used for evaluation of energy concentration in
EEG signals and feature extraction, at certain time or
frequency values, or more generally, in some time and
frequency region of interest. In this case, the Rényi en-
tropy proved to be a measure of information contained
in time-frequency distribution [3].

Starting from time-frequency analysis results, we
present in Fig. 5 and Fig. 6, the normalized Rényi infor-
mation, for channels 1-7 and channels 8-14, respectively,
as a measure of energy concentration for a window with
length N = 32 and a constant bias added to signal of
7.5.

The normalized Rényi information for ERP filtered
data without artifacts can make the object of segmenta-
tion using parametric models and an optimal procedure
[36], [37], resulting new information for medical diag-
nosis. A such procedure, operating on the new space of
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Fig. 1: ERP filtered data after artifact removing for 2
epochs, channels 1-7
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Fig. 2: ERP filtered data after artifact removing for 2
epochs, channels 8-14
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Fig. 3: Reduced interference distribution for ERP fil-
tered data without artifacts: channels 1-7 (2 epochs)
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Fig. 4: Reduced interference distribution for ERP fil-
tered data without artifacts: channels 8-14 (2 epochs)
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Fig. 5: Normalized Rényi information for ERP filtered
data without artifacts: channels 1-7 (2 epochs)
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Fig. 6: Normalized Rényi information for ERP filtered
data without artifacts: channels 8-14 (2 epochs)

decision, provided by Rényi entropy, assures more robust
change detection in EEG signal analysis, than in the case
of change detection in original EEG signals, after artifact
removing.

A generally method for energy distribution evalua-
tion using Rényi entropy measures, able to quantitative
analysis of the information contained in time-frequency
distribution of EEG signals, is presented. The normal-
ized Rényi information for ERP filtered data without
artifacts can make the object of further investigation,
offering new information for medical diagnosis. The pro-
posed procedure is applied with good results in the anal-
ysis of a sample lowpass event -related potentials (ERP)
data, collected from 13 scalp and 1 EOG electrodes. The
approach offers a simpler analysis and interpretation of
the EEG signals behavior, providing new solution in in-
vestigation of cortical processes.
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signal dependent optimal kernel design”, Proc. of
the ICASSP, pp. 997-1000, 1995.

[24] W. J. Williams, M. L. Brown, A. O. Hero, ”Un-
certainity, information and time-frequency distribu-
tions”, SPIE Adv. Signal Process. Algebra Arch.
Imp., pp. 144-156, 1991.

[25] P. Flandrin, R. G. Baraniuk, O. Michel, ”Time-
frequency complexity and information”, Proc. of the
ICASSP, pp. 329-332, 1994.

[26] R. G. Baraniuk, D. L. Jones, ”A signal dependent
time-frequency representation: Optimal kernel de-
sign”, IEEE Trans. Signal Process., pp. 1589-1602,
1993.

[27] R. G. Baraniuk, D. L. Jones, ”Signal-dependent
time-frequency analysis using radially Gaussian ker-
nel”, IEEE Trans. Signal Process., pp. 263-284,
1993.

[28] D. L. Jones, R. G. Baraniuk, ”An adaptive optimal-
kernel time-frequency representation”, IEEE Trans.
Signal Process, pp. 2361-2372, 1995.

[29] R. G. Baraniuk, P. Flandrin, A. J. E. M. Janssen,
O. J . J. Michel, ”Measuring time-frequency infor-
mation content using the Rényi entropies”, IEEE
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